File: vehicle_move.cpp

package info (click to toggle)
cataclysm-dda 0.H-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 710,808 kB
  • sloc: cpp: 524,019; python: 11,580; sh: 1,228; makefile: 1,169; xml: 507; javascript: 150; sql: 56; exp: 41; perl: 37
file content (2314 lines) | stat: -rw-r--r-- 94,135 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
#include "vehicle.h" // IWYU pragma: associated

#include <algorithm>
#include <array>
#include <cmath>
#include <cstdlib>
#include <memory>
#include <optional>
#include <ostream>
#include <set>
#include <tuple>

#include "avatar.h"
#include "bodypart.h"
#include "cata_assert.h"
#include "cata_utility.h"
#include "character.h"
#include "creature.h"
#include "creature_tracker.h"
#include "debug.h"
#include "enums.h"
#include "explosion.h"
#include "game.h"
#include "item.h"
#include "itype.h"
#include "map.h"
#include "map_iterator.h"
#include "mapdata.h"
#include "material.h"
#include "messages.h"
#include "monster.h"
#include "options.h"
#include "rng.h"
#include "sounds.h"
#include "translations.h"
#include "trap.h"
#include "units.h"
#include "units_utility.h"
#include "veh_type.h"
#include "vpart_position.h"
#include "vpart_range.h"

#define dbg(x) DebugLog((x),D_MAP) << __FILE__ << ":" << __LINE__ << ": "

static const damage_type_id damage_bash( "bash" );
static const damage_type_id damage_cut( "cut" );

static const efftype_id effect_bleed( "bleed" );
static const efftype_id effect_harnessed( "harnessed" );
static const efftype_id effect_pet( "pet" );
static const efftype_id effect_stunned( "stunned" );

static const itype_id fuel_type_animal( "animal" );
static const itype_id fuel_type_battery( "battery" );
static const itype_id fuel_type_muscle( "muscle" );

static const proficiency_id proficiency_prof_boat_pilot( "prof_boat_pilot" );
static const proficiency_id proficiency_prof_driver( "prof_driver" );

static const skill_id skill_driving( "driving" );

static const trait_id trait_DEFT( "DEFT" );
static const trait_id trait_PROF_SKATER( "PROF_SKATER" );

static const std::string part_location_structure( "structure" );

// tile height in meters
static const float tile_height = 4.0f;
// miles per hour to vehicle 100ths of miles per hour
static const int mi_to_vmi = 100;
// meters per second to miles per hour
static const float mps_to_miph = 2.23694f;

// convert m/s to vehicle 100ths of a mile per hour
int mps_to_vmiph( double mps )
{
    return mps * mps_to_miph * mi_to_vmi;
}

// convert vehicle 100ths of a mile per hour to m/s
double vmiph_to_mps( int vmiph )
{
    return vmiph / mps_to_miph / mi_to_vmi;
}

int cmps_to_vmiph( int cmps )
{
    return cmps * mps_to_miph;
}

int vmiph_to_cmps( int vmiph )
{
    return vmiph / mps_to_miph;
}

int vehicle::slowdown( int at_velocity ) const
{
    double mps = vmiph_to_mps( std::abs( at_velocity ) );

    // slowdown due to air resistance is proportional to square of speed
    double f_total_drag = coeff_air_drag() * mps * mps;
    if( is_watercraft() ) {
        // same with water resistance
        f_total_drag += coeff_water_drag() * mps * mps;
    } else if( !is_falling && !is_flying ) {
        double f_rolling_drag = coeff_rolling_drag() * ( vehicles::rolling_constant_to_variable + mps );
        // increase rolling resistance by up to 25x if the vehicle is skidding at right angle to facing
        const double skid_factor = 1 + 24 * std::abs( units::sin( face.dir() - move.dir() ) );
        f_total_drag += f_rolling_drag * skid_factor;
    }
    // check mass to make sure it's not 0 which happens for some reason
    double accel_slowdown = total_mass().value() > 0 ? f_total_drag / to_kilogram( total_mass() ) : 0;
    // converting m/s^2 to vmiph/s
    int slowdown = mps_to_vmiph( accel_slowdown );
    if( is_towing() ) {
        vehicle *other_veh = tow_data.get_towed();
        if( other_veh ) {
            slowdown += other_veh->slowdown( at_velocity );
        }
    }
    if( slowdown < 0 ) {
        debugmsg( "vehicle %s has negative drag slowdown %d\n", name, slowdown );
    }
    add_msg_debug( debugmode::DF_VEHICLE_MOVE,
                   "%s at %d vimph, f_drag %3.2f, drag accel %d vmiph - extra drag %d",
                   name, at_velocity, f_total_drag, slowdown, units::to_watt( static_drag() ) );
    // plows slow rolling vehicles, but not falling or floating vehicles
    if( !( is_falling || ( is_watercraft() && can_float() ) || is_flying ) ) {
        slowdown -= units::to_watt( static_drag() );
    }

    return std::max( 1, slowdown );
}

void vehicle::smart_controller_handle_turn( const std::optional<float> &k_traction_cache )
{
    // get settings or defaults
    smart_controller_config cfg = smart_controller_cfg.value_or( smart_controller_config() );

    if( !has_enabled_smart_controller ) {
        smart_controller_state = std::nullopt;
        return;
    }

    if( smart_controller_state && smart_controller_state->created == calendar::turn ) {
        return;
    }

    // controlled engines
    // note: contains indices of of elements in `engines` array, not the part ids
    std::vector<int> c_engines;
    bool has_electric_engine = false;
    for( int i = 0; i < static_cast<int>( engines.size() ); ++i ) {
        const vehicle_part &vp = parts[engines[i]];
        const bool is_electric = is_engine_type( vp, fuel_type_battery );
        if( ( is_electric || is_engine_type_combustion( vp ) ) &&
            ( ( vp.is_available() && engine_fuel_left( vp ) ) || vp.enabled ) ) {
            c_engines.push_back( i );
            if( is_electric ) {
                has_electric_engine = true;
            }
        }
    }

    bool rotorcraft = is_flying && is_rotorcraft();

    Character &player_character = get_player_character();

    // bail and shut down
    if( rotorcraft || c_engines.empty() || ( has_electric_engine && c_engines.size() == 1 ) ||
        c_engines.size() > 5 ) {
        for( const vpart_reference &vp : get_avail_parts( "SMART_ENGINE_CONTROLLER" ) ) {
            vp.part().enabled = false;
        }

        if( player_in_control( player_character ) ) {
            if( rotorcraft ) {
                add_msg( _( "Smart controller does not support flying vehicles." ) );
            } else if( c_engines.empty() ) {
                //TODO: make translation
                add_msg( _( "Smart controller can not detect any controllable engine." ) );
            } else if( c_engines.size() == 1 ) {
                //TODO: make translation
                add_msg( _( "Smart controller detects only a single electric engine." ) );
                add_msg( _( "An electric engine does not need optimization." ) );
            } else {
                add_msg( _( "Smart controller does not support more than five engines." ) );
            }
            add_msg( m_bad, _( "Smart controller is shutting down." ) );
        }
        has_enabled_smart_controller = false;
        smart_controller_state = std::nullopt;
        return;
    }

    int cur_battery_level;
    int max_battery_level;
    std::tie( cur_battery_level, max_battery_level ) = battery_power_level();
    int battery_level_percent = max_battery_level == 0 ? 0 : cur_battery_level * 100 /
                                max_battery_level;

    // ensure sane values
    cfg.battery_hi = clamp( cfg.battery_hi, 0, 100 );
    cfg.battery_lo = clamp( cfg.battery_lo, 0, cfg.battery_hi );

    // when battery > 90%, discharge is allowed
    // otherwise trying to charge battery to 90% within 30 minutes
    bool discharge_forbidden_soft = battery_level_percent <= cfg.battery_hi;
    bool discharge_forbidden_hard = battery_level_percent <= cfg.battery_lo;
    units::power target_charging_rate;
    if( max_battery_level == 0 || !discharge_forbidden_soft ) {
        target_charging_rate = 0_W;
    } else {
        target_charging_rate = units::from_watt( ( max_battery_level * cfg.battery_hi / 100 -
                               cur_battery_level ) * 10 / ( 6 * 3 ) );
    }
    //      ( max_battery_level * battery_hi / 100 - cur_battery_level )  * (1000 / (60 * 30))   // originally
    //                                ^ battery_hi%                  bat to W ^         ^ 30 minutes

    // using avg_velocity reduces unnecessary oscillations when traction is low
    int accel_demand = std::max( std::abs( cruise_velocity - velocity ),
                                 std::abs( cruise_velocity - avg_velocity ) );
    if( velocity != 0 && accel_demand == 0 ) {
        accel_demand = 1;    // to prevent zero fuel usage
    }

    int velocity_demand = std::max( std::abs( this->velocity ), std::abs( cruise_velocity ) );

    // for stationary vehicles all velocity and acceleration calculations are skipped
    bool is_stationary = avg_velocity == 0 && velocity_demand == 0 && accel_demand == 0;

    bool gas_engine_shutdown_forbidden = smart_controller_state &&
                                         ( calendar::turn - smart_controller_state->gas_engine_last_turned_on ) <
                                         15_seconds;

    smart_controller_cache cur_state;

    float traction = is_stationary ? 1.0f :
                     ( k_traction_cache ? *k_traction_cache : k_traction( get_map().vehicle_wheel_traction( *this ) ) );

    int prev_mask = 0;
    // opt_ prefix denotes values for currently found "optimal" engine configuration
    units::power opt_net_echarge_rate = net_battery_charge_rate( /* include_reactors = */ true );
    // total engine fuel energy usage (J)
    units::power opt_fuel_usage = 0_W;

    int opt_accel = is_stationary ? 1 : current_acceleration() * traction;
    int opt_safe_vel = is_stationary ? 1 : safe_ground_velocity( true );
    float cur_load_approx = static_cast<float>( std::min( accel_demand,
                            opt_accel ) )  / std::max( opt_accel, 1 );
    float cur_load_alternator = std::min( 0.01f, static_cast<float>( alternator_load ) / 1000 );

    for( size_t i = 0; i < c_engines.size(); ++i ) {
        const vehicle_part &vp = parts[engines[c_engines[i]]];
        if( is_engine_on( vp ) ) {
            const bool is_electric = is_engine_type( vp, fuel_type_battery );
            prev_mask |= 1 << i;
            units::power fu = engine_fuel_usage( vp ) * ( cur_load_approx + ( is_electric ? 0 :
                              cur_load_alternator ) );
            opt_fuel_usage += fu;
            if( is_electric ) {
                opt_net_echarge_rate -= fu;
            }
        }
    }
    cur_state.created = calendar::turn;
    cur_state.battery_percent = battery_level_percent;
    cur_state.battery_net_charge_rate = opt_net_echarge_rate;
    cur_state.velocity = avg_velocity;
    cur_state.load = cur_load_approx + cur_load_alternator;
    if( smart_controller_state ) {
        cur_state.gas_engine_last_turned_on = smart_controller_state->gas_engine_last_turned_on;
    }
    cur_state.gas_engine_shutdown_forbidden = gas_engine_shutdown_forbidden;

    int opt_mask = prev_mask; // save current engine state, because it will be temporarily modified

    // if vehicle state has not change, skip actual optimization
    if( smart_controller_state &&
        std::abs( smart_controller_state->velocity - cur_state.velocity ) < 100 &&
        std::abs( smart_controller_state->battery_percent - cur_state.battery_percent ) <= 2 &&
        std::abs( smart_controller_state->load - cur_state.load ) < 0.1 && // load diff < 10%
        smart_controller_state->battery_net_charge_rate == cur_state.battery_net_charge_rate &&
        // reevaluate cache if when cache was created, gas engine shutdown was forbidden, but now it's not
        !( smart_controller_state->gas_engine_shutdown_forbidden && !gas_engine_shutdown_forbidden )
      ) {
        smart_controller_state->created = calendar::turn;
        return;
    }

    // turn on/off combustion engines when necessary
    if( !has_electric_engine ) {
        Character &player_character = get_player_character();
        if( !discharge_forbidden_soft && is_stationary && engine_on && !autopilot_on &&
            !player_in_control( player_character ) ) {
            stop_engines();
            sfx::do_vehicle_engine_sfx();
            // temporary solution
        } else if( discharge_forbidden_hard && !engine_on && cur_battery_level > 0 ) {
            engine_on = true;
            sfx::do_vehicle_engine_sfx();
        }
    }

    // trying all combinations of engine state (max 31 iterations for 5 engines)
    for( int mask = 1; mask < static_cast<int>( 1 << c_engines.size() ); ++mask ) {
        if( mask == prev_mask ) {
            continue;
        }

        bool gas_engine_to_shut_down = false;
        for( size_t i = 0; i < c_engines.size(); ++i ) {
            vehicle_part &vp = parts[engines[c_engines[i]]];
            bool old_state = ( prev_mask & ( 1 << i ) ) != 0;
            bool new_state = ( mask & ( 1 << i ) ) != 0;
            // switching enabled flag temporarily to perform calculations below
            vp.enabled = new_state;

            if( old_state && !new_state && !is_engine_type( vp, fuel_type_battery ) ) {
                gas_engine_to_shut_down = true;
            }
        }

        if( gas_engine_to_shut_down && gas_engine_shutdown_forbidden ) {
            continue; // skip checking this state
        }

        int safe_vel =  is_stationary ? 1 : safe_ground_velocity( true );
        int accel = is_stationary ? 1 : current_acceleration() * traction;
        units::power fuel_usage = 0_W;
        units::power net_echarge_rate = net_battery_charge_rate( /* include_reactors = */ true );
        float load_approx = static_cast<float>( std::min( accel_demand, accel ) ) / std::max( accel, 1 );
        update_alternator_load();
        float load_approx_alternator  = std::min( 0.01f, static_cast<float>( alternator_load ) / 1000 );

        for( int e : c_engines ) {
            const vehicle_part &vp = parts[engines[e]];
            const bool is_electric = is_engine_type( vp, fuel_type_battery );
            units::power fu = engine_fuel_usage( vp ) * ( load_approx + ( is_electric ? 0 :
                              load_approx_alternator ) );
            fuel_usage += fu;
            if( is_electric ) {
                net_echarge_rate -= fu;
            }
        }

        if( std::forward_as_tuple(
                !discharge_forbidden_hard || ( net_echarge_rate > 0_W ),
                accel >= accel_demand,
                opt_accel < accel_demand ? accel : 0, // opt_accel usage here is intentional
                safe_vel >= velocity_demand,
                opt_safe_vel < velocity_demand ? -safe_vel : 0, //opt_safe_vel usage here is intentional
                !discharge_forbidden_soft || ( net_echarge_rate > target_charging_rate ),
                -fuel_usage,
                net_echarge_rate
            ) >= std::forward_as_tuple(
                !discharge_forbidden_hard || ( opt_net_echarge_rate > 0_W ),
                opt_accel >= accel_demand,
                opt_accel < accel_demand ? opt_accel : 0,
                opt_safe_vel >= velocity_demand,
                opt_safe_vel < velocity_demand ? -opt_safe_vel : 0,
                !discharge_forbidden_soft || ( opt_net_echarge_rate > target_charging_rate ),
                -opt_fuel_usage,
                opt_net_echarge_rate
            ) ) {
            opt_mask = mask;
            opt_fuel_usage = fuel_usage;
            opt_net_echarge_rate = net_echarge_rate;
            opt_accel = accel;
            opt_safe_vel = safe_vel;

            cur_state.battery_net_charge_rate = net_echarge_rate;
            cur_state.load = load_approx + load_approx_alternator;
            // other `cur_state` fields do not change for different engine state combinations
        }
    }

    for( size_t i = 0; i < c_engines.size(); ++i ) { // return to prev state
        vehicle_part &vp = parts[engines[c_engines[i]]];
        vp.enabled = static_cast<bool>( prev_mask & ( 1 << i ) );
    }

    if( opt_mask != prev_mask ) { // we found new configuration
        bool failed_to_start = false;
        bool turned_on_gas_engine = false;
        for( size_t i = 0; i < c_engines.size(); ++i ) {
            vehicle_part &vp = parts[engines[c_engines[i]]];
            // ..0.. < ..1..  was off, new state on
            if( ( prev_mask & ( 1 << i ) ) < ( opt_mask & ( 1 << i ) ) ) {
                if( !start_engine( vp, true ) ) {
                    failed_to_start = true;
                }
                turned_on_gas_engine |= !is_engine_type( vp, fuel_type_battery );
            }
        }
        if( failed_to_start ) {
            this->smart_controller_state = std::nullopt;

            for( size_t i = 0; i < c_engines.size(); ++i ) { // return to prev state
                vehicle_part &vp = parts[engines[c_engines[i]]];
                vp.enabled = static_cast<bool>( prev_mask & ( 1 << i ) );
            }
            for( const vpart_reference &vp : get_avail_parts( "SMART_ENGINE_CONTROLLER" ) ) {
                vp.part().enabled = false;
            }
            if( player_in_control( player_character ) ) {
                add_msg( m_bad, _( "Smart controller failed to start an engine." ) );
                add_msg( m_bad, _( "Smart controller is shutting down." ) );
            }
            has_enabled_smart_controller = false;

        } else {  //successfully changed engines state
            for( size_t i = 0; i < c_engines.size(); ++i ) {
                vehicle_part &vp = parts[engines[c_engines[i]]];
                // was on, needs to be off
                if( ( prev_mask & ( 1 << i ) ) > ( opt_mask & ( 1 << i ) ) ) {
                    start_engine( vp, false );
                }
            }
            if( turned_on_gas_engine ) {
                cur_state.gas_engine_last_turned_on = calendar::turn;
            }
            smart_controller_state = cur_state;

            if( player_in_control( player_character ) ) {
                add_msg_debug( debugmode::DF_VEHICLE_MOVE, "Smart controller optimizes engine state." );
            }
        }
    } else {
        // as the optimization was performed (even without state change), cache needs to be updated as well
        smart_controller_state = cur_state;
    }
    update_alternator_load();
}

void vehicle::thrust( int thd, int z )
{
    //if vehicle is stopped, set target direction to forward.
    //ensure it is not skidding. Set turns used to 0.
    if( !is_moving() && z == 0 ) {
        turn_dir = face.dir();
        stop();
    }
    bool pl_ctrl = player_in_control( get_player_character() );

    // No need to change velocity if there are no wheels
    if( ( is_watercraft() && can_float() ) || ( is_rotorcraft() && ( z != 0 || is_flying ) ) ) {
        // we're good
    } else if( in_deep_water && !can_float() ) {
        stop();
        if( pl_ctrl ) {
            add_msg( _( "The %s is too leaky!" ), name );
        }
        return;
    } else if( !valid_wheel_config()  && z == 0 ) {
        stop();
        if( pl_ctrl ) {
            add_msg( _( "The %s doesn't have enough wheels to move!" ), name );
        }
        return;
    }
    // Accelerate (true) or brake (false)
    bool thrusting = true;
    if( velocity ) {
        int sgn = ( velocity < 0 ) ? -1 : 1;
        thrusting = ( sgn == thd );
    }

    // TODO: Pass this as an argument to avoid recalculating
    float traction = k_traction( get_map().vehicle_wheel_traction( *this ) );

    if( thrusting ) {
        smart_controller_handle_turn( traction );
    }

    int accel = current_acceleration() * traction;
    if( accel < 200 && velocity > 0 && is_towing() ) {
        if( pl_ctrl ) {
            add_msg( _( "The %s struggles to pull the %s on this surface!" ), name,
                     tow_data.get_towed()->name );
        }
        return;
    }
    if( thrusting && accel == 0 ) {
        if( pl_ctrl ) {
            if( has_engine_type( fuel_type_muscle, true ) ) {
                add_msg( _( "The %s is too heavy to move!" ), name );
            } else {
                add_msg( n_gettext( "The %s is too heavy for its engine!",
                                    "The %s is too heavy for its engines!",
                                    engines.size() ), name );
            }
        }
        return;
    }
    const int max_vel = traction * max_velocity();
    // maximum braking is 20 mph/s, assumes high friction tires
    const int max_brake = 20 * 100;
    //pos or neg if accelerator or brake
    int vel_inc = ( accel + ( thrusting ? 0 : max_brake ) ) * thd;
    // Reverse is only 60% acceleration, unless an electric motor is in use
    if( thd == -1 && thrusting && !has_engine_type( fuel_type_battery, true ) ) {
        vel_inc = .6 * vel_inc;
    }

    //find ratio of used acceleration to maximum available, returned in tenths of a percent
    //so 1000 = 100% and 453 = 45.3%
    int load;
    if( accel != 0 ) {
        int effective_cruise = std::min( cruise_velocity, max_vel );
        if( thd > 0 ) {
            vel_inc = std::min( vel_inc, effective_cruise - velocity );
        } else {
            vel_inc = std::max( vel_inc, effective_cruise - velocity );
        }
        if( thrusting ) {
            load = 1000 * std::abs( vel_inc ) / accel;
        } else {
            // brakes provide 20 mph/s of slowdown and the rest is engine braking
            // TODO: braking depends on wheels, traction, driver skill
            load = 1000 * std::max( 0, std::abs( vel_inc ) - max_brake ) / accel;
        }
    } else {
        load = ( thrusting ? 1000 : 0 );
    }
    // rotorcraft need to spend 15% of load to hover, 30% to change z
    if( is_rotorcraft() && ( z > 0 || is_flying_in_air() ) ) {
        load = std::max( load, z > 0 ? 300 : 150 );
        thrusting = true;
    }

    // only consume resources if engine accelerating
    if( load >= 1 && thrusting ) {
        //abort if engines not operational
        if( total_power() <= 0_W || !engine_on || ( z == 0 && accel == 0 ) ) {
            if( pl_ctrl ) {
                if( total_power( false ) <= 0_W ) {
                    add_msg( m_info, _( "The %s doesn't have an engine!" ), name );
                } else if( has_engine_type( fuel_type_muscle, true ) ) {
                    add_msg( m_info, _( "The %s's mechanism is out of reach!" ), name );
                } else if( !engine_on ) {
                    add_msg( _( "The %s's engine isn't on!" ), name );
                } else if( traction < 0.01f ) {
                    add_msg( _( "The %s is stuck." ), name );
                } else {
                    add_msg( _( "The %s's engine emits a sneezing sound." ), name );
                }
            }
            cruise_velocity = 0;
            return;
        }
        // helicopters improve efficiency the closer they get to 50-70 knots
        // then it drops off as they go over that.
        // see https://i.stack.imgur.com/0zIO7.jpg
        if( is_rotorcraft() && is_flying_in_air() ) {
            const int velocity_kt = velocity * 0.01;
            int value;
            if( velocity_kt < 70 ) {
                value = 49 * std::pow( velocity_kt, 3 ) -
                        4118 * std::pow( velocity_kt, 2 ) - 76512 * velocity_kt + 18458000;
            } else {
                value = 1864 * std::pow( velocity_kt, 2 ) - 272190 * velocity_kt + 19473000;
            }
            value *= 0.0001;
            load = std::max( 200, std::min( 1000, ( ( value / 2 ) + 100 ) ) );
        }
        //make noise and consume fuel
        noise_and_smoke( load + alternator_load );
        consume_fuel( load + alternator_load, false );
        if( z != 0 && is_rotorcraft() ) {
            requested_z_change = z;
        }
        //break the engines a bit, if going too fast.
        const int strn = static_cast<int>( strain() * strain() * 100 );
        for( const int p : engines ) {
            do_engine_damage( parts[p], strn );
        }
    }

    //wheels aren't facing the right way to change velocity properly
    //lower down, since engines should be getting damaged anyway
    if( skidding ) {
        return;
    }

    //change vehicles velocity
    if( ( velocity > 0 && velocity + vel_inc < 0 ) || ( velocity < 0 && velocity + vel_inc > 0 ) ) {
        //velocity within braking distance of 0
        stop();
    } else {
        // Increase velocity up to max_vel or min_vel, but not above.
        const int min_vel = max_reverse_velocity();
        if( vel_inc > 0 ) {
            // Don't allow braking by accelerating (could happen with damaged engines)
            velocity = std::max( velocity, std::min( velocity + vel_inc, max_vel ) );
        } else {
            velocity = std::min( velocity, std::max( velocity + vel_inc, min_vel ) );
        }
    }
    // If you are going faster than the animal can handle, harness is damaged
    // Animal may come free ( and possibly hit by vehicle )
    for( size_t e = 0; e < parts.size(); e++ ) {
        vehicle_part &vp = parts[e];
        if( vp.info().fuel_type == fuel_type_animal && engines.size() != 1 ) {
            monster *mon = get_monster( e );
            if( mon != nullptr && mon->has_effect( effect_harnessed ) ) {
                if( velocity > mon->get_speed() * 12 ) {
                    add_msg( m_bad, _( "Your %s is not fast enough to keep up with the %s" ), mon->get_name(), name );
                    int dmg = rng( 0, 10 );
                    damage_direct( get_map(), vp, dmg );
                }
            }
        }
    }
}

void vehicle::cruise_thrust( int amount )
{
    if( amount == 0 ) {
        return;
    }
    int safe_vel = safe_velocity();
    int max_vel = autopilot_on ? safe_velocity() : max_velocity();
    int max_rev_vel = max_reverse_velocity();

    //if the safe velocity is between the cruise velocity and its next value, set to safe velocity
    if( ( cruise_velocity < safe_vel && safe_vel < ( cruise_velocity + amount ) ) ||
        ( cruise_velocity > safe_vel && safe_vel > ( cruise_velocity + amount ) ) ) {
        cruise_velocity = safe_vel;
    } else {
        if( amount < 0 && ( cruise_velocity == safe_vel || cruise_velocity == max_vel ) ) {
            // If coming down from safe_velocity or max_velocity decrease by one so
            // the rounding below will drop velocity to a multiple of amount.
            cruise_velocity += -1;
        } else if( amount > 0 && cruise_velocity == max_rev_vel ) {
            // If increasing from max_rev_vel, do the opposite.
            cruise_velocity += 1;
        } else {
            // Otherwise just add the amount.
            cruise_velocity += amount;
        }
        // Integer round to lowest multiple of amount.
        // The result is always equal to the original or closer to zero,
        // even if negative
        cruise_velocity = ( cruise_velocity / std::abs( amount ) ) * std::abs( amount );
    }
    // Can't have a cruise speed faster than max speed
    // or reverse speed faster than max reverse speed.
    if( cruise_velocity > max_vel ) {
        cruise_velocity = max_vel;
    } else if( cruise_velocity < max_rev_vel ) {
        cruise_velocity = max_rev_vel;
    }
}

void vehicle::turn( units::angle deg )
{
    if( deg == 0_degrees ) {
        return;
    }
    if( velocity < 0 && !::get_option<bool>( "REVERSE_STEERING" ) ) {
        deg = -deg;
    }
    last_turn = deg;
    turn_dir = normalize( turn_dir + deg );
    // quick rounding the turn dir to a multiple of 15
    turn_dir = round_to_multiple_of( turn_dir, vehicles::steer_increment );
}

void vehicle::stop()
{
    velocity = 0;
    skidding = false;
    move = face;
    last_turn = 0_degrees;
    of_turn_carry = 0;
    map &here = get_map();
    for( const tripoint &p : get_points() ) {
        if( here.inbounds( p ) ) {
            here.memory_cache_dec_set_dirty( p, true );
        }
    }
}

bool vehicle::collision( std::vector<veh_collision> &colls,
                         const tripoint &dp,
                         bool just_detect, bool bash_floor )
{

    /*
     * Big TODO:
     * Rewrite this function so that it has "pre-collision" phase (detection)
     *  and "post-collision" phase (applying damage).
     * Then invoke the functions cyclically (pre-post-pre-post-...) until
     *  velocity == 0 or no collision happens.
     * Make all post-collisions in a given phase use the same momentum.
     *
     * How it works right now: find the first obstacle, then ram it over and over
     *  until either the obstacle is removed or the vehicle stops.
     * Bug: when ramming a critter without enough force to send it flying,
     *  the vehicle will phase into it.
     */

    if( dp.z != 0 && ( dp.x != 0 || dp.y != 0 ) ) {
        // Split into horizontal + vertical
        return collision( colls, tripoint( dp.xy(), 0 ), just_detect, bash_floor ) ||
               collision( colls, tripoint( 0,    0,    dp.z ), just_detect, bash_floor );
    }

    if( dp.z == -1 && !bash_floor ) {
        // First check current level, then the one below if current had no collisions
        // Bash floors on the current one, but not on the one below.
        if( collision( colls, tripoint_zero, just_detect, true ) ) {
            return true;
        }
    }

    const bool vertical = bash_floor || dp.z != 0;
    const int &coll_velocity = vertical ? vertical_velocity : velocity;
    // Skip collisions when there is no apparent movement, except verticially moving rotorcraft.
    if( coll_velocity == 0 && !is_rotorcraft() ) {
        just_detect = true;
    }

    const int velocity_before = coll_velocity;
    int lowest_velocity = coll_velocity;
    const int sign_before = sgn( velocity_before );
    bool empty = true;
    map &here = get_map();
    for( int p = 0; p < part_count(); p++ ) {
        const vehicle_part &vp = parts.at( p );
        if( vp.removed || !vp.is_real_or_active_fake() ) {
            continue;
        }

        const vpart_info &info = vp.info();
        if( !vp.is_fake && info.location != part_location_structure && !info.has_flag( VPFLAG_ROTOR ) ) {
            continue;
        }
        empty = false;
        // Coordinates of where part will go due to movement (dx/dy/dz)
        //  and turning (precalc[1])
        const tripoint dsp = global_pos3() + dp + vp.precalc[1];
        veh_collision coll = part_collision( p, dsp, just_detect, bash_floor );
        if( coll.type == veh_coll_nothing && info.has_flag( VPFLAG_ROTOR ) ) {
            size_t radius = static_cast<size_t>( std::round( info.rotor_info->rotor_diameter / 2.0f ) );
            for( const tripoint &rotor_point : here.points_in_radius( dsp, radius ) ) {
                veh_collision rotor_coll = part_collision( p, rotor_point, just_detect, false );
                if( rotor_coll.type != veh_coll_nothing ) {
                    coll = rotor_coll;
                    if( just_detect ) {
                        break;
                    } else {
                        colls.push_back( rotor_coll );
                    }
                }
            }
        }
        if( coll.type == veh_coll_nothing ) {
            continue;
        }

        colls.push_back( coll );

        if( just_detect ) {
            // DO insert the first collision so we can tell what was it
            return true;
        }

        const int velocity_after = coll_velocity;
        // A hack for falling vehicles: restore the velocity so that it hits at full force everywhere
        // TODO: Make this more elegant
        if( vertical ) {
            if( velocity_before < 0 ) {
                lowest_velocity = std::max( lowest_velocity, coll_velocity );
            } else {
                lowest_velocity = std::min( lowest_velocity, coll_velocity );
            }
            vertical_velocity = velocity_before;
        } else if( sgn( velocity_after ) != sign_before ) {
            // Sign of velocity inverted, collisions would be in wrong direction
            break;
        }
    }

    if( vertical ) {
        vertical_velocity = lowest_velocity;
        if( vertical_velocity == 0 ) {
            is_falling = false;
        }
    }

    if( empty ) {
        // HACK: Hack for dirty vehicles that didn't yet get properly removed
        veh_collision fake_coll;
        fake_coll.type = veh_coll_other;
        colls.push_back( fake_coll );
        velocity = 0;
        vertical_velocity = 0;
        add_msg_debug( debugmode::DF_VEHICLE_MOVE, "Collision check on a dirty vehicle %s", name );
        return true;
    }

    return !colls.empty();
}

// A helper to make sure mass and density is always calculated the same way
static void terrain_collision_data( const tripoint &p, bool bash_floor,
                                    float &mass, float &density, float &elastic )
{
    elastic = 0.30;
    map &here = get_map();
    // Just a rough rescale for now to obtain approximately equal numbers
    const int bash_min = here.bash_resistance( p, bash_floor );
    const int bash_max = here.bash_strength( p, bash_floor );
    mass = ( bash_min + bash_max ) / 2.0;
    density = bash_min;
}

veh_collision vehicle::part_collision( int part, const tripoint &p,
                                       bool just_detect, bool bash_floor )
{
    // Vertical collisions need to be handled differently
    // All collisions have to be either fully vertical or fully horizontal for now
    const bool vert_coll = bash_floor || p.z != sm_pos.z;
    Character &player_character = get_player_character();
    const bool pl_ctrl = player_in_control( player_character );
    Creature *critter = get_creature_tracker().creature_at( p, true );
    Character *ph = dynamic_cast<Character *>( critter );

    Creature *driver = pl_ctrl ? &player_character : nullptr;

    // If in a vehicle assume it's this one
    if( ph != nullptr && ph->in_vehicle ) {
        critter = nullptr;
        ph = nullptr;
    }

    map &here = get_map();
    const optional_vpart_position ovp = here.veh_at( p );
    // Disable vehicle/critter collisions when bashing floor
    // TODO: More elegant code
    const bool is_veh_collision = !bash_floor && ovp && &ovp->vehicle() != this;
    const bool is_body_collision = !bash_floor && critter != nullptr;

    veh_collision ret;
    ret.type = veh_coll_nothing;
    ret.part = part;

    // Vehicle collisions are a special case. just return the collision.
    // The map takes care of the dynamic stuff.
    if( is_veh_collision ) {
        ret.type = veh_coll_veh;
        //"imp" is too simplistic for vehicle-vehicle collisions
        ret.target = &ovp->vehicle();
        ret.target_part = ovp->part_index();
        ret.target_name = ovp->vehicle().disp_name();
        return ret;
    }

    // Typical rotor tip speed in MPH * 100.
    int rotor_velocity = 45600;
    // Non-vehicle collisions can't happen when the vehicle is not moving
    int &coll_velocity = ( parts[part].info().has_flag( VPFLAG_ROTOR ) == 0 ) ?
                         ( vert_coll ? vertical_velocity : velocity ) :
                         rotor_velocity;
    if( !just_detect && coll_velocity == 0 ) {
        return ret;
    }

    if( is_body_collision ) {
        // critters on a BOARDABLE part in this vehicle aren't colliding
        if( ovp && ( &ovp->vehicle() == this ) && get_monster( ovp->part_index() ) ) {
            return ret;
        }
        // we just ran into a fish, so move it out of the way
        if( here.has_flag( ter_furn_flag::TFLAG_SWIMMABLE, critter->pos() ) ) {
            tripoint end_pos = critter->pos();
            tripoint start_pos;
            const units::angle angle =
                move.dir() + 45_degrees * ( parts[part].mount.x > pivot_point().x ? -1 : 1 );
            const std::set<tripoint> &cur_points = get_points( true );
            // push the animal out of way until it's no longer in our vehicle and not in
            // anyone else's position
            while( get_creature_tracker().creature_at( end_pos, true ) ||
                   cur_points.find( end_pos ) != cur_points.end() ) {
                start_pos = end_pos;
                calc_ray_end( angle, 2, start_pos, end_pos );
            }
            critter->setpos( end_pos );
            return ret;
        }
    }

    // Damage armor before damaging any other parts
    // Actually target, not just damage - spiked plating will "hit back", for example
    const int armor_part = part_with_feature( ret.part, VPFLAG_ARMOR, true );
    if( armor_part >= 0 ) {
        ret.part = armor_part;
    }
    vehicle_part &vp = this->part( ret.part );
    const vpart_info &vpi = vp.info();
    // Let's calculate type of collision & mass of object we hit
    float mass2 = 0.0f;
    // e = 0 -> plastic collision
    float e = 0.3f;
    // e = 1 -> inelastic collision
    //part density
    float part_dens = 0.0f;

    if( is_body_collision ) {
        // Check any monster/NPC/player on the way
        // body
        ret.type = veh_coll_body;
        ret.target = critter;
        e = 0.30f;
        part_dens = 15;
        mass2 = units::to_kilogram( critter->get_weight() );
        ret.target_name = critter->disp_name();
    } else if( ( bash_floor && here.is_bashable_ter_furn( p, true ) ) ||
               ( here.is_bashable_ter_furn( p, false ) && here.move_cost_ter_furn( p ) != 2 &&
                 // Don't collide with tiny things, like flowers, unless we have a wheel in our space.
                 ( part_with_feature( ret.part, VPFLAG_WHEEL, true ) >= 0 ||
                   !here.has_flag_ter_or_furn( ter_furn_flag::TFLAG_TINY, p ) ) &&
                 // Protrusions don't collide with short terrain.
                 // Tiny also doesn't, but it's already excluded unless there's a wheel present.
                 !( part_with_feature( vp.mount, "PROTRUSION", true ) >= 0 &&
                    here.has_flag_ter_or_furn( ter_furn_flag::TFLAG_SHORT, p ) ) &&
                 // These are bashable, but don't interact with vehicles.
                 !here.has_flag_ter_or_furn( ter_furn_flag::TFLAG_NOCOLLIDE, p ) &&
                 // Do not collide with track tiles if we can use rails
                 !( here.has_flag_ter_or_furn( ter_furn_flag::TFLAG_RAIL, p ) && this->can_use_rails() ) ) ) {
        // Movecost 2 indicates flat terrain like a floor, no collision there.
        ret.type = veh_coll_bashable;
        terrain_collision_data( p, bash_floor, mass2, part_dens, e );
        ret.target_name = here.disp_name( p );
    } else if( here.impassable_ter_furn( p ) ||
               ( bash_floor && !here.has_flag( ter_furn_flag::TFLAG_NO_FLOOR, p ) ) ) {
        // not destructible
        ret.type = veh_coll_other;
        mass2 = 1000;
        e = 0.10f;
        part_dens = 80;
        ret.target_name = here.disp_name( p );
    }

    if( ret.type == veh_coll_nothing || just_detect ) {
        // Hit nothing or we aren't actually hitting
        return ret;
    }
    stop_autodriving();
    // Calculate mass AFTER checking for collision
    //  because it involves iterating over all cargo
    // Rotors only use rotor mass in calculation.
    const float mass = vpi.has_flag( VPFLAG_ROTOR )
                       ? to_kilogram( vp.base.weight() )
                       : to_kilogram( total_mass() );

    //Calculate damage resulting from d_E
    const itype *type = item::find_type( vpi.base_item );
    const auto &mats = type->materials;
    float mat_total = type->mat_portion_total == 0 ? 1 : type->mat_portion_total;
    float vpart_dens = 0.0f;
    if( !mats.empty() ) {
        for( const std::pair<const material_id, int> &mat_id : mats ) {
            vpart_dens += mat_id.first->density() * ( static_cast<float>( mat_id.second ) / mat_total );
        }
        // average
        vpart_dens /= mats.size();
    }

    //k=100 -> 100% damage on part
    //k=0 -> 100% damage on obj
    float material_factor = ( part_dens - vpart_dens ) * 0.5f;
    material_factor = std::max( -25.0f, std::min( 25.0f, material_factor ) );
    // factor = -25 if mass is much greater than mass2
    // factor = +25 if mass2 is much greater than mass
    const float weight_factor = mass >= mass2 ?
                                -25 * ( std::log( mass ) - std::log( mass2 ) ) / std::log( mass ) :
                                25 * ( std::log( mass2 ) - std::log( mass ) ) / std::log( mass2 );

    float k = 50 + material_factor + weight_factor;
    k = std::max( 10.0f, std::min( 90.0f, k ) );

    bool smashed = true;
    const std::string snd = _( "smash!" );
    float dmg = 0.0f;
    float part_dmg = 0.0f;
    // Calculate Impulse of car
    time_duration time_stunned = 0_turns;

    const int prev_velocity = coll_velocity;
    const int vel_sign = sgn( coll_velocity );
    // Velocity of the object we're hitting
    // Assuming it starts at 0, but we'll probably hit it many times
    // in one collision, so accumulate the velocity gain from each hit.
    float vel2 = 0.0f;
    do {
        smashed = false;
        // Impulse of vehicle
        const float vel1 = coll_velocity / 100.0f;
        // Velocity of car after collision
        const float vel1_a = ( mass * vel1 + mass2 * vel2 + e * mass2 * ( vel2 - vel1 ) ) /
                             ( mass + mass2 );
        // Velocity of object after collision
        const float vel2_a = ( mass * vel1 + mass2 * vel2 + e * mass * ( vel1 - vel2 ) ) / ( mass + mass2 );
        // Lost energy at collision -> deformation energy -> damage
        const float E_before = 0.5f * ( mass * vel1 * vel1 )     + 0.5f * ( mass2 * vel2 * vel2 );
        const float E_after  = 0.5f * ( mass * vel1_a * vel1_a ) + 0.5f * ( mass2 * vel2_a * vel2_a );
        const float d_E = E_before - E_after;
        if( d_E <= 0 ) {
            // Deformation energy is signed
            // If it's negative, it means something went wrong
            // But it still does happen sometimes...
            if( std::fabs( vel1_a ) < std::fabs( vel1 ) ) {
                // Lower vehicle's speed to prevent infinite loops
                coll_velocity = vel1_a * 90;
            }
            if( std::fabs( vel2_a ) > std::fabs( vel2 ) ) {
                vel2 = vel2_a;
            }
            // this causes infinite loop
            if( mass2 == 0 ) {
                mass2 = 1;
            }
            continue;
        }

        add_msg_debug( debugmode::DF_VEHICLE_MOVE, "Deformation energy: %.2f", d_E );
        // Damage calculation
        // Damage dealt overall
        dmg += d_E / 400;
        // Damage for vehicle-part
        // Always if no critters, otherwise if critter is real
        if( critter == nullptr || !critter->is_hallucination() ) {
            part_dmg = dmg * k / 100.0f;
            add_msg_debug( debugmode::DF_VEHICLE_MOVE, "Part collision damage: %.2f", part_dmg );
        }
        // Damage for object
        const float obj_dmg = dmg * ( 100.0f - k ) / 100.0f;

        if( ret.type == veh_coll_bashable ) {
            // Something bashable -- use map::bash to determine outcome
            // NOTE: Floor bashing disabled for balance reasons
            //       Floor values are still used to set damage dealt to vehicle
            smashed = here.is_bashable_ter_furn( p, false ) &&
                      here.bash_resistance( p, bash_floor ) <= obj_dmg &&
                      here.bash( p, obj_dmg, false, false, false, this ).success;
            if( smashed ) {
                if( here.is_bashable_ter_furn( p, bash_floor ) ) {
                    // There's new terrain there to smash
                    smashed = false;
                    terrain_collision_data( p, bash_floor, mass2, part_dens, e );
                    ret.target_name = here.disp_name( p );
                } else if( here.impassable_ter_furn( p ) ) {
                    // There's new terrain there, but we can't smash it!
                    smashed = false;
                    ret.type = veh_coll_other;
                    mass2 = 1000;
                    e = 0.10f;
                    part_dens = 80;
                    ret.target_name = here.disp_name( p );
                }
            }
        } else if( ret.type == veh_coll_body ) {
            int dam = obj_dmg * vpi.dmg_mod / 100;

            // We know critter is set for this type.  Assert to inform static
            // analysis.
            cata_assert( critter );

            // No blood from hallucinations
            if( !critter->is_hallucination() ) {
                if( vpi.has_flag( "SHARP" ) ) {
                    vp.blood += 100 + 5 * dam;
                } else if( dam > rng( 10, 30 ) ) {
                    vp.blood += 50 + dam / 2 * 5;
                }

                check_environmental_effects = true;
            }

            time_stunned = time_duration::from_turns( ( rng( 0, dam ) > 10 ) + ( rng( 0, dam ) > 40 ) );
            if( time_stunned > 0_turns ) {
                critter->add_effect( effect_stunned, time_stunned );
            }

            if( ph != nullptr ) {
                ph->hitall( dam, 40, driver );
            } else {
                const int armor = vpi.has_flag( "SHARP" ) ?
                                  critter->get_armor_type( damage_cut, bodypart_id( "torso" ) ) :
                                  critter->get_armor_type( damage_bash, bodypart_id( "torso" ) );
                dam = std::max( 0, dam - armor );
                critter->apply_damage( driver, bodypart_id( "torso" ), dam );
                if( vpi.has_flag( "SHARP" ) ) {
                    critter->add_effect( effect_source( driver ), effect_bleed, 1_minutes * rng( 1, dam ),
                                         critter->get_random_body_part_of_type( body_part_type::type::torso ) );
                } else if( dam > 18 && rng( 1, 20 ) > 15 ) {
                    //low chance of lighter bleed even with non sharp objects.
                    critter->add_effect( effect_source( driver ), effect_bleed, 1_minutes,
                                         critter->get_random_body_part_of_type( body_part_type::type::torso ) );
                }
                add_msg_debug( debugmode::DF_VEHICLE_MOVE, "Critter collision damage: %d", dam );
            }

            // Don't fling if vertical - critter got smashed into the ground
            if( !vert_coll ) {
                if( std::fabs( vel2_a ) > 10.0f ||
                    std::fabs( e * mass * vel1_a ) > std::fabs( mass2 * ( 10.0f - vel2_a ) ) ) {
                    const units::angle angle = rng_float( -60_degrees, 60_degrees );
                    // Also handle the weird case when we don't have enough force
                    // but still have to push (in such case compare momentum)
                    const float push_force = std::max<float>( std::fabs( vel2_a ), 10.1f );
                    // move.dir is where the vehicle is facing. If velocity is negative,
                    // we're moving backwards and have to adjust the angle accordingly.
                    const units::angle angle_sum =
                        angle + move.dir() + ( vel2_a > 0 ? 0_degrees : 180_degrees );
                    g->fling_creature( critter, angle_sum, push_force );
                } else if( std::fabs( vel2_a ) > std::fabs( vel2 ) ) {
                    vel2 = vel2_a;
                } else {
                    // Vehicle's momentum isn't big enough to push the critter
                    velocity = 0;
                    break;
                }

                if( critter->is_dead_state() ) {
                    smashed = true;
                } else if( critter != nullptr ) {
                    // Only count critter as pushed away if it actually changed position
                    smashed = critter->pos() != p;
                }
            }
        }

        if( critter == nullptr || !critter->is_hallucination() ) {
            coll_velocity = vel1_a * 100;
        }
        // Stop processing when sign inverts, not when we reach 0
    } while( !smashed && sgn( coll_velocity ) == vel_sign );

    // Apply special effects from collision.
    if( critter != nullptr ) {
        if( !critter->is_hallucination() ) {
            if( pl_ctrl ) {
                if( time_stunned > 0_turns ) {
                    //~ 1$s - vehicle name, 2$s - part name, 3$s - NPC or monster
                    add_msg( m_warning, _( "Your %1$s's %2$s rams into %3$s and stuns it!" ),
                             name, vp.name(), ret.target_name );
                } else {
                    //~ 1$s - vehicle name, 2$s - part name, 3$s - NPC or monster
                    add_msg( m_warning, _( "Your %1$s's %2$s rams into %3$s!" ),
                             name, vp.name(), ret.target_name );
                }
            }

            if( vpi.has_flag( "SHARP" ) ) {
                critter->bleed();
            } else {
                sounds::sound( p, 20, sounds::sound_t::combat, snd, false, "smash_success", "hit_vehicle" );
            }
        }
    } else {
        if( pl_ctrl ) {
            if( !snd.empty() ) {
                //~ 1$s - vehicle name, 2$s - part name, 3$s - collision object name, 4$s - sound message
                add_msg( m_warning, _( "Your %1$s's %2$s rams into %3$s with a %4$s" ),
                         name, vp.name(), ret.target_name, snd );
            } else {
                //~ 1$s - vehicle name, 2$s - part name, 3$s - collision object name
                add_msg( m_warning, _( "Your %1$s's %2$s rams into %3$s." ),
                         name, vp.name(), ret.target_name );
            }
        }

        sounds::sound( p, smashed ? 80 : 50, sounds::sound_t::combat, snd, false, "smash_success",
                       "hit_vehicle" );
    }

    if( smashed && !vert_coll ) {
        int turn_amount = rng( 1, 3 ) * std::sqrt( static_cast<double>( part_dmg ) );
        turn_amount /= 15;
        if( turn_amount < 1 ) {
            turn_amount = 1;
        }
        turn_amount *= 15;
        if( turn_amount > 120 ) {
            turn_amount = 120;
        }
        int turn_roll = rng( 0, 100 );
        // Probability of skidding increases with higher delta_v
        if( turn_roll < std::abs( ( prev_velocity - coll_velocity ) / 100.0f * 2.0f ) ) {
            //delta_v = vel1 - vel1_a
            //delta_v = 50 mph -> 100% probability of skidding
            //delta_v = 25 mph -> 50% probability of skidding
            skidding = true;
            turn( units::from_degrees( one_in( 2 ) ? turn_amount : -turn_amount ) );
        }
    }

    ret.imp = part_dmg;
    return ret;
}

void vehicle::handle_trap( const tripoint &p, vehicle_part &vp_wheel )
{
    if( !vp_wheel.info().has_flag( VPFLAG_WHEEL ) ) {
        debugmsg( "vehicle::handle_trap called on non-WHEEL part" );
        return;
    }
    map &here = get_map();
    const trap &tr = here.tr_at( p );

    if( tr.is_null() ) {
        // If the trap doesn't exist, we can't interact with it, so just return
        return;
    }
    const vehicle_handle_trap_data &veh_data = tr.vehicle_data;

    if( veh_data.is_falling ) {
        return;
    }

    Character &player_character = get_player_character();
    const bool seen = player_character.sees( p );
    const bool known = tr.can_see( p, player_character );
    const bool damage_done = vp_wheel.info().durability <= veh_data.damage;
    if( seen && damage_done ) {
        if( known ) {
            //~ %1$s: name of the vehicle; %2$s: name of the related vehicle part; %3$s: trap name
            add_msg( m_bad, _( "The %1$s's %2$s runs over %3$s." ), name, vp_wheel.name(), tr.name() );
        } else {
            add_msg( m_bad, _( "The %1$s's %2$s runs over something." ), name, vp_wheel.name() );
        }
    }

    if( veh_data.chance >= rng( 1, 100 ) ) {
        if( veh_data.sound_volume > 0 ) {
            sounds::sound( p, veh_data.sound_volume, sounds::sound_t::combat, veh_data.sound, false,
                           veh_data.sound_type, veh_data.sound_variant );
        }
        if( veh_data.do_explosion ) {
            const Creature *source = player_in_control( player_character ) ? &player_character : nullptr;
            explosion_handler::explosion( source, p, veh_data.damage, 0.5f, false, veh_data.shrapnel );
            // Don't damage wheels with very high durability, such as roller drums or rail wheels
        } else if( damage_done ) {
            // Hit the wheel directly since it ran right over the trap.
            damage_direct( here, vp_wheel, veh_data.damage );
        }
        bool still_has_trap = true;
        if( veh_data.remove_trap || veh_data.do_explosion ) {
            here.remove_trap( p );
            still_has_trap = false;
        }
        for( const auto &it : veh_data.spawn_items ) {
            int cnt = roll_remainder( it.second );
            if( cnt > 0 ) {
                here.spawn_item( p, it.first, cnt );
            }
        }
        if( veh_data.set_trap ) {
            here.trap_set( p, veh_data.set_trap.id() );
            still_has_trap = true;
        }
        if( still_has_trap ) {
            const trap &tr = here.tr_at( p );
            if( seen || known ) {
                // known status has been reset by map::trap_set()
                player_character.add_known_trap( p, tr );
            }
            if( seen && !known ) {
                // hard to miss!
                const std::string direction = direction_name( direction_from( player_character.pos(), p ) );
                add_msg( _( "You've spotted a %1$s to the %2$s!" ), tr.name(), direction );
            }
        }
    }
}

monster *vehicle::get_harnessed_animal() const
{
    for( size_t e = 0; e < parts.size(); e++ ) {
        const vehicle_part &vp = parts[ e ];
        if( vp.info().fuel_type == fuel_type_animal ) {
            monster *mon = get_monster( e );
            if( mon && mon->has_effect( effect_harnessed ) && mon->has_effect( effect_pet ) ) {
                return mon;
            }
        }
    }
    return nullptr;
}

void vehicle::selfdrive( const point &p )
{
    if( !is_towed() && !magic && !get_harnessed_animal() && !has_part( "AUTOPILOT" ) ) {
        is_following = false;
        return;
    }
    if( p.x != 0 ) {
        if( steering_effectiveness() <= 0 ) {
            return; // no steering
        }
        turn( p.x * vehicles::steer_increment );
    }
    if( p.y != 0 ) {
        if( !is_towed() ) {
            const int thr_amount = std::abs( velocity ) < 2000 ? 400 : 500;
            cruise_thrust( -p.y * thr_amount );
        } else {
            thrust( -p.y );
        }
    }
    // TODO: Actually check if we're on land on water (or disable water-skidding)
    if( skidding && valid_wheel_config() ) {
        const float handling_diff = handling_difficulty();
        if( handling_diff * rng( 1, 10 ) < 15 ) {
            velocity = static_cast<int>( forward_velocity() );
            skidding = false;
            move.init( turn_dir );
        }
    }
}

bool vehicle::check_is_heli_landed()
{
    // @TODO - when there are chasms that extend below z-level 0 - perhaps the heli
    // will be able to descend into them but for now, assume z-level-0 == the ground.
    if( global_pos3().z == 0 ||
        !get_map().has_flag_ter_or_furn( ter_furn_flag::TFLAG_NO_FLOOR, global_pos3() ) ) {
        is_flying = false;
        return true;
    }
    return false;
}

bool vehicle::check_heli_descend( Character &p ) const
{
    if( !is_rotorcraft() ) {
        debugmsg( "A vehicle is somehow flying without being an aircraft" );
        return true;
    }
    int count = 0;
    int air_count = 0;
    map &here = get_map();
    creature_tracker &creatures = get_creature_tracker();
    for( const tripoint &pt : get_points( true ) ) {
        tripoint below( pt.xy(), pt.z - 1 );
        if( pt.z < -OVERMAP_DEPTH || !here.has_flag_ter_or_furn( ter_furn_flag::TFLAG_NO_FLOOR, pt ) ) {
            p.add_msg_if_player( _( "You are already landed!" ) );
            return false;
        }
        const optional_vpart_position ovp = here.veh_at( below );
        if( here.impassable_ter_furn( below ) || ovp || creatures.creature_at( below ) ) {
            p.add_msg_if_player( m_bad,
                                 _( "It would be unsafe to try and land when there are obstacles below you." ) );
            return false;
        }
        if( here.has_flag_ter_or_furn( ter_furn_flag::TFLAG_NO_FLOOR, below ) ) {
            air_count++;
        }
        count++;
    }
    if( velocity > 0 && air_count != count ) {
        p.add_msg_if_player( m_bad, _( "It would be unsafe to try and land while you are moving." ) );
        return false;
    }
    return true;

}

bool vehicle::check_heli_ascend( Character &p ) const
{
    if( !is_rotorcraft() ) {
        debugmsg( "A vehicle is somehow flying without being an aircraft" );
        return true;
    }
    if( velocity > 0 && !is_flying_in_air() ) {
        p.add_msg_if_player( m_bad, _( "It would be unsafe to try and take off while you are moving." ) );
        return false;
    }
    if( sm_pos.z + 1 >= OVERMAP_HEIGHT ) {
        return false; // don't allow trying to ascend to max zlevel
    }
    map &here = get_map();
    creature_tracker &creatures = get_creature_tracker();
    for( const tripoint &pt : get_points( true ) ) {
        tripoint above( pt.xy(), pt.z + 1 );
        const optional_vpart_position ovp = here.veh_at( above );
        if( here.has_flag_ter_or_furn( ter_furn_flag::TFLAG_INDOORS, pt ) ||
            here.impassable_ter_furn( above ) ||
            ovp ||
            creatures.creature_at( above ) ) {
            p.add_msg_if_player( m_bad,
                                 _( "It would be unsafe to try and ascend when there are obstacles above you." ) );
            return false;
        }
    }
    return true;
}

void vehicle::pldrive( Character &driver, const point &p, int z )
{
    bool is_non_proficient = false;
    float effective_driver_skill = driver.get_skill_level( skill_driving );
    float vehicle_proficiency;
    // Check if you're piloting on land or water, and reduce effective driving skill proportional to relevant proficiencies (10% Boat Proficiency = 10% driving skill on water)
    if( !driver.has_proficiency( proficiency_prof_driver ) && !in_deep_water ) {
        is_non_proficient = true;
        vehicle_proficiency = driver.get_proficiency_practice( proficiency_prof_driver );
    } else if( !driver.has_proficiency( proficiency_prof_boat_pilot ) && in_deep_water ) {
        is_non_proficient = true;
        vehicle_proficiency = driver.get_proficiency_practice( proficiency_prof_boat_pilot );
    }

    bool non_prof_fumble = false;
    float non_prof_penalty = 0;
    //If you lack the appropriate piloting proficiency, increase handling penalty, and roll chance to fumble while steering
    if( is_non_proficient ) {
        effective_driver_skill *= vehicle_proficiency;
        non_prof_penalty = std::max( 0.0f,
                                     ( 1.0f - vehicle_proficiency ) * 10.0f -
                                     ( driver.get_dex() + driver.get_per() ) * 0.25f );
        non_prof_fumble = one_in( vehicle_proficiency * 12.0f +
                                  ( driver.get_dex() + driver.get_per() ) * 0.5f + 6.0f );
        // Penalties mitigated by proficiency progress, and dex/per stats.
        // - Unskilled pilot at Per/Dex 4: 1-in-8 chance to fumble while turning
        // - Unskilled pilot at Per/Dex 8: 1-in-10
        // - Unskilled pilot at Per/Dex 12: 1-in-12
        // - 50% Skill at Per/Dex 4: 1-in-14 chance
        // - 50% Skill at Per/Dex 8: 1-in-16 chance
        // - 50% Skill at Per/Dex 12: 1-in-18 chance
    }
    if( z != 0 && is_rotorcraft() ) {
        driver.moves = std::min( driver.moves, 0 );
        thrust( 0, z );
    }
    units::angle turn_delta = vehicles::steer_increment * p.x;
    const float handling_diff = handling_difficulty() + non_prof_penalty;
    if( turn_delta != 0_degrees ) {
        float eff = steering_effectiveness();
        if( eff == -2 ) {
            driver.add_msg_if_player( m_info,
                                      _( "You cannot steer an animal-drawn vehicle with no animal harnessed." ) );
            return;
        }

        if( eff < 0 ) {
            driver.add_msg_if_player( m_info,
                                      _( "This vehicle has no steering system installed, you can't turn it." ) );
            return;
        }

        if( eff == 0 ) {
            driver.add_msg_if_player( m_bad, _( "The steering is completely broken!" ) );
            return;
        }

        // If you've got more moves than speed, it's most likely time stop
        // Let's get rid of that
        driver.moves = std::min( driver.moves, driver.get_speed() );

        ///\EFFECT_DEX reduces chance of losing control of vehicle when turning

        ///\EFFECT_PER reduces chance of losing control of vehicle when turning

        ///\EFFECT_DRIVING reduces chance of losing control of vehicle when turning
        float skill = std::min( 10.0f, effective_driver_skill +
                                ( driver.get_dex() + driver.get_per() ) / 10.0f );
        float penalty = rng_float( 0.0f, handling_diff ) - skill;

        int cost;
        if( penalty > 0.0f ) {
            // At 10 penalty (rather hard to get), we're taking 4 turns per turn
            cost = 100 * ( 1.0f + penalty / 2.5f );
        } else {
            // At 10 skill, with a perfect vehicle, we could turn up to 3 times per turn
            cost = std::max( driver.get_speed(), 100 ) * ( 1.0f - ( -penalty / 10.0f ) * 2 / 3 );
        }

        // Chance to fumble steering when in a non-proficient vehicle, or in difficult conditions
        if( non_prof_fumble || penalty > skill || ( penalty > 0 && cost > 400 ) ) {
            int fumble_roll = rng( 0, 6 );
            int fumble_factor = 0;
            int fumble_time = 1;
            if( fumble_roll <= 1 ) {
                // On a 0 or 1, fumble briefly instead of steering for 1 turn
                driver.add_msg_if_player( m_warning, _( "You fumble with the %s's controls." ), name );
            } else if( fumble_roll <= 4 ) {
                // On a 2, 3, or 4, steer as intended but take 2 turns to do it
                driver.add_msg_if_player( m_warning, _( "You turn slower than you meant to." ) );
                fumble_factor = 1;
                fumble_time = 2;
            } else {
                // On a 5 or 6, steer twice as far as you meant to, and take 2 turns to do it.
                driver.add_msg_if_player( m_warning, _( "You oversteer the %s!" ), name );
                fumble_factor = 2;
                fumble_time = 2;
            }
            turn_delta *= fumble_factor;
            cost = std::max( cost, driver.moves + fumble_time * 100 );
        } else if( one_in( 10 ) ) {
            // Don't warn all the time or it gets spammy
            if( cost >= driver.get_speed() * 2 ) {
                driver.add_msg_if_player( m_warning, _( "It takes you a very long time to steer the vehicle!" ) );
            } else if( cost >= driver.get_speed() * 1.5f ) {
                driver.add_msg_if_player( m_warning, _( "It takes you a long time to steer the vehicle!" ) );
            }
        }

        turn( turn_delta );

        // At most 3 turns per turn, because otherwise it looks really weird and jumpy
        driver.moves -= std::max( cost, driver.get_speed() / 3 + 1 );
    }

    if( p.y != 0 ) {
        cruise_thrust( -p.y * 400 );
    }

    // TODO: Actually check if we're on land on water (or disable water-skidding)
    if( skidding && p.x != 0 && valid_wheel_config() ) {
        ///\EFFECT_DEX increases chance of regaining control of a vehicle

        ///\EFFECT_DRIVING increases chance of regaining control of a vehicle
        if( handling_diff * rng( 1, 10 ) <
            driver.dex_cur + effective_driver_skill * 2 ) {
            driver.add_msg_if_player( _( "You regain control of the %s." ), name );
            driver.practice( skill_driving, velocity / 5 );
            velocity = static_cast<int>( forward_velocity() );
            skidding = false;
            move.init( turn_dir );
        }
    }
}

// A chance to stop skidding if moving in roughly the faced direction
void vehicle::possibly_recover_from_skid()
{
    if( last_turn > 13_degrees ) {
        // Turning on the initial skid is delayed, so move==face, initially. This filters out that case.
        return;
    }

    rl_vec2d mv = move_vec();
    rl_vec2d fv = face_vec();
    float dot = mv.dot_product( fv );
    // Threshold of recovery is Gaussianesque.

    if( std::fabs( dot ) * 100 > dice( 9, 20 ) ) {
        add_msg( _( "The %s recovers from its skid." ), name );
        // face_vec takes over.
        skidding = false;
        // Wheels absorb horizontal velocity.
        velocity *= dot;
        if( dot < -.8 ) {
            // Pointed backwards, velo-wise.
            // Move backwards.
            velocity *= -1;
        }

        move = face;
    }
}

// if not skidding, move_vec == face_vec, mv <dot> fv == 1, velocity*1 is returned.
float vehicle::forward_velocity() const
{
    rl_vec2d mv = move_vec();
    rl_vec2d fv = face_vec();
    float dot = mv.dot_product( fv );
    return velocity * dot;
}

rl_vec2d vehicle::velo_vec() const
{
    rl_vec2d ret;
    if( skidding ) {
        ret = move_vec();
    } else {
        ret = face_vec();
    }
    ret = ret.normalized();
    ret = ret * velocity;
    return ret;
}

static rl_vec2d angle_to_vec( const units::angle &angle )
{
    return rl_vec2d( units::cos( angle ), units::sin( angle ) );
}

// normalized.
rl_vec2d vehicle::move_vec() const
{
    return angle_to_vec( move.dir() );
}

// normalized.
rl_vec2d vehicle::face_vec() const
{
    return angle_to_vec( face.dir() );
}

rl_vec2d vehicle::dir_vec() const
{
    return angle_to_vec( turn_dir );
}

float get_collision_factor( const float delta_v )
{
    if( std::abs( delta_v ) <= 31 ) {
        return 1 - ( 0.9 * std::abs( delta_v ) ) / 31;
    } else {
        return 0.1;
    }
}

void vehicle::precalculate_vehicle_turning( units::angle new_turn_dir, bool check_rail_direction,
        const ter_furn_flag ter_flag_to_check, int &wheels_on_rail,
        int &turning_wheels_that_are_one_axis ) const
{
    // The direction we're moving
    tileray mdir;
    // calculate direction after turn
    mdir.init( new_turn_dir );
    tripoint dp;
    bool is_diagonal_movement = std::lround( to_degrees( new_turn_dir ) ) % 90 == 45;

    if( std::abs( velocity ) >= 20 ) {
        mdir.advance( velocity < 0 ? -1 : 1 );
        dp.x = mdir.dx();
        dp.y = mdir.dy();
    }

    // number of wheels that will land on rail
    wheels_on_rail = 0;

    // used to count wheels that will land on different axis
    int yVal = INT_MAX;
    /*
    number of wheels that are on one axis and will land on rail
    (not sometimes correct, for vehicle with 4 wheels, wheels_on_rail==3
    this can get 1 or 2 depending on position inaxis .wheelcache
    */
    turning_wheels_that_are_one_axis = 0;

    map &here = get_map();
    for( int part_index : wheelcache ) {
        const auto &wheel = parts[ part_index ];
        bool rails_ahead = true;
        tripoint wheel_point;
        coord_translate( mdir.dir(), this->pivot_point(), wheel.mount,
                         wheel_point );

        tripoint wheel_tripoint = global_pos3() + wheel_point;

        // maximum number of incorrect tiles for this type of turn(diagonal or not)
        const int allowed_incorrect_tiles_diagonal = 1;
        const int allowed_incorrect_tiles_not_diagonal = 2;
        int incorrect_tiles_diagonal = 0;
        int incorrect_tiles_not_diagonal = 0;

        // check if terrain under the wheel and in direction of moving is rails
        for( int try_num = 0; try_num < 3; try_num++ ) {
            // advance precalculated wheel position 1 time in direction of moving
            wheel_tripoint += dp;

            if( !here.has_flag_ter_or_furn( ter_flag_to_check, wheel_tripoint ) ) {
                // this tile is not allowed, disallow turn
                rails_ahead = false;
                break;
            }

            // special case for rails
            if( check_rail_direction ) {
                ter_id terrain_at_wheel = here.ter( wheel_tripoint );
                // check is it correct tile to turn into
                if( !is_diagonal_movement &&
                    ( terrain_at_wheel == t_railroad_track_d || terrain_at_wheel == t_railroad_track_d1 ||
                      terrain_at_wheel == t_railroad_track_d2 || terrain_at_wheel == t_railroad_track_d_on_tie ) ) {
                    incorrect_tiles_not_diagonal++;
                } else if( is_diagonal_movement &&
                           ( terrain_at_wheel == t_railroad_track || terrain_at_wheel == t_railroad_track_on_tie ||
                             terrain_at_wheel == t_railroad_track_h || terrain_at_wheel == t_railroad_track_v ||
                             terrain_at_wheel == t_railroad_track_h_on_tie || terrain_at_wheel == t_railroad_track_v_on_tie ) ) {
                    incorrect_tiles_diagonal++;
                }
                if( incorrect_tiles_diagonal > allowed_incorrect_tiles_diagonal ||
                    incorrect_tiles_not_diagonal > allowed_incorrect_tiles_not_diagonal ) {
                    rails_ahead = false;
                    break;
                }
            }
        }
        // found a wheel that turns correctly on rails
        if( rails_ahead ) {
            // if wheel that lands on rail still not found
            if( yVal == INT_MAX ) {
                // store mount point.y of wheel
                yVal = wheel.mount.y;
            }
            if( yVal == wheel.mount.y ) {
                turning_wheels_that_are_one_axis++;
            }
            wheels_on_rail++;
        }
    }
}

// rounds turn_dir to 45*X degree, respecting face_dir
static units::angle get_corrected_turn_dir( const units::angle &turn_dir,
        const units::angle &face_dir )
{
    units::angle corrected_turn_dir = 0_degrees;

    // Driver turned vehicle, round angle to 45 deg
    if( turn_dir > face_dir && turn_dir < face_dir + 180_degrees ) {
        corrected_turn_dir = face_dir + 45_degrees;
    } else if( turn_dir < face_dir || turn_dir > 270_degrees ) {
        corrected_turn_dir = face_dir - 45_degrees;
    }
    return normalize( corrected_turn_dir );
}

bool vehicle::allow_manual_turn_on_rails( units::angle &corrected_turn_dir ) const
{
    bool allow_turn_on_rail = false;
    // driver tried to turn rails vehicle
    if( turn_dir != face.dir() ) {
        corrected_turn_dir = get_corrected_turn_dir( turn_dir, face.dir() );

        int wheels_on_rail;
        int turning_wheels_that_are_one_axis;
        precalculate_vehicle_turning( corrected_turn_dir, true, ter_furn_flag::TFLAG_RAIL, wheels_on_rail,
                                      turning_wheels_that_are_one_axis );
        if( is_wheel_state_correct_to_turn_on_rails( wheels_on_rail, rail_wheelcache.size(),
                turning_wheels_that_are_one_axis ) ) {
            allow_turn_on_rail = true;
        }
    }
    return allow_turn_on_rail;
}

bool vehicle::allow_auto_turn_on_rails( units::angle &corrected_turn_dir ) const
{
    bool allow_turn_on_rail = false;
    // check if autoturn is possible
    if( turn_dir == face.dir() ) {
        // precalculate wheels for every direction
        int straight_wheels_on_rail;
        int straight_turning_wheels_that_are_one_axis;
        precalculate_vehicle_turning( face.dir(), true, ter_furn_flag::TFLAG_RAIL, straight_wheels_on_rail,
                                      straight_turning_wheels_that_are_one_axis );

        units::angle left_turn_dir =
            get_corrected_turn_dir( face.dir() - 45_degrees, face.dir() );
        int leftturn_wheels_on_rail;
        int leftturn_turning_wheels_that_are_one_axis;
        precalculate_vehicle_turning( left_turn_dir, true, ter_furn_flag::TFLAG_RAIL,
                                      leftturn_wheels_on_rail,
                                      leftturn_turning_wheels_that_are_one_axis );

        units::angle right_turn_dir =
            get_corrected_turn_dir( face.dir() + 45_degrees, face.dir() );
        int rightturn_wheels_on_rail;
        int rightturn_turning_wheels_that_are_one_axis;
        precalculate_vehicle_turning( right_turn_dir, true, ter_furn_flag::TFLAG_RAIL,
                                      rightturn_wheels_on_rail,
                                      rightturn_turning_wheels_that_are_one_axis );

        // if bad terrain ahead (landing wheels num is low)
        if( straight_wheels_on_rail <= leftturn_wheels_on_rail &&
            is_wheel_state_correct_to_turn_on_rails( leftturn_wheels_on_rail, rail_wheelcache.size(),
                    leftturn_turning_wheels_that_are_one_axis ) ) {
            allow_turn_on_rail = true;
            corrected_turn_dir = left_turn_dir;
        } else if( straight_wheels_on_rail <= rightturn_wheels_on_rail &&
                   is_wheel_state_correct_to_turn_on_rails( rightturn_wheels_on_rail, rail_wheelcache.size(),
                           rightturn_turning_wheels_that_are_one_axis ) ) {
            allow_turn_on_rail = true;
            corrected_turn_dir = right_turn_dir;
        }
    }
    return allow_turn_on_rail;
}

bool vehicle::is_wheel_state_correct_to_turn_on_rails( int wheels_on_rail, int wheel_count,
        int turning_wheels_that_are_one_axis ) const
{
    return ( wheels_on_rail >= 2 || // minimum wheels to be able to turn (excluding one axis vehicles)
             ( wheels_on_rail == 1 && ( wheel_count == 1 ||
                                        all_wheels_on_one_axis ) ) ) // for bikes or 1 wheel vehicle
           && ( wheels_on_rail !=
                turning_wheels_that_are_one_axis // wheels that want to turn is not on same axis
                || all_wheels_on_one_axis ||
                ( std::abs( rail_wheel_bounding_box.p2.x - rail_wheel_bounding_box.p1.x ) < 4 && velocity < 0 ) );
    // allow turn for vehicles with wheel distance < 4 when moving backwards
}

vehicle *vehicle::act_on_map()
{
    const tripoint pt = global_pos3();
    map &here = get_map();
    if( !here.inbounds( pt ) ) {
        dbg( D_INFO ) << "stopping out-of-map vehicle.  (x,y,z)=(" << pt.x << "," << pt.y << "," << pt.z <<
                      ")";
        stop();
        of_turn = 0;
        is_falling = false;
        return this;
    }
    if( decrement_summon_timer() ) {
        return nullptr;
    }
    Character &player_character = get_player_character();
    const bool pl_ctrl = player_in_control( player_character );
    // TODO: Remove this hack, have vehicle sink a z-level
    if( in_deep_water && !can_float() ) {
        add_msg( m_bad, _( "Your %s sank." ), name );
        if( pl_ctrl ) {
            unboard_all();
        }
        if( g->remoteveh() == this ) {
            g->setremoteveh( nullptr );
        }

        here.on_vehicle_moved( sm_pos.z );
        // Destroy vehicle (sank to nowhere)
        here.destroy_vehicle( this );
        return nullptr;
    }

    // It needs to fall when it has no support OR was falling before
    //  so that vertical collisions happen.
    const bool should_fall = is_falling || vertical_velocity != 0;

    // TODO: Saner diagonal movement, so that you can jump off cliffs properly
    // The ratio of vertical to horizontal movement should be vertical_velocity/velocity
    //  for as long as of_turn doesn't run out.
    if( should_fall ) {
        // 9.8 m/s^2
        const float g = 9.8f;
        // Convert from 100*mph to m/s
        const float old_vel = vmiph_to_mps( vertical_velocity );
        // Formula is v_2 = sqrt( 2*d*g + v_1^2 )
        // Note: That drops the sign
        const float new_vel = -std::sqrt( 2 * tile_height * g + old_vel * old_vel );
        vertical_velocity = mps_to_vmiph( new_vel );
        is_falling = true;
    } else {
        // Not actually falling, was just marked for fall test
        is_falling = false;
    }

    // Low enough for bicycles to go in reverse.
    // If the movement is due to a change in z-level, i.e a helicopter then the lateral movement will often be zero.
    if( !should_fall && std::abs( velocity ) < 20 && requested_z_change == 0 ) {
        stop();
        of_turn -= .321f;
        return this;
    }

    const float wheel_traction_area = here.vehicle_wheel_traction( *this );
    const float traction = k_traction( wheel_traction_area );
    if( traction < 0.001f ) {
        of_turn = 0;
        if( !should_fall ) {
            stop();
            if( floating.empty() ) {
                add_msg( m_info, _( "Your %s can't move on this terrain." ), name );
            } else {
                add_msg( m_info, _( "Your %s is beached." ), name );
            }
            return this;
        }
    }
    const float turn_cost = vehicles::vmiph_per_tile / std::max<float>( 0.0001f, std::abs( velocity ) );

    // Can't afford it this turn?
    // Low speed shouldn't prevent vehicle from falling, though
    bool falling_only = false;
    if( turn_cost >= of_turn && ( ( !is_flying && requested_z_change == 0 ) || !is_rotorcraft() ) ) {
        if( !should_fall ) {
            of_turn_carry = of_turn;
            of_turn = 0;
            return this;
        }
        falling_only = true;
    }

    // Decrease of_turn if falling+moving, but not when it's lower than move cost
    if( !falling_only ) {
        of_turn -= turn_cost;
    }

    bool can_use_rails = this->can_use_rails();
    if( one_in( 10 ) ) {
        bool controlled = false;
        // It can even be a NPC, but must be at the controls
        for( int boarded : boarded_parts() ) {
            if( part_with_feature( boarded, VPFLAG_CONTROLS, true ) >= 0 ) {
                controlled = true;
                Character *passenger = get_passenger( boarded );
                if( passenger != nullptr ) {
                    passenger->practice( skill_driving, 1 );
                }
            }
        }

        // Eventually send it skidding if no control
        // But not if it's remotely controlled, is in water or can use rails
        if( !controlled && !pl_ctrl && !( is_watercraft() && can_float() ) && !can_use_rails &&
            !is_flying && requested_z_change == 0 ) {
            skidding = true;
        }
    }

    if( skidding && one_in( 4 ) ) {
        // Might turn uncontrollably while skidding
        turn( vehicles::steer_increment * ( one_in( 2 ) ? -1 : 1 ) );
    }

    if( should_fall ) {
        // TODO: Insert a (hard) driving test to stop this from happening
        skidding = true;
    }

    bool allow_turn_on_rail = false;
    if( can_use_rails && !falling_only ) {
        units::angle corrected_turn_dir;
        allow_turn_on_rail = allow_manual_turn_on_rails( corrected_turn_dir );
        if( !allow_turn_on_rail ) {
            allow_turn_on_rail = allow_auto_turn_on_rails( corrected_turn_dir );
        }
        if( allow_turn_on_rail ) {
            turn_dir = corrected_turn_dir;
        }
    }

    // The direction we're moving
    tileray mdir;
    if( skidding || should_fall ) {
        // If skidding, it's the move vector
        // Same for falling - no air control
        mdir = move;
    } else if( turn_dir != face.dir() && ( !can_use_rails || allow_turn_on_rail ) ) {
        // Driver turned vehicle, get turn_dir
        mdir.init( turn_dir );
    } else {
        // Not turning, keep face.dir
        mdir = face;
    }

    tripoint dp;
    if( std::abs( velocity ) >= 20 && !falling_only ) {
        mdir.advance( velocity < 0 ? -1 : 1 );
        dp.x = mdir.dx();
        dp.y = mdir.dy();
    }

    if( should_fall ) {
        dp.z = -1;
        is_flying = false;
    } else {
        dp.z = requested_z_change;
        requested_z_change = 0;
        if( dp.z > 0 && is_rotorcraft() ) {
            is_flying = true;
        }
    }

    return here.move_vehicle( *this, dp, mdir );
}

bool vehicle::level_vehicle()
{
    map &here = get_map();
    if( is_flying && is_rotorcraft() ) {
        return true;
    }
    is_on_ramp = false;
    // make sure that all parts are either supported across levels or on the same level
    std::map<int, bool> no_support;
    for( vehicle_part &prt : parts ) {
        if( prt.info().location != part_location_structure ) {
            continue;
        }
        const tripoint part_pos = global_part_pos3( prt );
        if( no_support.find( part_pos.z ) == no_support.end() ) {
            no_support[part_pos.z] = part_pos.z > -OVERMAP_DEPTH;
        }
        if( no_support[part_pos.z] ) {
            no_support[part_pos.z] = here.has_flag_ter_or_furn( ter_furn_flag::TFLAG_NO_FLOOR, part_pos ) &&
                                     !here.supports_above( part_pos + tripoint_below );
        }
        if( !is_on_ramp &&
            ( here.has_flag( ter_furn_flag::TFLAG_RAMP_UP, tripoint( part_pos.xy(), part_pos.z - 1 ) ) ||
              here.has_flag( ter_furn_flag::TFLAG_RAMP_DOWN, tripoint( part_pos.xy(), part_pos.z + 1 ) ) ) ) {
            is_on_ramp = true;
        }
    }
    std::set<int> dropped_parts;
    // if it's unsupported but on the same level, just let it fall
    bool center_drop = false;
    bool adjust_level = false;
    if( no_support.size() > 1 ) {
        for( int zlevel = -OVERMAP_DEPTH; zlevel <= OVERMAP_DEPTH; zlevel++ ) {
            if( no_support.find( zlevel ) == no_support.end() || !no_support[zlevel] ) {
                continue;
            }
            center_drop |= global_pos3().z == zlevel;
            adjust_level = true;
            // drop unsupported parts 1 zlevel
            for( size_t prt = 0; prt < parts.size(); prt++ ) {
                if( global_part_pos3( prt ).z == zlevel ) {
                    dropped_parts.insert( static_cast<int>( prt ) );
                }
            }
        }
    }
    if( adjust_level ) {
        here.displace_vehicle( *this, tripoint_below, center_drop, dropped_parts );
        return false;
    } else {
        return true;
    }
}

void vehicle::check_falling_or_floating()
{
    // If we're flying none of the rest of this matters.
    if( is_flying && is_rotorcraft() ) {
        is_falling = false;
        in_deep_water = false;
        in_water = false;
        return;
    }

    is_falling = true;
    is_flying = false;
    map &here = get_map();

    auto has_support = [&here]( const tripoint & position, const bool water_supports ) {
        // if we're at the bottom of the z-levels, we're supported
        if( position.z == -OVERMAP_DEPTH ) {
            return true;
        }
        // water counts as support if we're swimming and checking to see if we're falling, but
        // not to see if the wheels are supported at all
        if( here.has_flag_ter_or_furn( ter_furn_flag::TFLAG_SWIMMABLE, position ) ) {
            return water_supports;
        }
        if( !here.has_flag_ter_or_furn( ter_furn_flag::TFLAG_NO_FLOOR, position ) ) {
            return true;
        }
        tripoint below( position.xy(), position.z - 1 );
        return here.supports_above( below );
    };
    // Check under the wheels, if they're supported nothing else matters.
    int supported_wheels = 0;
    for( int wheel_index : wheelcache ) {
        const tripoint position = global_part_pos3( wheel_index );
        if( has_support( position, false ) ) {
            ++supported_wheels;
        }
    }
    // If half of the wheels are supported, we're not falling and we're not in water.
    if( supported_wheels > 0 &&
        static_cast<size_t>( supported_wheels ) * 2 >= wheelcache.size() ) {
        is_falling = false;
        in_water = false;
        in_deep_water = false;
        return;
    }
    // TODO: Make the vehicle "slide" towards its center of weight
    //  when it's not properly supported
    const std::set<tripoint> &pts = get_points();
    if( pts.empty() ) {
        // Dirty vehicle with no parts
        is_falling = false;
        in_deep_water = false;
        in_water = false;
        is_flying = false;
        return;
    }

    size_t deep_water_tiles = 0;
    size_t water_tiles = 0;
    for( const tripoint &position : pts ) {
        deep_water_tiles += here.has_flag( ter_furn_flag::TFLAG_DEEP_WATER, position ) ? 1 : 0;
        water_tiles += here.has_flag( ter_furn_flag::TFLAG_SWIMMABLE, position ) ? 1 : 0;
        if( !is_falling ) {
            continue;
        }
        is_falling = !has_support( position, true );
    }
    // in_deep_water if 2/3 of the vehicle is in deep water
    in_deep_water = 3 * deep_water_tiles >= 2 * pts.size();
    // in_water if 1/2 of the vehicle is in water at all
    in_water =  2 * water_tiles >= pts.size();
}

float map::vehicle_wheel_traction( const vehicle &veh, bool ignore_movement_modifiers ) const
{
    if( veh.is_in_water( /* deep_water = */ true ) ) {
        return veh.can_float() ? 1.0f : -1.0f;
    }
    if( veh.is_watercraft() && veh.can_float() ) {
        return 1.0f;
    }

    if( veh.wheelcache.empty() ) {
        // TODO: Assume it is digging in dirt
        // TODO: Return something that could be reused for dragging
        return 0.0f;
    }

    float traction_wheel_area = 0.0f;
    for( const int wheel_idx : veh.wheelcache ) {
        const vehicle_part &vp = veh.part( wheel_idx );
        const vpart_info &vpi = vp.info();
        const tripoint pp = veh.global_part_pos3( vp );
        const ter_t &tr = ter( pp ).obj();
        if( tr.has_flag( ter_furn_flag::TFLAG_DEEP_WATER ) ||
            tr.has_flag( ter_furn_flag::TFLAG_NO_FLOOR ) ) {
            continue; // No traction from wheel in deep water or air
        }

        int move_mod = move_cost_ter_furn( pp );
        if( move_mod == 0 ) {
            return 0.0f; // Vehicle locked in wall, shouldn't happen, but does
        }

        if( ignore_movement_modifiers ) {
            traction_wheel_area += vpi.wheel_info->contact_area;
            continue; // Ignore the movement modifier if caller specifies a bool
        }

        for( const veh_ter_mod &mod : vpi.wheel_info->terrain_modifiers ) {
            const bool ter_has_flag = tr.has_flag( mod.terrain_flag );
            if( ter_has_flag && mod.move_override ) {
                move_mod = mod.move_override;
                break;
            } else if( !ter_has_flag && mod.move_penalty ) {
                move_mod += mod.move_penalty;
                break;
            }
        }

        if( move_mod == 0 ) {
            debugmsg( "move_mod resulted in a 0, ignoring wheel" );
            continue;
        }

        traction_wheel_area += 2.0 * vpi.wheel_info->contact_area / move_mod;
    }

    return traction_wheel_area;
}

units::angle map::shake_vehicle( vehicle &veh, const int velocity_before,
                                 const units::angle &direction )
{
    const int d_vel = std::abs( veh.velocity - velocity_before ) / 100;

    std::vector<rider_data> riders = veh.get_riders();

    units::angle coll_turn = 0_degrees;
    for( const rider_data &r : riders ) {
        const int ps = r.prt;
        Creature *rider = r.psg;
        if( rider == nullptr ) {
            debugmsg( "throw passenger: empty passenger at part %d", ps );
            continue;
        }

        const tripoint part_pos = veh.global_part_pos3( ps );
        if( rider->pos() != part_pos ) {
            debugmsg( "throw passenger: passenger at %d,%d,%d, part at %d,%d,%d",
                      rider->posx(), rider->posy(), rider->posz(),
                      part_pos.x, part_pos.y, part_pos.z );
            veh.part( ps ).remove_flag( vp_flag::passenger_flag );
            continue;
        }

        Character *psg = dynamic_cast<Character *>( rider );
        monster *pet = dynamic_cast<monster *>( rider );

        bool throw_from_seat = false;
        int dmg = d_vel * rng_float( 1.0f, 2.0f );
        int move_resist = 1;
        if( psg ) {
            ///\EFFECT_STR reduces chance of being thrown from your seat when not wearing a seatbelt
            move_resist = psg->str_cur * 150 + 500;
            if( veh.part( ps ).info().has_flag( "SEAT_REQUIRES_BALANCE" ) ) {
                // Much harder to resist being thrown on a skateboard-like vehicle.
                // Penalty mitigated by Deft and Skater.
                int resist_penalty = 500;
                if( psg->has_trait( trait_PROF_SKATER ) ) {
                    resist_penalty -= 150;
                }
                if( psg->has_trait( trait_DEFT ) ) {
                    resist_penalty -= 150;
                }
                move_resist -= resist_penalty;
            }
        } else {
            int pet_resist = 0;
            if( pet != nullptr ) {
                pet_resist = static_cast<int>( to_kilogram( pet->get_weight() ) * 200 );
            }
            move_resist = std::max( 100, pet_resist );
        }
        const int belt_idx = veh.part_with_feature( ps, VPFLAG_SEATBELT, true );
        if( belt_idx == -1 ) {
            ///\EFFECT_STR reduces chance of being thrown from your seat when not wearing a seatbelt
            throw_from_seat = d_vel * rng( 80, 120 ) > move_resist;
        } else {
            // Reduce potential damage based on quality of seatbelt
            dmg -= veh.part( belt_idx ).info().bonus;
        }

        // Damage passengers if d_vel is too high
        if( !throw_from_seat && ( 10 * d_vel ) > 6 * rng( 25, 50 ) ) {
            if( psg ) {
                psg->deal_damage( nullptr, bodypart_id( "torso" ), damage_instance( damage_bash, dmg ) );
                psg->add_msg_player_or_npc( m_bad,
                                            _( "You take %d damage by the power of the impact!" ),
                                            _( "<npcname> takes %d damage by the power of the "
                                               "impact!" ), dmg );
            } else {
                pet->apply_damage( nullptr, bodypart_id( "torso" ), dmg );
            }
        }

        if( psg && veh.player_in_control( *psg ) ) {
            const int lose_ctrl_roll = rng( 0, d_vel );
            ///\EFFECT_DEX reduces chance of losing control of vehicle when shaken

            ///\EFFECT_DRIVING reduces chance of losing control of vehicle when shaken
            if( lose_ctrl_roll > psg->dex_cur * 2 + psg->get_skill_level( skill_driving ) * 3 ) {
                psg->add_msg_player_or_npc( m_warning,
                                            _( "You lose control of the %s." ),
                                            _( "<npcname> loses control of the %s." ), veh.name );
                int turn_amount = rng( 1, 3 ) * std::sqrt( std::abs( veh.velocity ) ) / 30;
                if( turn_amount < 1 ) {
                    turn_amount = 1;
                }
                units::angle turn_angle = std::min( turn_amount * vehicles::steer_increment, 120_degrees );
                coll_turn = one_in( 2 ) ? turn_angle : -turn_angle;
            }
        }

        if( throw_from_seat ) {
            if( psg ) {
                psg->add_msg_player_or_npc( m_bad,
                                            _( "You are hurled from the %s's seat by "
                                               "the power of the impact!" ),
                                            _( "<npcname> is hurled from the %s's seat by "
                                               "the power of the impact!" ), veh.name );
                unboard_vehicle( part_pos );
            } else {
                add_msg_if_player_sees( part_pos, m_bad,
                                        _( "The %s is hurled from %s's by the power of the impact!" ),
                                        pet->disp_name(), veh.name );
            }
            ///\EFFECT_STR reduces distance thrown from seat in a vehicle impact
            g->fling_creature( rider, direction + rng_float( -30_degrees, 30_degrees ),
                               std::max( 10, d_vel - move_resist / 100 ) );
        }
    }

    return coll_turn;
}

bool vehicle::should_enable_fake( const tripoint &fake_precalc, const tripoint &parent_precalc,
                                  const tripoint &neighbor_precalc ) const
{
    // if parent's pos is diagonal to neighbor, but fake isn't, fake can fill a gap opened
    tripoint abs_parent_neighbor_diff = ( parent_precalc - neighbor_precalc ).abs();
    tripoint abs_fake_neighbor_diff = ( fake_precalc - neighbor_precalc ).abs();
    return ( abs_parent_neighbor_diff.x == 1 && abs_parent_neighbor_diff.y == 1 ) &&
           ( ( abs_fake_neighbor_diff.x == 1 && abs_fake_neighbor_diff.y == 0 ) ||
             ( abs_fake_neighbor_diff.x == 0 && abs_fake_neighbor_diff.y == 1 ) );
}

void vehicle::update_active_fakes()
{
    for( const int fake_index : fake_parts ) {
        vehicle_part &part_fake = parts.at( fake_index );
        if( part_fake.removed ) {
            continue;
        }
        const vehicle_part &part_real = parts.at( part_fake.fake_part_to );
        const tripoint &fake_precalc = part_fake.precalc[0];
        const tripoint &real_precalc = part_real.precalc[0];
        const vpart_edge_info &real_edge = edges[part_real.mount];
        const bool is_protrusion = part_real.info().has_flag( "PROTRUSION" );

        if( real_edge.forward != -1 ) {
            const tripoint &forward = parts.at( real_edge.forward ).precalc[0];
            part_fake.is_active_fake = should_enable_fake( fake_precalc, real_precalc, forward );
        }
        if( real_edge.back != -1 && ( !part_fake.is_active_fake || real_edge.forward == -1 ) ) {
            const tripoint &back = parts.at( real_edge.back ).precalc[0];
            part_fake.is_active_fake = should_enable_fake( fake_precalc, real_precalc, back );
        }
        if( is_protrusion && part_fake.fake_protrusion_on >= 0 ) {
            part_fake.is_active_fake = parts.at( part_fake.fake_protrusion_on ).is_active_fake;
        }
    }
}