1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
|
#include "calendar.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <optional>
#include <string>
#include "cata_assert.h"
#include "cata_utility.h"
#include "debug.h"
#include "display.h"
#include "enum_conversions.h"
#include "line.h"
#include "options.h"
#include "rng.h"
#include "string_formatter.h"
#include "translations.h"
#include "units.h"
#include "units_utility.h"
/** How much light moon provides per lit-up quarter (Full-moon light is four times this value) */
static constexpr float moonlight_per_quarter = 1.5f;
// Divided by 100 to prevent overflowing when converted to moves
const int calendar::INDEFINITELY_LONG( std::numeric_limits<int>::max() / 100 );
const time_duration calendar::INDEFINITELY_LONG_DURATION(
time_duration::from_turns( std::numeric_limits<int>::max() ) );
static bool is_eternal_season = false;
static bool is_eternal_night = false;
static bool is_eternal_day = false;
static int cur_season_length = 1;
time_point calendar::start_of_cataclysm = calendar::turn_zero;
time_point calendar::start_of_game = calendar::turn_zero;
time_point calendar::turn = calendar::turn_zero;
season_type calendar::initial_season = SPRING;
// The solar altitudes at which light changes in various ways
static constexpr units::angle astronomical_dawn = -18_degrees;
static constexpr units::angle nautical_dawn = -12_degrees;
static constexpr units::angle civil_dawn = -6_degrees;
static constexpr units::angle sunrise_angle = -1_degrees;
float default_daylight_level()
{
return 100.0f;
}
float max_sun_irradiance()
{
return 1000.f;
}
time_duration lunar_month()
{
return 29.530588853 * 1_days;
}
namespace io
{
// *INDENT-OFF*
template<>
std::string enum_to_string<moon_phase>( moon_phase phase_num )
{
switch( phase_num ) {
case moon_phase::MOON_NEW: return "MOON_NEW";
case moon_phase::MOON_WAXING_CRESCENT: return "MOON_WAXING_CRESCENT";
case moon_phase::MOON_HALF_MOON_WAXING: return "MOON_HALF_MOON_WAXING";
case moon_phase::MOON_WAXING_GIBBOUS: return "MOON_WAXING_GIBBOUS";
case moon_phase::MOON_FULL: return "MOON_FULL";
case moon_phase::MOON_WANING_CRESCENT: return "MOON_WANING_CRESCENT";
case moon_phase::MOON_HALF_MOON_WANING: return "MOON_HALF_MOON_WANING";
case moon_phase::MOON_WANING_GIBBOUS: return "MOON_WANING_GIBBOUS";
case moon_phase::MOON_PHASE_MAX: break;
}
cata_fatal( "Invalid moon_phase %d", phase_num );
}
template<>
std::string enum_to_string<time_accuracy>( time_accuracy acc )
{
switch( acc ) {
case time_accuracy::PARTIAL: return "PARTIAL";
case time_accuracy::FULL: return "FULL";
case time_accuracy::NUM_TIME_ACCURACY:
case time_accuracy::NONE: break;
default:
DebugLog( DebugLevel::D_WARNING, DebugClass::D_GAME )
<< "Invalid time_accuracy " << static_cast<int>( acc );
}
return "NONE";
}
// *INDENT-ON*
} // namespace io
moon_phase get_moon_phase( const time_point &p )
{
const time_duration moon_phase_duration = calendar::season_from_default_ratio() * lunar_month();
// Switch moon phase at noon so it stays the same all night
const int num_middays = to_days<int>( p - calendar::turn_zero + 1_days / 2 );
const time_duration nearest_midnight = num_middays * 1_days;
const double phase_change = nearest_midnight / moon_phase_duration;
const int current_phase = static_cast<int>( std::round( phase_change * MOON_PHASE_MAX ) ) %
static_cast<int>( MOON_PHASE_MAX );
return static_cast<moon_phase>( current_phase );
}
static constexpr time_duration angle_to_time( const units::angle &a )
{
return a / 15.0_degrees * 1_hours;
}
season_effective_time::season_effective_time( const time_point &t_ )
: t( t_ )
{
if( calendar::eternal_season() ) {
const time_point start_midnight =
calendar::start_of_game - time_past_midnight( calendar::start_of_game );
t = start_midnight + time_past_midnight( t_ );
}
}
static std::pair<units::angle, units::angle> sun_ra_declination(
season_effective_time t, time_duration timezone )
{
// This derivation is mostly from
// https://en.wikipedia.org/wiki/Position_of_the_Sun
// https://en.wikipedia.org/wiki/Celestial_coordinate_system#Notes_on_conversion
// The computation is inspired by the derivation based on J2000 (Greenwich
// noon, 2000-01-01), but because we want to be capable of handling a
// different year length than the real Earth, we don't use the same exact
// values.
// Instead we use as our epoch a point that won't change arbitrarily with a
// different year length - Greenwich midnight on the vernal equinox
// (note that the vernal equinox happens to be Spring day 1 in the game
// calendar, which is convenient).
const double days_since_epoch = to_days<double>( t.t - calendar::turn_zero - timezone );
// The angle per day the Earth moves around the Sun
const units::angle angle_per_day = 360_degrees / to_days<int>( calendar::year_length() );
// It turns out that we want mean longitude to be zero at the vernal
// equinox, which simplifies the calculations.
const units::angle mean_long = angle_per_day * days_since_epoch;
// Roughly 77 degrees offset between mean longitude and mean anomaly at
// J2000, so use that as our offset too. The relative drift is slow, so we
// neglect it.
const units::angle mean_anomaly = 77_degrees + mean_long;
// The two arbitrary constants in the calculation of ecliptic longitude
// relate to the non-circularity of the Earth's orbit.
const units::angle ecliptic_longitude =
mean_long + 1.915_degrees * sin( mean_anomaly ) + 0.020_degrees * sin( 2 * mean_anomaly );
// Obliquity does vary slightly, but for simplicity we'll keep it fixed at
// its J2000 value.
static constexpr units::angle obliquity = 23.439279_degrees;
// ecliptic rectangular coordinates
const rl_vec2d eclip( cos( ecliptic_longitude ), sin( ecliptic_longitude ) );
// rotate to equatorial coordinates
const rl_vec3d rot( eclip.x, eclip.y * cos( obliquity ), eclip.y * sin( obliquity ) );
const units::angle right_ascension = atan2( rot.xy() );
const units::angle declination = units::asin( rot.z );
return { right_ascension, declination };
}
static units::angle sidereal_time_at( season_effective_time t, units::angle longitude,
time_duration timezone )
{
// Repeat some calculations from sun_ra_declination
const double days_since_epoch = to_days<double>( t.t - calendar::turn_zero - timezone );
const units::angle angle_per_day = 360_degrees / to_days<int>( calendar::year_length() );
// Sidereal Time
//
// For the origin of sidereal time consider that at the epoch at Greenwich,
// it's midnight on the vernal equinox so sidereal time should be 180°.
// Timezone and longitude are both zero here, so L0 = 180°.
const units::angle L0 = 180_degrees;
// Sidereal time advances by 360° per day plus an additional 360° per year
const units::angle L1 = 360_degrees + angle_per_day;
return L0 + L1 * days_since_epoch + longitude;
}
std::pair<units::angle, units::angle> sun_azimuth_altitude(
time_point ti )
{
const season_effective_time t = season_effective_time( ti );
const lat_long location = location_boston;
units::angle right_ascension;
units::angle declination;
time_duration timezone = angle_to_time( location.longitude );
std::tie( right_ascension, declination ) = sun_ra_declination( t, timezone );
const units::angle sidereal_time = sidereal_time_at( t, location.longitude, timezone );
const units::angle hour_angle = sidereal_time - right_ascension;
// Use a two-step transformation to convert equatorial coordinates to
// horizontal.
// https://en.wikipedia.org/wiki/Celestial_coordinate_system#Equatorial_%E2%86%94_horizontal
const rl_vec3d intermediate(
cos( hour_angle ) * cos( declination ),
sin( hour_angle ) * cos( declination ),
sin( declination ) );
const rl_vec3d horizontal(
-intermediate.x * sin( location.latitude ) +
intermediate.z * cos( location.latitude ),
intermediate.y,
intermediate.x * cos( location.latitude ) +
intermediate.z * sin( location.latitude )
);
// Azimuth is from the South, turning positive to the west
const units::angle azimuth = normalize( -atan2( horizontal.xy() ) + 180_degrees );
units::angle altitude = units::asin( horizontal.z );
if( calendar::eternal_day() ) {
altitude = 90_degrees;
}
if( calendar::eternal_night() ) {
altitude = astronomical_dawn - 10_degrees;
}
/*printf(
"\n"
"right_ascension = %f, declination = %f\n"
"sidereal_time = %f, hour_angle = %f\n"
"aziumth = %f, altitude = %f\n",
to_degrees( right_ascension ), to_degrees( declination ),
to_degrees( sidereal_time ), to_degrees( hour_angle ),
to_degrees( azimuth ), to_degrees( altitude ) );*/
return std::make_pair( azimuth, altitude );
}
static units::angle sun_altitude( time_point t )
{
return sun_azimuth_altitude( t ).second;
}
std::optional<rl_vec2d> sunlight_angle( const time_point &t )
{
units::angle azimuth;
units::angle altitude;
std::tie( azimuth, altitude ) = sun_azimuth_altitude( t );
if( altitude <= sunrise_angle ) {
// Sun below horizon
return std::nullopt;
}
rl_vec2d horizontal_direction( -sin( azimuth ), cos( azimuth ) );
rl_vec3d direction( horizontal_direction * cos( altitude ), sin( altitude ) );
direction /= -direction.z;
return direction.xy();
}
static time_point solar_noon_near( const time_point &t )
{
const time_point prior_midnight = t - time_past_midnight( t );
return prior_midnight + 12_hours;
// If we were using a timezone rather than local solar time this would be
// calculated as follows:
//constexpr time_duration longitude_hours = angle_to_time( location_boston.longitude );
//return prior_midnight + 12_hours - longitude_hours + timezone;
}
static units::angle offset_to_sun_altitude(
const units::angle &altitude, const units::angle &longitude,
const season_effective_time &approx_time, const bool evening )
{
units::angle ra;
units::angle declination;
time_duration timezone = angle_to_time( longitude );
std::tie( ra, declination ) = sun_ra_declination( approx_time, timezone );
double cos_hour_angle =
( sin( altitude ) - sin( location_boston.latitude ) * sin( declination ) ) /
cos( location_boston.latitude ) / cos( declination );
if( std::abs( cos_hour_angle ) > 1 ) {
// It doesn't actually reach that angle, so we pretend that it does at
// its maximum possible angle
cos_hour_angle = cos_hour_angle > 0 ? 1 : -1;
}
units::angle hour_angle = units::acos( cos_hour_angle );
if( !evening ) {
hour_angle = -hour_angle;
}
const units::angle target_sidereal_time = hour_angle + ra;
const units::angle sidereal_time_at_approx_time =
sidereal_time_at( approx_time, location_boston.longitude, timezone );
return normalize( target_sidereal_time - sidereal_time_at_approx_time );
}
static time_point sun_at_altitude( const units::angle &altitude, const units::angle &longitude,
const time_point &t, const bool evening )
{
const time_point solar_noon = solar_noon_near( t );
units::angle initial_offset =
offset_to_sun_altitude( altitude, longitude, season_effective_time( solar_noon ), evening );
if( !evening ) {
initial_offset -= 360_degrees;
}
const time_duration initial_offset_time = angle_to_time( initial_offset );
const time_point initial_approximation = solar_noon + initial_offset_time;
// Now we should have the correct time to within a few minutes; iterate to
// get a more precise estimate
units::angle correction_offset =
offset_to_sun_altitude( altitude, longitude, season_effective_time( initial_approximation ),
evening );
if( correction_offset > 180_degrees ) {
correction_offset -= 360_degrees;
}
const time_duration correction_offset_time = angle_to_time( correction_offset );
return initial_approximation + correction_offset_time;
}
time_point sunrise( const time_point &p )
{
return sun_at_altitude( sunrise_angle, location_boston.longitude, p, false );
}
time_point sunset( const time_point &p )
{
return sun_at_altitude( sunrise_angle, location_boston.longitude, p, true );
}
time_point night_time( const time_point &p )
{
return sun_at_altitude( civil_dawn, location_boston.longitude, p, true );
}
time_point daylight_time( const time_point &p )
{
return sun_at_altitude( civil_dawn, location_boston.longitude, p, false );
}
bool is_night( const time_point &p )
{
return sun_altitude( p ) <= civil_dawn;
}
bool is_day( const time_point &p )
{
return sun_altitude( p ) >= sunrise_angle;
}
static bool is_twilight( const time_point &p )
{
units::angle altitude = sun_altitude( p );
return altitude >= civil_dawn && altitude <= sunrise_angle;
}
bool is_dusk( const time_point &p )
{
const time_duration now = time_past_midnight( p );
return now > 12_hours && is_twilight( p );
}
bool is_dawn( const time_point &p )
{
const time_duration now = time_past_midnight( p );
return now < 12_hours && is_twilight( p );
}
static float moon_light_at( const time_point &p )
{
int current_phase = static_cast<int>( get_moon_phase( p ) );
if( current_phase > static_cast<int>( MOON_PHASE_MAX ) / 2 ) {
current_phase = static_cast<int>( MOON_PHASE_MAX ) - current_phase;
}
return 1. + moonlight_per_quarter * current_phase;
}
float sun_light_at( const time_point &p )
{
const units::angle solar_alt = sun_altitude( p );
if( solar_alt < astronomical_dawn ) {
return 0;
} else if( solar_alt <= nautical_dawn ) {
// Sunlight rises exponentially from 0 to 3.7f as sun rises from -18° to -12°
return 3.7f * ( std::exp2( to_degrees( solar_alt - astronomical_dawn ) / 6.f ) - 1 );
} else if( solar_alt <= civil_dawn ) {
// Sunlight rises exponentially from 3.7f to 5.0f as sun rises from -12° to -6°
return ( 5.0f - 3.7f ) * ( std::exp2( to_degrees( solar_alt - nautical_dawn ) / 6.f ) - 1 ) + 3.7f;
} else if( solar_alt <= sunrise_angle ) {
// Sunlight rises exponentially from 5.0f to 60 as sun rises from -6° to -1°
return ( 60 - 5.0f ) * ( std::exp2( to_degrees( solar_alt - civil_dawn ) / 5.f ) - 1 ) + 5.0f;
} else if( solar_alt <= 60_degrees ) {
// Linear increase from -1° to 60° degrees light increases from 60 to 125 brightness.
return ( 65.f / 61 ) * to_degrees( solar_alt ) + 65.f / 61 + 60;
} else {
return 125.f;
}
}
float sun_irradiance( const time_point &p )
{
const units::angle solar_alt = sun_altitude( p );
if( solar_alt < 0_degrees ) {
return 0;
}
return max_sun_irradiance() * sin( solar_alt );
}
float sun_moon_light_at( const time_point &p )
{
return sun_light_at( p ) + moon_light_at( p );
}
float sun_moon_light_at_noon_near( const time_point &p )
{
const time_point solar_noon = solar_noon_near( p );
return sun_moon_light_at( solar_noon );
}
static std::string to_string_clipped( const int num, const clipped_unit type,
const clipped_align align )
{
switch( align ) {
default:
case clipped_align::none:
switch( type ) {
default:
case clipped_unit::forever:
return _( "forever" );
case clipped_unit::second:
return string_format( n_gettext( "%d second", "%d seconds", num ), num );
case clipped_unit::minute:
return string_format( n_gettext( "%d minute", "%d minutes", num ), num );
case clipped_unit::hour:
return string_format( n_gettext( "%d hour", "%d hours", num ), num );
case clipped_unit::day:
return string_format( n_gettext( "%d day", "%d days", num ), num );
case clipped_unit::week:
return string_format( n_gettext( "%d week", "%d weeks", num ), num );
case clipped_unit::season:
return string_format( n_gettext( "%d season", "%d seasons", num ), num );
case clipped_unit::year:
return string_format( n_gettext( "%d year", "%d years", num ), num );
}
case clipped_align::right:
switch( type ) {
default:
case clipped_unit::forever:
//~ Right-aligned time string. should right-align with other strings with this same comment
return _( " forever" );
case clipped_unit::second:
//~ Right-aligned time string. should right-align with other strings with this same comment
return string_format( n_gettext( "%3d second", "%3d seconds", num ), num );
case clipped_unit::minute:
//~ Right-aligned time string. should right-align with other strings with this same comment
return string_format( n_gettext( "%3d minute", "%3d minutes", num ), num );
case clipped_unit::hour:
//~ Right-aligned time string. should right-align with other strings with this same comment
return string_format( n_gettext( "%3d hour", "%3d hours", num ), num );
case clipped_unit::day:
//~ Right-aligned time string. should right-align with other strings with this same comment
return string_format( n_gettext( "%3d day", "%3d days", num ), num );
case clipped_unit::week:
//~ Right-aligned time string. should right-align with other strings with this same comment
return string_format( n_gettext( "%3d week", "%3d weeks", num ), num );
case clipped_unit::season:
//~ Right-aligned time string. should right-align with other strings with this same comment
return string_format( n_gettext( "%3d season", "%3d seasons", num ), num );
case clipped_unit::year:
//~ Right-aligned time string. should right-align with other strings with this same comment
return string_format( n_gettext( "%3d year", "%3d years", num ), num );
}
case clipped_align::compact:
switch( type ) {
default:
case clipped_unit::forever:
return _( "forever" );
case clipped_unit::second:
return string_format( n_gettext( "%d sec", "%d secs", num ), num );
case clipped_unit::minute:
return string_format( n_gettext( "%d min", "%d mins", num ), num );
case clipped_unit::hour:
return string_format( n_gettext( "%d hr", "%d hrs", num ), num );
case clipped_unit::day:
return string_format( n_gettext( "%d day", "%d days", num ), num );
case clipped_unit::week:
return string_format( n_gettext( "%d wk", "%d wks", num ), num );
case clipped_unit::season:
return string_format( n_gettext( "%d seas", "%d seas", num ), num );
case clipped_unit::year:
return string_format( n_gettext( "%d yr", "%d yrs", num ), num );
}
}
}
std::pair<int, clipped_unit> clipped_time( const time_duration &d )
{
if( d >= calendar::INDEFINITELY_LONG_DURATION ) {
return { 0, clipped_unit::forever };
}
if( d < 1_minutes ) {
const int sec = to_seconds<int>( d );
return { sec, clipped_unit::second };
} else if( d < 1_hours ) {
const int min = to_minutes<int>( d );
return { min, clipped_unit::minute };
} else if( d < 1_days ) {
const int hour = to_hours<int>( d );
return { hour, clipped_unit::hour };
} else if( d < 7_days ) {
const int day = to_days<int>( d );
return { day, clipped_unit::day };
} else if( d < calendar::season_length() || calendar::eternal_season() ) {
// eternal seasons means one season is indistinguishable from the next,
// therefore no way to count them
const int week = to_weeks<int>( d );
return { week, clipped_unit::week };
} else if( d < calendar::year_length() && !calendar::eternal_season() ) {
// TODO: consider a to_season function, but season length is variable, so
// this might be misleading
const int season = to_turns<int>( d ) / to_turns<int>( calendar::season_length() );
return { season, clipped_unit::season };
} else {
// TODO: consider a to_year function, but year length is variable, so
// this might be misleading
const int year = to_turns<int>( d ) / to_turns<int>( calendar::year_length() );
return { year, clipped_unit::year };
}
}
std::string to_string_clipped( const time_duration &d,
const clipped_align align )
{
const std::pair<int, clipped_unit> time = clipped_time( d );
return to_string_clipped( time.first, time.second, align );
}
std::string to_string( const time_duration &d, const bool compact )
{
if( d >= calendar::INDEFINITELY_LONG_DURATION ) {
return _( "forever" );
}
if( d <= 1_minutes ) {
return to_string_clipped( d );
}
time_duration divider = 0_turns;
if( d < 1_hours ) {
divider = 1_minutes;
} else if( d < 1_days ) {
divider = 1_hours;
} else if( d < 1_weeks ) {
divider = 1_days;
} else if( d < calendar::season_length() || calendar::eternal_season() ) {
divider = 1_weeks;
} else if( d < calendar::year_length() ) {
divider = calendar::season_length();
} else {
divider = calendar::year_length();
}
if( d % divider != 0_turns ) {
if( compact ) {
//~ %1$s - greater units of time (e.g. 3 hours), %2$s - lesser units of time (e.g. 11 minutes).
return string_format( pgettext( "time duration", "%1$s %2$s" ),
to_string_clipped( d, clipped_align::compact ),
to_string_clipped( d % divider, clipped_align::compact ) );
} else {
//~ %1$s - greater units of time (e.g. 3 hours), %2$s - lesser units of time (e.g. 11 minutes).
return string_format( _( "%1$s and %2$s" ),
to_string_clipped( d ),
to_string_clipped( d % divider ) );
}
}
return to_string_clipped( d );
}
std::string to_string_approx( const time_duration &dur, const bool verbose )
{
time_duration d = dur;
const auto make_result = [verbose]( const time_duration & d, const char *verbose_str,
const char *short_str ) {
return string_format( verbose ? verbose_str : short_str, to_string_clipped( d ) );
};
time_duration divider = 0_turns;
time_duration vicinity = 0_turns;
// Minutes and seconds can be estimated precisely.
if( d > 1_days ) {
divider = 1_days;
vicinity = 2_hours;
} else if( d > 1_hours ) {
divider = 1_hours;
vicinity = 5_minutes;
}
if( divider != 0_turns ) {
const time_duration remainder = d % divider;
if( remainder >= divider - vicinity ) {
d += divider;
} else if( remainder > vicinity ) {
if( remainder < divider / 2 ) {
//~ %s - time (e.g. 2 hours).
return make_result( d, _( "more than %s" ), ">%s" );
} else {
//~ %s - time (e.g. 2 hours).
return make_result( d + divider, _( "less than %s" ), "<%s" );
}
}
}
//~ %s - time (e.g. 2 hours).
return make_result( d, _( "about %s" ), "%s" );
}
std::string to_string_writable( const time_duration &dur )
{
if( dur % 1_days == 0_seconds ) {
return string_format( "%d d", static_cast<int>( dur / 1_days ) );
} else if( dur % 1_hours == 0_seconds ) {
return string_format( "%d h", static_cast<int>( dur / 1_hours ) );
} else if( dur % 1_minutes == 0_seconds ) {
return string_format( "%d m", static_cast<int>( dur / 1_minutes ) );
} else {
return string_format( "%d s", static_cast<int>( dur / 1_seconds ) );
}
}
std::string to_string_time_of_day( const time_point &p )
{
const int hour = hour_of_day<int>( p );
const int minute = minute_of_hour<int>( p );
const int second = to_seconds<int>( time_past_midnight( p ) ) % 60;
const std::string format_type = get_option<std::string>( "24_HOUR" );
if( format_type == "military" ) {
return string_format( "%02d%02d.%02d", hour, minute, second );
} else if( format_type == "24h" ) {
//~ hour:minute (24hr time display)
return string_format( _( "%02d:%02d:%02d" ), hour, minute, second );
} else {
int hour_param = hour % 12;
if( hour_param == 0 ) {
hour_param = 12;
}
// Padding is removed as necessary to prevent clipping with SAFE notification in wide sidebar mode
const std::string padding = hour_param < 10 ? " " : "";
if( hour < 12 ) {
return string_format( _( "%d:%02d:%02d%sAM" ), hour_param, minute, second, padding );
} else {
return string_format( _( "%d:%02d:%02d%sPM" ), hour_param, minute, second, padding );
}
}
}
weekdays day_of_week( const time_point &p )
{
/* Design rationale:
* <kevingranade> here's a question
* <kevingranade> what day of the week is day 0?
* <wito> Sunday
* <GlyphGryph> Why does it matter?
* <GlyphGryph> For like where people are and stuff?
* <wito> 7 is also Sunday
* <kevingranade> NOAA weather forecasts include day of week
* <GlyphGryph> Also by day0 do you mean the day people start day 0
* <GlyphGryph> Or actual day 0
* <kevingranade> good point, turn 0
* <GlyphGryph> So day 5
* <wito> Oh, I thought we were talking about week day numbering in general.
* <wito> Day 5 is a thursday, I think.
* <wito> Nah, Day 5 feels like a thursday. :P
* <wito> Which would put the apocalypse on a saturday?
* <Starfyre> must be a thursday. I was never able to get the hang of those.
* <ZChris13> wito: seems about right to me
* <wito> kevingranade: add four for thursday. ;)
* <kevingranade> sounds like consensus to me
* <kevingranade> Thursday it is */
const int day_since_cataclysm = to_days<int>( p - calendar::turn_zero );
static const weekdays start_day = weekdays::THURSDAY;
const int result = day_since_cataclysm + static_cast<int>( start_day );
return static_cast<weekdays>( result % 7 );
}
bool calendar::eternal_season()
{
return is_eternal_season;
}
bool calendar::eternal_night()
{
return is_eternal_night;
}
bool calendar::eternal_day()
{
return is_eternal_day;
}
time_duration calendar::year_length()
{
return season_length() * 4;
}
time_duration calendar::season_length()
{
return time_duration::from_days( std::max( cur_season_length, 1 ) );
}
void calendar::set_eternal_season( bool is_eternal )
{
is_eternal_season = is_eternal;
}
void calendar::set_eternal_night( bool is_eternal )
{
is_eternal_night = is_eternal;
}
void calendar::set_eternal_day( bool is_eternal )
{
is_eternal_day = is_eternal;
}
void calendar::set_season_length( const int dur )
{
cur_season_length = dur;
}
static constexpr int real_world_season_length = 91;
static constexpr int default_season_length = real_world_season_length;
float calendar::season_ratio()
{
return to_days<float>( season_length() ) / real_world_season_length;
}
float calendar::season_from_default_ratio()
{
return to_days<float>( season_length() ) / default_season_length;
}
bool calendar::once_every( const time_duration &event_frequency )
{
return ( calendar::turn - calendar::turn_zero ) % event_frequency == 0_turns;
}
std::string calendar::name_season( season_type s )
{
static const std::array<std::string, 5> season_names_untranslated = {{
//~First letter is supposed to be uppercase
std::string( translate_marker( "Spring" ) ),
//~First letter is supposed to be uppercase
std::string( translate_marker( "Summer" ) ),
//~First letter is supposed to be uppercase
std::string( translate_marker( "Autumn" ) ),
//~First letter is supposed to be uppercase
std::string( translate_marker( "Winter" ) ),
std::string( translate_marker( "End times" ) )
}
};
if( s >= SPRING && s <= WINTER ) {
return _( season_names_untranslated[ s ] );
}
return _( season_names_untranslated[ 4 ] );
}
time_duration rng( time_duration lo, time_duration hi )
{
return time_duration( rng( lo.turns_, hi.turns_ ) );
}
bool x_in_y( const time_duration &a, const time_duration &b )
{
return ::x_in_y( to_turns<int>( a ), to_turns<int>( b ) );
}
const std::vector<std::pair<std::string, time_duration>> time_duration::units = { {
{ "turns", 1_turns },
{ "turn", 1_turns },
{ "t", 1_turns },
{ "seconds", 1_seconds },
{ "second", 1_seconds },
{ "s", 1_seconds },
{ "minutes", 1_minutes },
{ "minute", 1_minutes },
{ "m", 1_minutes },
{ "hours", 1_hours },
{ "hour", 1_hours },
{ "h", 1_hours },
{ "days", 1_days },
{ "day", 1_days },
{ "d", 1_days },
// TODO: maybe add seasons?
// TODO: maybe add years? Those two things depend on season length!
}
};
season_type season_of_year( const time_point &p )
{
static time_point prev_turn = calendar::before_time_starts;
static season_type prev_season = calendar::initial_season;
if( p != prev_turn ) {
prev_turn = p;
if( calendar::eternal_season() ) {
// If we use calendar::start to determine the initial season, and the user shortens the season length
// mid-game, the result could be the wrong season!
return prev_season = calendar::initial_season;
}
return prev_season = static_cast<season_type>(
to_turn<int>( p ) / to_turns<int>( calendar::season_length() ) % 4
);
}
return prev_season;
}
std::string to_string( const time_point &p )
{
const int year = to_turns<int>( p - calendar::turn_zero ) / to_turns<int>
( calendar::year_length() ) + 1;
const std::string time = to_string_time_of_day( p );
if( calendar::eternal_season() ) {
const int day = to_days<int>( time_past_new_year( p ) );
//~ 1 is the year, 2 is the day (of the *year*), 3 is the time of the day in its usual format
return string_format( _( "Year %1$d, day %2$d %3$s" ), year, day, time );
} else {
const int day = day_of_season<int>( p ) + 1;
//~ 1 is the year, 2 is the season name, 3 is the day (of the season), 4 is the time of the day in its usual format
return string_format( _( "Year %1$d, %2$s, day %3$d %4$s" ), year,
calendar::name_season( season_of_year( p ) ), day, time );
}
}
std::string get_diary_time_since_str( const time_duration &turn_diff, time_accuracy acc )
{
const int days = to_days<int>( turn_diff );
const int hours = to_hours<int>( turn_diff ) % 24;
const int minutes = to_minutes<int>( turn_diff ) % 60;
std::string days_text;
std::string hours_text;
std::string minutes_text;
switch( acc ) {
case time_accuracy::FULL:
if( days > 0 ) {
days_text = string_format( n_gettext( "%d day, ", "%d days, ", days ), days );
}
if( hours > 0 ) {
hours_text = string_format( n_gettext( "%d hour, ", "%d hours, ", hours ), hours );
}
minutes_text = string_format( n_gettext( "%d minute", "%d minutes", minutes ), minutes );
break;
case time_accuracy::PARTIAL:
if( days > 0 ) {
days_text = string_format( n_gettext( "%d day", "%d days", days ), days );
} else if( hours > 0 ) {
//~ Estimate of how much time has passed since the last entry
days_text = _( "Less than a day" );
} else {
//~ Estimate of how much time has passed since the last entry
days_text = _( "Not long" );
}
break;
default:
DebugLog( DebugLevel::D_WARNING, DebugClass::D_GAME )
<< "Unknown time_accuracy " << io::enum_to_string<time_accuracy>( acc );
/* fallthrough */
case time_accuracy::NUM_TIME_ACCURACY:
case time_accuracy::NONE:
//~ Estimate of how much time has passed since the last entry
days_text = days > 0 ? _( "A long while" ) : hours > 0 ? _( "A while" ) : _( "A short while" );
break;
}
//~ %1$s is xx days, %2$s is xx hours, %3$s is xx minutes
return string_format( _( "%1$s%2$s%3$s since last entry" ), days_text, hours_text, minutes_text );
}
std::string get_diary_time_str( const time_point &turn, time_accuracy acc )
{
const int year = to_turns<int>( turn - calendar::turn_zero ) /
to_turns<int>( calendar::year_length() ) + 1;
const int day = day_of_season<int>( turn ) + 1;
switch( acc ) {
case time_accuracy::FULL:
return to_string( turn );
case time_accuracy::PARTIAL:
// partial accuracy, able to see the sky
//~ Time of year:
//~ $1 = year since Cataclysm
//~ $2 = season
//~ $3 = day of season
//~ $4 = approximate time of day
return string_format( _( "Year %1$d, %2$s, day %3$d, %4$s" ), year,
calendar::name_season( season_of_year( turn ) ),
day, display::time_approx( turn ) );
default:
DebugLog( DebugLevel::D_WARNING, DebugClass::D_GAME )
<< "Unknown time_accuracy " << io::enum_to_string<time_accuracy>( acc );
/* fallthrough */
case time_accuracy::NUM_TIME_ACCURACY:
case time_accuracy::NONE: {
// normalized to 100 day seasons
const int day_norm = ( day * 100 ) / to_days<int>( calendar::season_length() );
std::string seas_point;
if( day_norm < 33 ) {
//~ Estimated point in the current season
seas_point = pgettext( "time of season", "Early" );
} else if( day_norm < 66 ) {
//~ Estimated point in the current season
seas_point = pgettext( "time of season", "Mid" );
} else {
//~ Estimated point in the current season
seas_point = pgettext( "time of season", "Late" );
}
//~ Estimated day-of-season string: $1 = Early/Mid/Late, $2 = Spring/Summer/Fall/Winter
std::string season = string_format( _( "%1$s %2$s" ), seas_point,
calendar::name_season( season_of_year( turn ) ) );
//~ Time of year: $1 = year since Cataclysm, $2 = season
return string_format( _( "Year %1$d, %2$s" ), year, season );
}
}
return std::string();
}
time_point::time_point()
{
turn_ = 0;
}
|