1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
#include "weather_gen.h"
#include <algorithm>
#include <cmath>
#include <functional>
#include <ostream>
#include <random>
#include <string>
#include <utility>
#include "avatar.h"
#include "cata_utility.h"
#include "condition.h"
#include "dialogue.h"
#include "game_constants.h"
#include "json.h"
#include "math_defines.h"
#include "point.h"
#include "rng.h"
#include "simplexnoise.h"
#include "translations.h"
#include "weather.h"
#include "weather_type.h"
namespace
{
constexpr double tau = 2 * M_PI;
constexpr double coldest_hour = 5;
// Out of 24 hours
constexpr double daily_magnitude_K = 5;
// Greatest absolute change from a day's average temperature, in kelvins
constexpr double seasonality_magnitude_K = 15;
// Greatest absolute change from the year's average temperature, in kelvins
constexpr double noise_magnitude_K = 8;
// Greatest absolute day-to-day noise, in kelvins
} //namespace
weather_generator::weather_generator() = default;
int weather_generator::current_winddir = 1000;
struct weather_gen_common {
double x = 0;
double y = 0;
double z = 0;
double cyf = 0;
unsigned modSEED = 0u;
season_type season = season_type::SPRING;
};
static weather_gen_common get_common_data( const tripoint &location, const time_point &real_t,
unsigned seed )
{
season_effective_time t( real_t );
weather_gen_common result;
// Integer x position / widening factor of the Perlin function.
result.x = location.x / 2000.0;
// Integer y position / widening factor of the Perlin function.
result.y = location.y / 2000.0;
// Integer turn / widening factor of the Perlin function.
result.z = to_days<double>( real_t - calendar::turn_zero );
// Limit the random seed during noise calculation, a large value flattens the noise generator to zero
// Windows has a rand limit of 32768, other operating systems can have higher limits
result.modSEED = seed % SIMPLEX_NOISE_RANDOM_SEED_LIMIT;
const double year_fraction( time_past_new_year( t.t ) /
calendar::year_length() ); // [0,1)
result.cyf = std::cos( tau * ( year_fraction + .125 ) ); // [-1, 1]
// We add one-eighth to line up `cyf` so that 1 is at
// midwinter and -1 at midsummer. (Cataclsym DDA years
// start when spring starts. Gregorian years start when
// winter starts.)
result.season = season_of_year( t.t );
return result;
}
static units::temperature weather_temperature_from_common_data( const weather_generator &wg,
const weather_gen_common &common, const season_effective_time &t )
{
const double x( common.x );
const double y( common.y );
const double z( common.z );
const unsigned modSEED = common.modSEED;
const double seasonality = -common.cyf;
// -1 in midwinter, +1 in midsummer
const season_type season = common.season;
const double dayFraction = time_past_midnight( t.t ) / 1_days;
const double dayv = std::cos( tau * ( dayFraction + .5 - coldest_hour / 24 ) );
// -1 at coldest_hour, +1 twelve hours later
// manually specified seasonal temp variation from region_settings.json
const std::array<int, 4> seasonal_temp_mod = {
wg.spring_temp_manual_mod, wg.summer_temp_manual_mod, wg.autumn_temp_manual_mod,
wg.winter_temp_manual_mod
};
const double baseline(
wg.base_temperature +
seasonal_temp_mod[season] +
dayv * daily_magnitude_K +
seasonality * seasonality_magnitude_K );
const double T = baseline + raw_noise_4d( x, y, z, modSEED ) * noise_magnitude_K;
return units::from_celsius( T );
}
units::temperature weather_generator::get_weather_temperature(
const tripoint &location, const time_point &real_t, unsigned seed ) const
{
return weather_temperature_from_common_data( *this, get_common_data( location, real_t, seed ),
season_effective_time( real_t ) );
}
w_point weather_generator::get_weather( const tripoint_abs_ms &location, const time_point &real_t,
unsigned seed ) const
{
season_effective_time t( real_t );
const weather_gen_common common = get_common_data( location.raw(), real_t, seed );
const double x( common.x );
const double y( common.y );
const double z( common.z );
const unsigned modSEED = common.modSEED;
const double cyf( common.cyf );
const double seasonality = -common.cyf;
// -1 in midwinter, +1 in midsummer
const season_type season = common.season;
// Noise factors
const units::temperature T( weather_temperature_from_common_data( *this, common, t ) );
double W( raw_noise_4d( x / 2.5, y / 2.5, z / 200, modSEED ) * 10.0 );
// Humidity variation
double mod_h( 0 );
if( season == WINTER ) {
mod_h += winter_humidity_manual_mod;
} else if( season == SPRING ) {
mod_h += spring_humidity_manual_mod;
} else if( season == SUMMER ) {
mod_h += summer_humidity_manual_mod;
} else if( season == AUTUMN ) {
mod_h += autumn_humidity_manual_mod;
}
// Relative humidity, a percentage.
double H = std::min( 100., std::max( 0.,
base_humidity + mod_h + 100 * (
.15 * seasonality +
raw_noise_4d( x, y, z, modSEED + 101 ) *
.2 * ( -seasonality + 2 ) ) ) );
// Pressure
double P =
base_pressure +
raw_noise_4d( x, y, z, modSEED + 211 ) *
10 * ( -seasonality + 2 );
// Wind power
W = std::max( 0, static_cast<int>( base_wind * rng( 1, 2 ) / std::pow( ( P + W ) / 1014.78, rng( 9,
base_wind_distrib_peaks ) ) +
-cyf / base_wind_season_variation * rng( 1, 2 ) ) );
// Initial static variable
if( current_winddir == 1000 ) {
current_winddir = get_wind_direction( season );
current_winddir = convert_winddir( current_winddir );
} else {
// When wind strength is low, wind direction is more variable
bool changedir = one_in( W * 2160 );
if( changedir ) {
current_winddir = get_wind_direction( season );
current_winddir = convert_winddir( current_winddir );
}
}
std::string wind_desc = get_wind_desc( W );
return w_point{ T, H, P, W, wind_desc, current_winddir, t, location };
}
weather_type_id weather_generator::get_weather_conditions( const tripoint_abs_ms &location,
const time_point &t, unsigned seed ) const
{
w_point w( get_weather( location, t, seed ) );
weather_type_id wt = get_weather_conditions( w );
return wt;
}
weather_type_id weather_generator::get_weather_conditions( const w_point &w ) const
{
// We're being asked for the weather condition given a set of parameters (humidity, pressure, etc),
// but the dialogue condition system which drives that logic has no way for us to provide them
// directly; it can only reference the current game state. Until it's overhauled, we'll just hack
// the current game state while checking the conditions.
const weather_manager &game_weather = get_weather_const();
w_point original_weather_precise = *game_weather.weather_precise;
*game_weather.weather_precise = w;
std::unordered_map<std::string, std::string> context;
context["npctalk_var_weather_location"] = w.location.to_string();
weather_type_id current_conditions = WEATHER_CLEAR;
dialogue d( get_talker_for( get_avatar() ), nullptr, {}, context );
for( const weather_type_id &type : sorted_weather ) {
bool required_weather = type->required_weathers.empty();
if( !required_weather ) {
for( const weather_type_id &weather : type->required_weathers ) {
if( weather == current_conditions ) {
required_weather = true;
break;
}
}
}
if( required_weather && type->condition( d ) ) {
current_conditions = type;
continue;
}
}
// Cleanup our conditional hack.
*game_weather.weather_precise = original_weather_precise;
return current_conditions;
}
int weather_generator::get_wind_direction( const season_type season ) const
{
cata_default_random_engine &wind_dir_gen = rng_get_engine();
// Assign chance to angle direction
if( season == SPRING ) {
std::discrete_distribution<int> distribution {3, 3, 5, 8, 11, 10, 5, 2, 5, 6, 6, 5, 8, 10, 8, 6};
return distribution( wind_dir_gen );
} else if( season == SUMMER ) {
std::discrete_distribution<int> distribution {3, 4, 4, 8, 8, 9, 8, 3, 7, 8, 10, 7, 7, 7, 5, 3};
return distribution( wind_dir_gen );
} else if( season == AUTUMN ) {
std::discrete_distribution<int> distribution {4, 6, 6, 7, 6, 5, 4, 3, 5, 6, 8, 8, 10, 10, 8, 5};
return distribution( wind_dir_gen );
} else if( season == WINTER ) {
std::discrete_distribution<int> distribution {5, 3, 2, 3, 2, 2, 2, 2, 4, 6, 10, 8, 12, 19, 13, 9};
return distribution( wind_dir_gen );
} else {
return 0;
}
}
int weather_generator::convert_winddir( const int inputdir ) const
{
// Convert from discrete distribution output to angle
float finputdir = inputdir * 22.5f;
return static_cast<int>( finputdir );
}
units::temperature weather_generator::get_water_temperature() const
{
/**
WATER TEMPERATURE
source : http://echo2.epfl.ch/VICAIRE/mod_2/chapt_5/main.htm
source : http://www.grandriver.ca/index/document.cfm?Sec=2&Sub1=7&sub2=1
**/
season_effective_time t( calendar::turn );
int season_length = to_days<int>( calendar::season_length() );
int day = to_days<int>( time_past_new_year( t.t ) );
int hour = hour_of_day<int>( t.t );
float water_temperature = 0;
if( season_length == 0 ) {
season_length = 1;
}
// Temperature varies between 33.8F and 75.2F depending on the time of year. Day = 0 corresponds to the start of spring.
float annual_mean_water_temperature = 54.5 + 20.7 * std::sin( tau * ( day - season_length * 0.5 ) /
( season_length * 4.0 ) );
// Temperature varies between +2F and -2F depending on the time of day. Hour = 0 corresponds to midnight.
float daily_water_temperature_variation = 2.0 + 2.0 * std::sin( tau * ( hour - 6.0 ) / 24.0 );
water_temperature = annual_mean_water_temperature + daily_water_temperature_variation;
return units::from_fahrenheit( water_temperature );
}
void weather_generator::test_weather( unsigned seed ) const
{
// Outputs a Cata year's worth of weather data to a CSV file.
// Usage:
// weather_generator WEATHERGEN; // Instantiate the class.
// WEATHERGEN.test_weather(); // Runs this test.
write_to_file( "weather.output", [&]( std::ostream & testfile ) {
testfile <<
"|;year;season;day;hour;minute;temperature(F);humidity(%);pressure(mB);weatherdesc;windspeed(mph);winddirection"
<< std::endl;
const time_point begin = calendar::turn;
const time_point end = begin + 2 * calendar::year_length();
for( time_point i = begin; i < end; i += 20_minutes ) {
w_point w = get_weather( tripoint_abs_ms( tripoint_zero ), i, seed );
weather_type_id conditions = get_weather_conditions( w );
int year = to_turns<int>( i - calendar::turn_zero ) / to_turns<int>
( calendar::year_length() ) + 1;
const int hour = hour_of_day<int>( i );
const int minute = minute_of_hour<int>( i );
int day;
if( calendar::eternal_season() ) {
day = to_days<int>( time_past_new_year( i ) );
} else {
day = day_of_season<int>( i );
}
testfile << "|;" << year << ";" << season_of_year( i ) << ";" << day << ";" << hour << ";" << minute
<< ";" << units::to_fahrenheit( w.temperature ) << ";" << w.humidity << ";" << w.pressure << ";" <<
conditions->name << ";"
<<
w.windpower << ";" << w.winddirection << std::endl;
}
}, "weather test file" );
}
void weather_generator::sort_weather()
{
sorted_weather.clear();
for( const weather_type &wt : weather_types::get_all() ) {
// if we have a white list, only add those, if we have a black list, add all but those
if( weather_white_list.empty() ) {
if( std::find( weather_black_list.begin(), weather_black_list.end(),
wt.id.c_str() ) == weather_black_list.end() ) {
sorted_weather.push_back( wt.id );
}
} else if( std::find( weather_white_list.begin(), weather_white_list.end(),
wt.id.c_str() ) != weather_white_list.end() || wt.id == WEATHER_CLEAR ) {
sorted_weather.push_back( wt.id );
}
}
std::sort( sorted_weather.begin(), sorted_weather.end(), []( const weather_type_id & a,
const weather_type_id & b ) {
return a->priority < b->priority;
} );
}
weather_generator weather_generator::load( const JsonObject &jo )
{
weather_generator ret;
ret.base_temperature = jo.get_float( "base_temperature", 0.0 );
ret.base_humidity = jo.get_float( "base_humidity", 50.0 );
ret.base_pressure = jo.get_float( "base_pressure", 0.0 );
ret.base_wind = jo.get_float( "base_wind", 0.0 );
ret.base_wind_distrib_peaks = jo.get_int( "base_wind_distrib_peaks", 0 );
ret.base_wind_season_variation = jo.get_int( "base_wind_season_variation", 0 );
ret.summer_temp_manual_mod = jo.get_int( "summer_temp_manual_mod", 0 );
ret.spring_temp_manual_mod = jo.get_int( "spring_temp_manual_mod", 0 );
ret.autumn_temp_manual_mod = jo.get_int( "autumn_temp_manual_mod", 0 );
ret.winter_temp_manual_mod = jo.get_int( "winter_temp_manual_mod", 0 );
ret.spring_humidity_manual_mod = jo.get_int( "spring_humidity_manual_mod", 0 );
ret.summer_humidity_manual_mod = jo.get_int( "summer_humidity_manual_mod", 0 );
ret.autumn_humidity_manual_mod = jo.get_int( "autumn_humidity_manual_mod", 0 );
ret.winter_humidity_manual_mod = jo.get_int( "winter_humidity_manual_mod", 0 );
ret.weather_black_list = jo.get_string_array( "weather_black_list" );
ret.weather_white_list = jo.get_string_array( "weather_white_list" );
if( !ret.weather_black_list.empty() && !ret.weather_white_list.empty() ) {
jo.throw_error( "weather_black_list and weather_white_list are mutually exclusive" );
}
return ret;
}
|