1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
#include "distribution.h"
#include <random>
#include <climits>
#include "json.h"
#include "rng.h"
struct int_distribution_impl {
virtual ~int_distribution_impl() = default;
virtual int minimum() const = 0;
virtual int sample() = 0;
virtual std::string description() const = 0;
int blo = 0;
int bhi = INT_MAX;
};
struct fixed_distribution : int_distribution_impl {
int value;
explicit fixed_distribution( int v )
: value( v )
{}
int minimum() const override {
return value;
}
int sample() override {
return value;
}
std::string description() const override {
// NOLINTNEXTLINE(cata-translate-string-literal)
return string_format( "Fixed(%d)", value );
}
};
struct uniform_distribution : int_distribution_impl {
std::uniform_int_distribution<int> dist;
explicit uniform_distribution( int a, int b )
: dist( a, b )
{}
int minimum() const override {
return 0;
}
int sample() override {
return dist( rng_get_engine() );
}
std::string description() const override {
// NOLINTNEXTLINE(cata-translate-string-literal)
return string_format( "Uniform(%d,%d)", dist.a(), dist.b() );
}
};
struct binomial_distribution : int_distribution_impl {
std::binomial_distribution<int> dist;
explicit binomial_distribution( int lo, int hi, int t, double p )
: dist( t, p ) {
blo = lo;
bhi = hi;
}
int minimum() const override {
return 0;
}
int sample() override {
int distvalue = dist( rng_get_engine() );
int rvalue = std::min( distvalue, bhi );
rvalue = std::max( rvalue, blo );
return rvalue;
}
std::string description() const override {
// NOLINTNEXTLINE(cata-translate-string-literal)
return string_format( "Binomial(%d,%.0f)", dist.t(), dist.p() );
}
};
struct poisson_distribution : int_distribution_impl {
std::poisson_distribution<int> dist;
explicit poisson_distribution( int lo, int hi, double mean )
: dist( mean ) {
blo = lo;
bhi = hi;
}
int minimum() const override {
return 0;
}
int sample() override {
int rvalue = std::min( dist( rng_get_engine() ), bhi );
rvalue = std::max( rvalue, blo );
return rvalue;
}
std::string description() const override {
// NOLINTNEXTLINE(cata-translate-string-literal)
return string_format( "Poisson(%.0f)", dist.mean() );
}
};
int_distribution::int_distribution()
: impl_( make_shared_fast<fixed_distribution>( 0 ) )
{}
int_distribution::int_distribution( int v )
: impl_( make_shared_fast<fixed_distribution>( v ) )
{}
int int_distribution::minimum() const
{
return impl_->minimum();
}
int int_distribution::sample() const
{
return impl_->sample();
}
std::string int_distribution::description() const
{
return impl_->description();
}
void int_distribution::deserialize( const JsonValue &jin )
{
int lo = 0;
int hi = INT_MAX;
if( jin.test_int() ) {
int v = jin.get_int();
impl_ = make_shared_fast<fixed_distribution>( v );
} else if( jin.test_array() ) {
JsonArray jarr = jin.get_array();
if( jarr.size() != 2 ) {
jarr.throw_error( "uniform array has wrong number of elements, should be [ lo, hi ]" );
}
lo = jarr.get_int( 0 );
hi = jarr.get_int( 1 );
if( lo >= hi ) {
jarr.throw_error( "uniform array should be in order [ lo, hi ]" );
}
if( lo < 0 || hi < 0 ) {
jarr.throw_error( "both elements must be 0 or greater" );
}
impl_ = make_shared_fast<uniform_distribution>( lo, hi );
} else if( jin.test_object() ) {
JsonObject jo = jin.get_object();
if( jo.has_member( "bounds" ) ) {
if( jo.get_array( "bounds" ).size() != 2 ) {
jo.throw_error( "bounds array has wrong number of elements, should be [ lo, hi ]" );
}
lo = jo.get_array( "bounds" ).get_int( 0 );
hi = jo.get_array( "bounds" ).get_int( 1 );
if( hi < 0 ) {
hi = INT_MAX;
}
if( lo < 0 ) {
lo = 0;
}
if( lo >= hi ) {
jo.throw_error( "bounds array should be in order [ lo, hi ]" );
}
}
if( jo.has_member( "poisson" ) ) {
if( jo.has_member( "binomial" ) ) {
jo.throw_error( "can't use multiple distribution types" );
}
double mean = jo.get_float( "poisson", 1.0 );
if( mean <= 0.0 ) {
jo.throw_error( "poisson mean must be greater than 0.0" );
}
impl_ = make_shared_fast<poisson_distribution>( lo, hi, mean );
} else if( jo.has_member( "binomial" ) ) {
JsonArray arr = jo.get_array( "binomial" );
if( jo.get_array( "binomial" ).size() != 2 ) {
jo.throw_error( "binomial array has wrong number of elements, should be [ t, p ]" );
}
int t = jo.get_array( "binomial" ).get_int( 0 );
double p = jo.get_array( "binomial" ).get_float( 1 );
if( t < 0 ) {
jo.throw_error( "t trials must be 0 or greater" );
}
if( p < 0.0 || p > 1.0 ) {
jo.throw_error( "success probability must be between 0.0 and 1.0" );
}
impl_ = make_shared_fast<binomial_distribution>( lo, hi, t, p );
} else {
jo.throw_error( R"(Expected "poisson" or "binomial" member)" );
}
} else {
jin.throw_error( "expected integer, array or object" );
}
}
|