1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
|
#include "cata_catch.h"
#include "calendar.h" // IWYU pragma: associated
#include <iomanip>
#include <optional>
#include <string>
#include <unordered_set>
#include "cata_scope_helpers.h"
#include "hash_utils.h"
#include "line.h"
#include "options_helpers.h"
#include "output.h"
#include "stringmaker.h"
#include "units_utility.h"
// SUN TESTS
// The 24-hour solar cycle has four overlapping parts, as defined by four calendar.cpp functions:
//
// is_night : While the Sun is below -6° altitude
// is_day : While the Sun is above -1° altitude
// is_dawn, is_dusk : While the Sun is in between -6° to -1° at the appropriate end
// of the day
//
//
// The times of sunrise and sunset will naturally depend on the current time of year; this aspect is
// covered by the "sunrise and sunset" and solstice/equinox tests later in this file. Here we simply
// use the first day of spring as a baseline.
TEST_CASE( "daily_solar_cycle", "[sun][night][dawn][day][dusk]" )
{
// Use sunrise/sunset on the first day (spring equinox)
const time_point midnight = calendar::turn_zero;
const time_point noon = calendar::turn_zero + 12_hours;
const time_point today_sunrise = sunrise( midnight );
const time_point today_sunset = sunset( midnight );
CAPTURE( to_string( today_sunrise ) );
CAPTURE( to_string( today_sunset ) );
SECTION( "Night" ) {
// First, at the risk of stating the obvious
CHECK( is_night( midnight + 1_seconds ) );
CHECK( is_night( midnight + 2_hours ) );
CHECK( is_night( midnight + 3_hours ) );
CHECK( is_night( midnight + 4_hours ) );
// Yep, still dark
CHECK( is_night( midnight + 1_seconds ) );
CHECK( is_night( midnight + 2_hours ) );
CHECK( is_night( midnight + 3_hours ) );
CHECK( is_night( midnight + 4_hours ) );
}
SECTION( "Dawn" ) {
CHECK_FALSE( is_night( today_sunrise ) );
CHECK( is_dawn( today_sunrise - 1_seconds ) );
CHECK( is_dawn( today_sunrise - 20_minutes ) );
// Dawn stops at 1 degrees
CHECK_FALSE( is_dawn( today_sunrise + 7_minutes ) );
}
SECTION( "Day" ) {
// Due to roundings the day may start few seconds later than expected
CHECK( is_day( today_sunrise + 2_seconds ) );
CHECK( is_day( today_sunrise + 2_hours ) );
// Second breakfast
CHECK( is_day( today_sunrise + 3_hours ) );
CHECK( is_day( today_sunrise + 4_hours ) );
// Luncheon
CHECK( is_day( noon - 3_hours ) );
CHECK( is_day( noon - 2_hours ) );
// Elevenses
CHECK( is_day( noon - 1_hours ) );
// Noon
CHECK( is_day( noon ) );
CHECK_FALSE( is_dawn( noon ) );
CHECK_FALSE( is_dusk( noon ) );
CHECK_FALSE( is_night( noon ) );
// Afternoon tea
CHECK( is_day( noon + 1_hours ) );
CHECK( is_day( noon + 2_hours ) );
// Dinner
CHECK( is_day( noon + 3_hours ) );
CHECK( is_day( today_sunset - 2_hours ) );
// Supper
CHECK( is_day( today_sunset - 1_hours ) );
CHECK( is_day( today_sunset - 1_seconds ) );
}
SECTION( "Dusk" ) {
CHECK_FALSE( is_day( today_sunset + 1_seconds ) );
CHECK( is_dusk( today_sunset + 1_seconds ) );
CHECK( is_dusk( today_sunset + 20_minutes ) );
}
SECTION( "Night again" ) {
CHECK( is_night( today_sunset + 2_hours ) );
CHECK( is_night( today_sunset + 3_hours ) );
CHECK( is_night( today_sunset + 4_hours ) );
}
SECTION( "Eternal night" ) {
//Eternal night
calendar::set_eternal_night( true );
CHECK( is_night( midnight + 1_seconds ) );
CHECK( is_night( today_sunrise + 1_seconds ) );
CHECK( is_night( noon + 1_seconds ) );
CHECK( is_night( today_sunset + 1_seconds ) );
CHECK_FALSE( is_dawn( today_sunrise + 1_seconds ) );
CHECK_FALSE( is_day( noon + 1_seconds ) );
CHECK_FALSE( is_dusk( today_sunset + 1_seconds ) );
calendar::set_eternal_night( false );
}
SECTION( "Eternal night" ) {
//Eternal day
calendar::set_eternal_day( true );
CHECK( is_day( midnight + 1_seconds ) );
CHECK( is_day( today_sunrise + 1_seconds ) );
CHECK( is_day( noon + 1_seconds ) );
CHECK( is_day( today_sunset + 1_seconds ) );
CHECK_FALSE( is_dawn( today_sunrise + 1_seconds ) );
CHECK_FALSE( is_night( midnight + 1_seconds ) );
CHECK_FALSE( is_dusk( today_sunset + 1_seconds ) );
calendar::set_eternal_day( false );
}
}
// The calendar `sunlight` function returns light level for both sun and moon.
TEST_CASE( "sunlight_and_moonlight", "[sun][sunlight][moonlight]" )
{
// Use sunrise/sunset on the first day (spring equinox)
const time_point midnight = calendar::turn_zero;
const time_point noon = calendar::turn_zero + 12_hours;
const time_point today_sunrise = sunrise( midnight );
const time_point today_sunset = sunset( midnight );
CHECK( today_sunset > today_sunrise );
CHECK( today_sunrise > midnight );
// Expected numbers below assume 110.0f maximum daylight level
// (maximum daylight is different at other times of year - see [daylight] tests)
REQUIRE( 100.0f == default_daylight_level() );
SECTION( "sunlight" ) {
// Before dawn
CHECK( 1.0f == sun_moon_light_at( midnight ) );
// Dawn
CHECK( sun_moon_light_at( today_sunrise - 2_hours ) == 1.0f );
CHECK( sun_moon_light_at( today_sunrise - 1_hours ) == Approx( 5 ).margin( 2 ) );
CHECK( sun_moon_light_at( today_sunrise ) == Approx( 60 ).margin( 1 ) );
// Light gets brighter towards noon
CHECK( sun_moon_light_at( today_sunrise + 2_hours ) >
sun_moon_light_at( today_sunrise + 1_hours ) );
CHECK( sun_moon_light_at( today_sunrise + 3_hours ) >
sun_moon_light_at( today_sunrise + 2_hours ) );
// Noon
CHECK( sun_moon_light_at( noon ) == Approx( 110 ).margin( 10 ) );
CHECK( sun_moon_light_at( noon + 1_hours ) <
sun_moon_light_at( noon ) );
CHECK( sun_moon_light_at( noon + 2_hours ) <
sun_moon_light_at( noon + 1_hours ) );
// Dusk begins
CHECK( sun_moon_light_at( today_sunset - 1_hours ) ==
Approx( sun_moon_light_at( today_sunrise + 1_hours ) ).margin( 1 ) );
CHECK( sun_moon_light_at( today_sunset ) ==
Approx( sun_moon_light_at( today_sunrise ) ).margin( 1 ) );
CHECK( sun_moon_light_at( today_sunset + 1_hours ) ==
Approx( sun_moon_light_at( today_sunrise - 1_hours ) ).margin( 1 ) );
// Eternal night
calendar::set_eternal_night( true );
CHECK( sun_moon_light_at( midnight ) == 1.0f );
CHECK( sun_moon_light_at( today_sunset ) == 1.0f );
CHECK( sun_moon_light_at( today_sunrise ) == 1.0f );
CHECK( sun_moon_light_at( noon ) == 1.0f );
calendar::set_eternal_night( false );
// Eternal day
calendar::set_eternal_day( true );
CHECK( sun_moon_light_at( midnight ) == Approx( 126 ).margin( 5 ) );
CHECK( sun_moon_light_at( today_sunset ) == Approx( 126 ).margin( 5 ) );
CHECK( sun_moon_light_at( today_sunrise ) == Approx( 126 ).margin( 5 ) );
CHECK( sun_moon_light_at( noon ) == Approx( 126 ).margin( 5 ) );
calendar::set_eternal_day( false );
}
// This moonlight test is intentionally simple, only checking new moon (minimal light) and full
// moon (maximum moonlight). More detailed tests of moon phase and light should be expressed in
// `moon_test.cpp`. Including here simply to check that `sun_moon_light_at` also calculates
// moonlight.
SECTION( "moonlight" ) {
const time_duration phase_time = calendar::season_length() / 6;
const time_point new_moon = calendar::turn_zero;
const time_point full_moon = new_moon + phase_time;
const time_point full_moon_midnight = full_moon - time_past_midnight( full_moon );
WHEN( "the moon is new" ) {
REQUIRE( get_moon_phase( new_moon ) == MOON_NEW );
THEN( "moonlight is 1.0" ) {
CHECK( 1.0f == sun_moon_light_at( new_moon ) );
}
}
WHEN( "the moon is full" ) {
REQUIRE( get_moon_phase( full_moon_midnight ) == MOON_FULL );
THEN( "moonlight is 7.0" ) {
CHECK( 7.0f == sun_moon_light_at( full_moon_midnight ) );
}
}
}
}
// sanity-check seasonally-adjusted maximum daylight level
TEST_CASE( "noon_sunlight_levels", "[sun][daylight][equinox][solstice]" )
{
const time_duration one_season = calendar::season_length();
const time_point spring = calendar::turn_zero;
const time_point summer = spring + one_season;
const time_point autumn = summer + one_season;
const time_point winter = autumn + one_season;
SECTION( "baseline 110 daylight on the spring and autumn equinoxes" ) {
float spring_light = sun_light_at( spring + 12_hours );
CHECK( spring_light == Approx( 110.0f ).margin( 10 ) );
CHECK( sun_light_at( autumn + 12_hours ) == Approx( spring_light ).margin( 1 ) );
}
SECTION( "125 daylight on the summer solstice" ) {
CHECK( sun_light_at( summer + 12_hours ) == 125.0f );
}
SECTION( "90 daylight on the winter solstice" ) {
CHECK( sun_light_at( winter + 12_hours ) == Approx( 87.0f ).margin( 10 ) );
}
// Many other times of day have peak daylight level, but noon is for sure
SECTION( "noon is peak daylight level" ) {
CHECK( sun_moon_light_at( spring + 12_hours ) ==
Approx( sun_moon_light_at_noon_near( spring ) ).margin( 3 ) );
CHECK( sun_moon_light_at( summer + 12_hours ) ==
Approx( sun_moon_light_at_noon_near( summer ) ).margin( 3 ) );
CHECK( sun_moon_light_at( autumn + 12_hours ) ==
Approx( sun_moon_light_at_noon_near( autumn ) ).margin( 3 ) );
CHECK( sun_moon_light_at( winter + 12_hours ) ==
Approx( sun_moon_light_at_noon_near( winter ) ).margin( 3 ) );
}
SECTION( "Eternal day" ) {
// locked sunlight when eternal day id due
calendar::set_eternal_day( true );
CHECK( sun_light_at( spring + 12_hours ) == 125.0f );
CHECK( sun_light_at( summer + 12_hours ) == 125.0f );
CHECK( sun_light_at( autumn + 12_hours ) == 125.0f );
CHECK( sun_light_at( winter + 12_hours ) == 125.0f );
calendar::set_eternal_day( false );
}
}
// The times of sunrise and sunset vary throughout the year. Equinoxes occur on the
// first day of spring and autumn, and solstices occur on the first day of summer and winter.
TEST_CASE( "sunrise_and_sunset", "[sun][sunrise][sunset][equinox][solstice]" )
{
// Due to the "NN_days" math below, this test requires a default 91-day season length
REQUIRE( calendar::season_from_default_ratio() == Approx( 1.0f ) );
const time_duration one_season = calendar::season_length();
const time_point spring = calendar::turn_zero;
const time_point summer = spring + one_season;
const time_point autumn = summer + one_season;
const time_point winter = autumn + one_season;
auto const sunrise_in_day = []( const time_point & t ) {
return time_past_midnight( sunrise( t ) );
};
auto const sunset_in_day = []( const time_point & t ) {
return time_past_midnight( sunset( t ) );
};
// The expected sunrise/sunset times depend on calculations in `calendar.cpp`
// They should approximately match Boston in the year 2000. There is minor
// variation due to our year length being 364 days and some other minor
// simplifications in the formulae.
SECTION( "spring equinox is day 1 of spring" ) {
// Actual sunrise and sunset on March 21st 2001 are 0545 and 1757
CHECK( "Year 1, Spring, day 1 5:57:58 AM" == to_string( sunrise( spring ) ) );
CHECK( "Year 1, Spring, day 1 6:16:07 PM" == to_string( sunset( spring ) ) );
}
SECTION( "summer solstice is day 1 of summer" ) {
// Actual sunrise and sunset on June 21st 2001 are 0407 and 1924
CHECK( "Year 1, Summer, day 1 4:22:20 AM" == to_string( sunrise( summer ) ) );
CHECK( "Year 1, Summer, day 1 7:41:38 PM" == to_string( sunset( summer ) ) );
}
SECTION( "autumn equinox is day 1 of autumn" ) {
// Actual sunrise and sunset on September 22nd 2001 are 0531 and 1741
CHECK( "Year 1, Autumn, day 1 5:45:33 AM" == to_string( sunrise( autumn ) ) );
CHECK( "Year 1, Autumn, day 1 5:59:37 PM" == to_string( sunset( autumn ) ) );
}
SECTION( "winter solstice is day 1 of winter" ) {
// Actual sunrise and sunset on December 21st 2001 are 0710 and 1614
CHECK( "Year 1, Winter, day 1 7:25:07 AM" == to_string( sunrise( winter ) ) );
CHECK( "Year 1, Winter, day 1 4:31:46 PM" == to_string( sunset( winter ) ) );
}
SECTION( "spring sunrise gets earlier" ) {
CHECK( sunrise_in_day( spring + 30_days ) < sunrise_in_day( spring ) );
CHECK( sunrise_in_day( spring + 60_days ) < sunrise_in_day( spring + 30_days ) );
CHECK( sunrise_in_day( spring + 90_days ) < sunrise_in_day( spring + 60_days ) );
}
SECTION( "spring sunset gets later" ) {
CHECK( sunset_in_day( spring + 30_days ) > sunset_in_day( spring ) );
CHECK( sunset_in_day( spring + 60_days ) > sunset_in_day( spring + 30_days ) );
CHECK( sunset_in_day( spring + 90_days ) > sunset_in_day( spring + 60_days ) );
}
SECTION( "summer sunrise gets later" ) {
CHECK( sunrise_in_day( summer + 30_days ) > sunrise_in_day( summer ) );
CHECK( sunrise_in_day( summer + 60_days ) > sunrise_in_day( summer + 30_days ) );
CHECK( sunrise_in_day( summer + 90_days ) > sunrise_in_day( summer + 60_days ) );
}
SECTION( "summer sunset gets earlier" ) {
CHECK( sunset_in_day( summer + 30_days ) < sunset_in_day( summer ) );
CHECK( sunset_in_day( summer + 60_days ) < sunset_in_day( summer + 30_days ) );
CHECK( sunset_in_day( summer + 90_days ) < sunset_in_day( summer + 60_days ) );
}
SECTION( "autumn sunrise gets later" ) {
CHECK( sunrise_in_day( autumn + 30_days ) > sunrise_in_day( autumn ) );
CHECK( sunrise_in_day( autumn + 60_days ) > sunrise_in_day( autumn + 30_days ) );
CHECK( sunrise_in_day( autumn + 90_days ) > sunrise_in_day( autumn + 60_days ) );
}
SECTION( "autumn sunset gets earlier" ) {
CHECK( sunset_in_day( autumn + 30_days ) < sunset_in_day( autumn ) );
CHECK( sunset_in_day( autumn + 60_days ) < sunset_in_day( autumn + 30_days ) );
CHECK( sunset_in_day( autumn + 90_days ) < sunset_in_day( autumn + 60_days ) );
}
SECTION( "winter sunrise gets earlier" ) {
CHECK( sunrise_in_day( winter + 30_days ) < sunrise_in_day( winter ) );
CHECK( sunrise_in_day( winter + 60_days ) < sunrise_in_day( winter + 30_days ) );
CHECK( sunrise_in_day( winter + 90_days ) < sunrise_in_day( winter + 60_days ) );
}
SECTION( "winter sunset gets later" ) {
CHECK( sunset_in_day( winter + 30_days ) > sunset_in_day( winter ) );
CHECK( sunset_in_day( winter + 60_days ) > sunset_in_day( winter + 30_days ) );
CHECK( sunset_in_day( winter + 90_days ) > sunset_in_day( winter + 60_days ) );
}
}
static rl_vec2d checked_sunlight_angle( const time_point &t )
{
const std::optional<rl_vec2d> opt_angle = sunlight_angle( t );
REQUIRE( opt_angle );
return *opt_angle;
}
static constexpr time_point first_midnight = calendar::turn_zero;
static constexpr time_point first_noon = first_midnight + 12_hours;
TEST_CASE( "sun_highest_at_noon", "[sun]" )
{
for( int i = 0; i < 100; ++i ) {
CAPTURE( i );
const time_point midnight = first_midnight + i * 1_days;
CHECK_FALSE( sunlight_angle( midnight ) );
const time_point noon = first_noon + i * 1_days;
const time_point before_noon = noon - 2_hours;
const time_point after_noon = noon + 2_hours;
const rl_vec2d before_noon_angle = checked_sunlight_angle( before_noon );
const rl_vec2d noon_angle = checked_sunlight_angle( noon );
const rl_vec2d after_noon_angle = checked_sunlight_angle( after_noon );
CAPTURE( before_noon_angle );
CAPTURE( noon_angle );
CAPTURE( after_noon_angle );
// Sun should be highest around noon
CHECK( noon_angle.magnitude() < before_noon_angle.magnitude() );
CHECK( noon_angle.magnitude() < after_noon_angle.magnitude() );
// Sun should always be in the South, meaning angle points North
// (negative)
CHECK( before_noon_angle.y < 0 );
CHECK( noon_angle.y < 0 );
CHECK( after_noon_angle.y < 0 );
// Sun should be moving westwards across the sky, so its angle points
// more eastwards, which means it's increasing
CHECK( noon_angle.x > before_noon_angle.x );
CHECK( after_noon_angle.x > noon_angle.x );
CHECK( before_noon_angle.magnitude() ==
Approx( after_noon_angle.magnitude() ).epsilon( 0.25 ) );
}
}
TEST_CASE( "noon_sun_does_not_move_much", "[sun]" )
{
rl_vec2d noon_angle = checked_sunlight_angle( first_noon );
for( int i = 1; i < 1000; ++i ) {
CAPTURE( i );
const time_point later_noon = first_noon + i * 1_days;
const rl_vec2d later_noon_angle = checked_sunlight_angle( later_noon );
CHECK( noon_angle.x == Approx( later_noon_angle.x ).margin( 0.01 ) );
CHECK( noon_angle.y == Approx( later_noon_angle.y ).epsilon( 0.05 ) );
noon_angle = later_noon_angle;
}
}
TEST_CASE( "dawn_dusk_fixed_during_eternal_season", "[sun]" )
{
on_out_of_scope restore_eternal_season( []() {
calendar::set_eternal_season( false );
} );
calendar::set_eternal_season( true );
override_option override_eternal_season( "ETERNAL_SEASON", "true" );
const time_point first_sunrise = sunrise( first_noon );
const time_point first_sunset = sunset( first_noon );
for( int i = 1; i < 1000; ++i ) {
CAPTURE( i );
const time_point this_noon = first_noon + i * 1_days;
const time_point this_sunrise = sunrise( this_noon );
const time_point this_sunset = sunset( this_noon );
CHECK( this_sunrise < this_noon );
CHECK( this_sunset > this_noon );
CHECK( time_past_midnight( this_sunrise ) == time_past_midnight( first_sunrise ) );
CHECK( time_past_midnight( this_sunset ) == time_past_midnight( first_sunset ) );
}
}
TEST_CASE( "sun_altitude_fixed_during_eternal_night_or_day", "[sun]" )
{
const time_point midnight = calendar::turn_zero;
const time_point noon = calendar::turn_zero + 12_hours;
const time_point today_sunrise = sunrise( midnight );
const time_point today_sunset = sunset( midnight );
// Eternal night
calendar::set_eternal_night( true );
CHECK( sun_azimuth_altitude( midnight ).second < -10_degrees );
CHECK( sun_azimuth_altitude( today_sunset ).second < -10_degrees );
CHECK( sun_azimuth_altitude( today_sunrise ).second < -10_degrees );
CHECK( sun_azimuth_altitude( noon ).second < -10_degrees );
calendar::set_eternal_night( false );
// Eternal day
calendar::set_eternal_day( true );
CHECK( sun_azimuth_altitude( midnight ).second == 90_degrees );
CHECK( sun_azimuth_altitude( today_sunset ).second == 90_degrees );
CHECK( sun_azimuth_altitude( today_sunrise ).second == 90_degrees );
CHECK( sun_azimuth_altitude( noon ).second == 90_degrees );
calendar::set_eternal_day( false );
}
TEST_CASE( "sunrise_sunset_consistency", "[sun]" )
{
bool set_eternal = GENERATE( false, true );
on_out_of_scope restore_eternal_season( []() {
calendar::set_eternal_season( false );
} );
calendar::set_eternal_season( set_eternal );
for( int i = 1; i < 1000; ++i ) {
CAPTURE( i );
const time_point this_noon = first_noon + i * 1_days;
{
const time_point this_sunrise = sunrise( this_noon );
CHECK( this_sunrise < this_noon );
units::angle azimuth;
units::angle altitude;
std::tie( azimuth, altitude ) =
sun_azimuth_altitude( this_sunrise );
CHECK( to_degrees( altitude ) == Approx( -1 ).margin( 0.01 ) );
}
{
const time_point this_sunset = sunset( this_noon );
CHECK( this_sunset > this_noon );
units::angle azimuth;
units::angle altitude;
std::tie( azimuth, altitude ) =
sun_azimuth_altitude( this_sunset );
CHECK( to_degrees( altitude ) == Approx( -1 ).margin( 0.01 ) );
}
{
const time_point this_daylight = daylight_time( this_noon );
CHECK( this_daylight < this_noon );
units::angle azimuth;
units::angle altitude;
std::tie( azimuth, altitude ) =
sun_azimuth_altitude( this_daylight );
CHECK( to_degrees( altitude ) == Approx( -6 ).margin( 0.01 ) );
}
}
}
using PointSet = std::unordered_set<std::pair<int, int>, cata::tuple_hash>;
static PointSet sun_positions_regular( time_point start, time_point end, time_duration interval,
int azimuth_scale )
{
CAPTURE( to_days<int>( start - calendar::turn_zero ) );
std::unordered_set<std::pair<int, int>, cata::tuple_hash> plot_points;
for( time_point t = start; t < end; t += interval ) {
CAPTURE( to_minutes<int>( t - start ) );
units::angle azimuth;
units::angle altitude;
std::tie( azimuth, altitude ) = sun_azimuth_altitude( t );
if( altitude < 0_degrees ) {
continue;
}
// Convert to ASCII-art plot
// x-axis is azimuth, 4/azimuth_scale degrees per column
// y-axis is altitude, 3 degrees per column
azimuth = normalize( azimuth + 180_degrees );
// Scale azimuth away from 180 by specified scale
azimuth = 180_degrees + ( azimuth - 180_degrees ) * azimuth_scale;
REQUIRE( azimuth >= 0_degrees );
REQUIRE( azimuth <= 360_degrees );
REQUIRE( altitude >= 0_degrees );
REQUIRE( altitude <= 90_degrees );
plot_points.emplace( static_cast<int>( azimuth / 4_degrees ),
static_cast<int>( altitude / 3_degrees ) );
}
return plot_points;
}
static PointSet sun_throughout_day( time_point day_start )
{
REQUIRE( time_past_midnight( day_start ) == 0_seconds );
// Calculate the Sun's position every few minutes thourhgout the day
time_point day_end = day_start + 1_days;
return sun_positions_regular( day_start, day_end, 5_minutes, 1 );
}
static PointSet sun_throughout_year( time_point day_start )
{
REQUIRE( time_past_midnight( day_start ) == 0_seconds );
// Calculate the Sun's position every noon throughout the year
time_point first_noon = day_start + 1_days / 2;
time_point last_noon = first_noon + calendar::year_length();
return sun_positions_regular( first_noon, last_noon, 1_days, 4 );
}
static void check_sun_plot( const std::vector<PointSet> &points, const std::string &reference )
{
static constexpr std::array<char, 3> symbols = { { '#', '*', '-' } };
REQUIRE( points.size() <= symbols.size() );
std::ostringstream os;
os << "Altitude\n";
for( int rough_altitude = 30; rough_altitude >= 0; --rough_altitude ) {
for( int rough_azimuth = 0; rough_azimuth <= 90; ++rough_azimuth ) {
std::pair<int, int> p{ rough_azimuth, rough_altitude };
char c = ' ';
for( size_t i = 0; i < points.size(); ++i ) {
if( points[i].count( p ) ) {
c = symbols[i];
break;
}
}
os << c;
}
os << '\n';
}
os << std::setw( 92 ) << "Azimuth\n";
std::string result = os.str();
CHECK( result == reference );
// When the test fails, print out something to copy-paste as a new
// reference output:
if( result != reference ) {
result.pop_back();
for( const std::string &line : string_split( result, '\n' ) ) {
printf( R"("%s\n")" "\n", line.c_str() );
}
}
}
TEST_CASE( "movement_of_sun_through_day", "[sun]" )
{
PointSet equinox_points = sun_throughout_day( calendar::turn_zero );
PointSet summer_points =
sun_throughout_day( calendar::turn_zero + calendar::season_length() );
PointSet winter_points =
sun_throughout_day( calendar::turn_zero + calendar::season_length() * 3 );
std::string reference =
// *INDENT-OFF*
"Altitude\n"
" \n"
" \n"
" \n"
" \n"
" \n"
" \n"
" \n"
" ################ \n"
" #### #### \n"
" #### ## \n"
" ## ## \n"
" ## ### \n"
" ## ## \n"
" ## ## \n"
" ## ******* ## \n"
" ## **** ***** ## \n"
" # *** *** ## \n"
" # *** *** # \n"
" ## ** ** ## \n"
" ## ** ** ## \n"
" # ** * # \n"
" ## * * ## \n"
" ## * ---- * # \n"
" # ** ----- ----- * # \n"
" ## ** --- --- * ## \n"
" ## ** --- -- ** ## \n"
" # * -- -- ** # \n"
" ## * -- -- * ## \n"
" # ** -- -- ** # \n"
" # ** -- -- ** # \n"
" ## * -- -- * # \n"
" Azimuth\n";
// *INDENT-ON*
check_sun_plot( { summer_points, equinox_points, winter_points }, reference );
}
TEST_CASE( "movement_of_noon_through_year", "[sun]" )
{
PointSet points = sun_throughout_year( calendar::turn_zero );
std::string reference =
// *INDENT-OFF*
// This should yield an analemma
"Altitude\n"
" \n"
" \n"
" \n"
" \n"
" \n"
" \n"
" \n"
" ###### \n"
" ## ## \n"
" ## ## \n"
" ## ## \n"
" ### \n"
" ### \n"
" # ## \n"
" # ## \n"
" ## ## \n"
" # ## \n"
" ## # \n"
" # # \n"
" # # \n"
" ## # \n"
" ## ## \n"
" ####### \n"
" \n"
" \n"
" \n"
" \n"
" \n"
" \n"
" \n"
" \n"
" Azimuth\n";
// *INDENT-ON*
check_sun_plot( { points }, reference );
}
TEST_CASE( "noon_rises_towards_summer_solsitice_and_falls_towards_winter", "[sun]" )
{
int old_season_length = to_days<int>( calendar::season_length() );
on_out_of_scope restore_season_length( [ = ]() {
calendar::set_season_length( old_season_length );
} );
int this_season_length = GENERATE( 5, 14, 91, 1000 );
CAPTURE( this_season_length );
calendar::set_season_length( this_season_length );
const time_point summer_solstice = calendar::turn_zero + calendar::season_length();
const time_point winter_solstice = calendar::turn_zero + 3 * calendar::season_length();
// Make some allowance and don't check the days within this range of the
// solstice.
const time_duration allowance = calendar::season_length() / 100;
rl_vec2d last_noon_angle;
for( time_point noon = first_noon; noon < winter_solstice; noon += 1_days ) {
CAPTURE( to_days<int>( noon - first_noon ) );
const rl_vec2d noon_angle = checked_sunlight_angle( noon );
if( last_noon_angle.magnitude() != 0 ) {
CAPTURE( last_noon_angle );
CAPTURE( noon_angle );
if( noon < summer_solstice - allowance ) {
// Sun should be higher than yesterday until summer solstice
CHECK( noon_angle.magnitude() < last_noon_angle.magnitude() );
} else if( noon >= summer_solstice + allowance &&
noon <= winter_solstice - allowance ) {
// ...and then lower than yesterday until winter solstice
CHECK( noon_angle.magnitude() > last_noon_angle.magnitude() );
}
}
last_noon_angle = noon_angle;
}
}
|