1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
#include <optional>
#include "cata_catch.h"
#include "simple_pathfinding.h"
#include "coordinates.h"
#include "cuboid_rectangle.h"
#include "line.h"
#include "point.h"
template<typename Point>
static void test_greedy_line_path()
{
const Point start( 0, 0 ); // NOLINT(cata-use-named-point-constants,cata-point-initialization)
const Point finish( 3, 0 );
const Point max( 10, 10 );
const pf::two_node_scoring_fn<Point> estimate =
[&]( pf::directed_node<Point> cur, std::optional<pf::directed_node<Point>> ) {
return pf::node_score( 0, manhattan_dist( cur.pos, finish ) );
};
const pf::directed_path<Point> pth = pf::greedy_path( start, finish, max, estimate );
REQUIRE( pth.nodes.size() == 4 );
CHECK( pth.nodes[3].pos == Point( 0, 0 ) ); // NOLINT(cata-use-named-point-constants)
CHECK( pth.nodes[2].pos == Point( 1, 0 ) ); // NOLINT(cata-use-named-point-constants)
CHECK( pth.nodes[1].pos == Point( 2, 0 ) );
CHECK( pth.nodes[0].pos == Point( 3, 0 ) );
}
TEST_CASE( "greedy_simple_line_path", "[pathfinding]" )
{
test_greedy_line_path<point>();
test_greedy_line_path<point_abs_omt>();
}
template<typename Point>
static void test_greedy_u_bend()
{
const Point start( 0, 0 ); // NOLINT(cata-use-named-point-constants,cata-point-initialization)
const Point finish( 2, 0 );
const Point max( 3, 3 );
// Test area and expected path:
// SxF 6x0
// .x. 5x1
// ... 432
const pf::two_node_scoring_fn<Point> estimate =
[&]( pf::directed_node<Point> cur, std::optional<pf::directed_node<Point>> ) {
if( cur.pos.x() == 1 && cur.pos.y() != 2 ) {
return pf::node_score::rejected;
}
return pf::node_score( 0, manhattan_dist( cur.pos, finish ) );
};
const pf::directed_path<Point> pth = pf::greedy_path( start, finish, max, estimate );
REQUIRE( pth.nodes.size() == 7 );
CHECK( pth.nodes[6].pos == Point( 0, 0 ) ); // NOLINT(cata-use-named-point-constants)
CHECK( pth.nodes[6].dir == om_direction::type::invalid );
CHECK( pth.nodes[5].pos == Point( 0, 1 ) ); // NOLINT(cata-use-named-point-constants)
CHECK( pth.nodes[5].dir == om_direction::type::north );
CHECK( pth.nodes[4].pos == Point( 0, 2 ) );
CHECK( pth.nodes[4].dir == om_direction::type::north );
CHECK( pth.nodes[3].pos == Point( 1, 2 ) );
CHECK( pth.nodes[3].dir == om_direction::type::west );
CHECK( pth.nodes[2].pos == Point( 2, 2 ) );
CHECK( pth.nodes[2].dir == om_direction::type::west );
CHECK( pth.nodes[1].pos == Point( 2, 1 ) );
CHECK( pth.nodes[1].dir == om_direction::type::south );
CHECK( pth.nodes[0].pos == Point( 2, 0 ) );
CHECK( pth.nodes[0].dir == om_direction::type::south );
}
TEST_CASE( "greedy_u_bend", "[pathfinding]" )
{
test_greedy_u_bend<point_om_omt>();
}
static std::function<void( size_t, size_t )> noop_fn = []( size_t, size_t ) {};
TEST_CASE( "find_overmap_path_u_bend", "[pathfinding]" )
{
using Point = tripoint_abs_omt;
const Point start( 0, 0, 0 );
const Point finish( 2, 0, 0 );
const inclusive_cuboid<Point> bounds( start, Point( 2, 2, 0 ) );
// Test area and expected path:
// SxF 6x0
// .x. 5x1
// ... 432
const pf::omt_scoring_fn estimate = [&]( Point cur ) {
if( !bounds.contains( cur ) || ( cur.x() == 1 && cur.y() != 2 ) ) {
return pf::omt_score::rejected;
}
return pf::omt_score( 10, false );
};
const pf::simple_path<Point> pth = pf::find_overmap_path( start, finish, 2, estimate, noop_fn );
REQUIRE( pth.points.size() == 7 );
CHECK( pth.points[6] == Point( 0, 0, 0 ) );
CHECK( pth.points[5] == Point( 0, 1, 0 ) );
CHECK( pth.points[4] == Point( 0, 2, 0 ) );
CHECK( pth.points[3] == Point( 1, 2, 0 ) );
CHECK( pth.points[2] == Point( 2, 2, 0 ) );
CHECK( pth.points[1] == Point( 2, 1, 0 ) );
CHECK( pth.points[0] == Point( 2, 0, 0 ) );
}
TEST_CASE( "find_overmap_path_bridge", "[pathfinding]" )
{
using Point = tripoint_abs_omt;
const Point start( 0, 0, 0 );
const Point finish( 2, 0, 0 );
const inclusive_cuboid<Point> bounds( start, Point( 2, 2, 1 ) );
// Test area and expected path:
// SxF 6x0
// ^x^ 5x1
// .x. .x.
// ( points 2, 3, 4 are at z=1 )
const pf::omt_scoring_fn estimate = [&]( Point cur ) {
if( !bounds.contains( cur ) || ( cur.x() == 1 && cur.z() == 0 ) ) {
return pf::omt_score::rejected;
}
return pf::omt_score( 10, ( cur.y() == 1 && cur.x() != 1 ) );
};
const pf::simple_path<Point> pth = pf::find_overmap_path( start, finish, 2, estimate, noop_fn );
REQUIRE( pth.points.size() == 7 );
CHECK( pth.points[6] == Point( 0, 0, 0 ) );
CHECK( pth.points[5] == Point( 0, 1, 0 ) );
CHECK( pth.points[4] == Point( 0, 1, 1 ) );
CHECK( pth.points[3] == Point( 1, 1, 1 ) );
CHECK( pth.points[2] == Point( 2, 1, 1 ) );
CHECK( pth.points[1] == Point( 2, 1, 0 ) );
CHECK( pth.points[0] == Point( 2, 0, 0 ) );
}
|