1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
|
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "calendar.h"
#include "cata_catch.h"
#include "character.h"
#include "enums.h"
#include "item.h"
#include "itype.h"
#include "line.h"
#include "map.h"
#include "map_helpers.h"
#include "point.h"
#include "test_data.h"
#include "test_statistics.h"
#include "type_id.h"
#include "units.h"
#include "value_ptr.h"
#include "veh_type.h"
#include "vehicle.h"
#include "vpart_position.h"
#include "vpart_range.h"
using efficiency_stat = statistics<int>;
static const ammotype ammo_battery( "battery" );
static const efftype_id effect_blind( "blind" );
static const itype_id itype_battery( "battery" );
static void clear_game( const ter_id &terrain )
{
// Set to turn 0 to prevent solars from producing power
calendar::turn = calendar::turn_zero;
clear_creatures();
clear_npcs();
clear_vehicles();
Character &player_character = get_player_character();
// Move player somewhere safe
REQUIRE_FALSE( player_character.in_vehicle );
player_character.setpos( tripoint_zero );
// Blind the player to avoid needless drawing-related overhead
player_character.add_effect( effect_blind, 1_turns, true );
build_test_map( terrain );
}
// Returns how much fuel did it provide
// But contains only fuels actually used by engines
static std::map<itype_id, int> set_vehicle_fuel( vehicle &v, const float veh_fuel_mult )
{
// First we need to find the fuels to set
// That is, fuels actually used by some engine
std::set<itype_id> actually_used;
for( const vpart_reference &vp : v.get_all_parts() ) {
vehicle_part &pt = vp.part();
if( pt.is_engine() ) {
actually_used.insert( pt.info().fuel_type );
pt.enabled = true;
} else {
// Disable all parts that use up power or electric cars become non-deterministic
pt.enabled = false;
}
}
// We ignore battery when setting fuel because it uses designated "tanks"
actually_used.erase( itype_battery );
// Currently only one liquid fuel supported
REQUIRE( actually_used.size() <= 1 );
itype_id liquid_fuel = itype_id::NULL_ID();
for( const auto &ft : actually_used ) {
if( item::find_type( ft )->phase == phase_id::LIQUID ) {
liquid_fuel = ft;
break;
}
}
// Set fuel to a given percentage
// Batteries are special cased because they aren't liquid fuel
std::map<itype_id, int> ret;
for( const vpart_reference &vp : v.get_all_parts() ) {
vehicle_part &pt = vp.part();
if( pt.is_battery() ) {
pt.ammo_set( itype_battery, pt.ammo_capacity( ammo_battery ) * veh_fuel_mult );
ret[itype_battery] += pt.ammo_capacity( ammo_battery ) * veh_fuel_mult;
} else if( pt.is_tank() && !liquid_fuel.is_null() ) {
float qty = pt.ammo_capacity( item::find_type( liquid_fuel )->ammo->type ) * veh_fuel_mult;
qty *= std::max( item::find_type( liquid_fuel )->stack_size, 1 );
qty /= to_milliliter( units::legacy_volume_factor );
pt.ammo_set( liquid_fuel, qty );
ret[ liquid_fuel ] += qty;
} else {
pt.ammo_unset();
}
}
// We re-add battery because we want it accounted for, just not in the section above
actually_used.insert( itype_battery );
for( auto iter = ret.begin(); iter != ret.end(); ) {
if( iter->second <= 0 || actually_used.count( iter->first ) == 0 ) {
iter = ret.erase( iter );
} else {
++iter;
}
}
return ret;
}
// Returns the lowest percentage of fuel left
// i.e. 1 means no fuel was used, 0 means at least one dry tank
static float fuel_percentage_left( vehicle &v, const std::map<itype_id, int> &started_with )
{
std::map<itype_id, int> fuel_amount;
std::set<itype_id> consumed_fuels;
for( const vpart_reference &vp : v.get_all_parts() ) {
vehicle_part &pt = vp.part();
if( ( pt.is_battery() || pt.is_reactor() || pt.is_tank() ) &&
!pt.ammo_current().is_null() ) {
fuel_amount[ pt.ammo_current() ] += pt.ammo_remaining();
}
if( pt.is_engine() && !pt.info().fuel_type.is_null() ) {
consumed_fuels.insert( pt.info().fuel_type );
}
}
float left = 1.0f;
for( const auto &type : consumed_fuels ) {
const auto iter = started_with.find( type );
// Weird - we started without this fuel
float fuel_amt_at_start = iter != started_with.end() ? iter->second : 0.0f;
REQUIRE( fuel_amt_at_start != 0.0f );
left = std::min( left, static_cast<float>( fuel_amount[type] ) / fuel_amt_at_start );
}
return left;
}
static const float fuel_level = 0.1f;
static const int cycle_limit = 100;
// Algorithm goes as follows:
// Clear map
// Spawn a vehicle
// Set its fuel up to some percentage - remember exact fuel counts that were set here
// Drive it for a while, always moving it back to start point every turn to avoid it going off the bubble
// When moving back, record the sum of the tiles moved so far
// Repeat that for a set number of turns or until all fuel is drained
// Compare saved percentage (set before) to current percentage
// Rescale the recorded number of tiles based on fuel percentage left
// (i.e. 0% fuel left means no scaling, 50% fuel left means double the effective distance)
// Return the rescaled number
static int test_efficiency( const vproto_id &veh_id, int &expected_mass,
const ter_id &terrain,
const int reset_velocity_turn, const int target_distance,
const bool smooth_stops = false, const bool test_mass = true,
const bool in_reverse = false )
{
int min_dist = target_distance * 0.99;
int max_dist = target_distance * 1.01;
clear_game( terrain );
const tripoint map_starting_point( 60, 60, 0 );
map &here = get_map();
vehicle *veh_ptr = here.add_vehicle( veh_id, map_starting_point, -90_degrees, 0, 0 );
REQUIRE( veh_ptr != nullptr );
if( veh_ptr == nullptr ) {
return 0;
}
vehicle &veh = *veh_ptr;
// Remove all items from cargo to normalize weight.
for( const vpart_reference &vp : veh.get_all_parts() ) {
veh_ptr->get_items( vp.part() ).clear();
vp.part().ammo_consume( vp.part().ammo_remaining(), vp.pos() );
}
for( const vpart_reference &vp : veh.get_avail_parts( "OPENABLE" ) ) {
veh.close( vp.part_index() );
}
veh.refresh_insides();
if( test_mass ) {
CHECK( to_gram( veh.total_mass() ) == expected_mass );
}
expected_mass = to_gram( veh.total_mass() );
veh.check_falling_or_floating();
REQUIRE( !veh.is_in_water() );
const auto &starting_fuel = set_vehicle_fuel( veh, fuel_level );
// This is ugly, but improves accuracy: compare the result of fuel approx function
// rather than the amount of fuel we actually requested
const float starting_fuel_per = fuel_percentage_left( veh, starting_fuel );
REQUIRE( std::abs( starting_fuel_per - 1.0f ) < 0.001f );
const tripoint starting_point = veh.global_pos3();
veh.tags.insert( "IN_CONTROL_OVERRIDE" );
veh.engine_on = true;
const int sign = in_reverse ? -1 : 1;
const int target_velocity = sign * std::min( 50 * 100, veh.safe_ground_velocity( false ) );
veh.cruise_velocity = target_velocity;
// If we aren't testing repeated cold starts, start the vehicle at cruising velocity.
// Otherwise changing the amount of fuel in the tank perturbs the test results.
if( reset_velocity_turn == -1 ) {
veh.velocity = target_velocity;
}
int reset_counter = 0;
int tiles_travelled = 0;
int cycles_left = cycle_limit;
bool accelerating = true;
CHECK( veh.safe_velocity() > 0 );
while( veh.engine_on && veh.safe_velocity() > 0 && cycles_left > 0 ) {
cycles_left--;
here.vehmove();
veh.idle( true );
// If the vehicle starts skidding, the effects become random and test is RUINED
REQUIRE( !veh.skidding );
for( const tripoint &pos : veh.get_points() ) {
REQUIRE( here.ter( pos ) );
}
// How much it moved
tiles_travelled += square_dist( starting_point, veh.global_pos3() );
// Bring it back to starting point to prevent it from leaving the map
const tripoint displacement = starting_point - veh.global_pos3();
here.displace_vehicle( veh, displacement );
if( reset_velocity_turn < 0 ) {
continue;
}
reset_counter++;
if( reset_counter > reset_velocity_turn ) {
if( smooth_stops ) {
accelerating = !accelerating;
veh.cruise_velocity = accelerating ? target_velocity : 0;
} else {
veh.velocity = 0;
veh.last_turn = 0_degrees;
veh.of_turn_carry = 0;
}
reset_counter = 0;
}
}
float fuel_left = fuel_percentage_left( veh, starting_fuel );
REQUIRE( starting_fuel_per - fuel_left > 0.0001f );
const float fuel_percentage_used = fuel_level * ( starting_fuel_per - fuel_left );
int adjusted_tiles_travelled = tiles_travelled / fuel_percentage_used;
if( target_distance >= 0 ) {
INFO( "Target distance: " << target_distance )
INFO( "Travelled distance: " << adjusted_tiles_travelled )
CHECK( adjusted_tiles_travelled >= min_dist );
CHECK( adjusted_tiles_travelled <= max_dist );
}
return adjusted_tiles_travelled;
}
static efficiency_stat find_inner(
const vproto_id &type, int &expected_mass, const std::string &terrain, const int delay,
const bool smooth, const bool test_mass = false, const bool in_reverse = false )
{
efficiency_stat efficiency;
for( int i = 0; i < 10; i++ ) {
efficiency.add( test_efficiency( type, expected_mass, ter_id( terrain ),
delay, -1, smooth, test_mass, in_reverse ) );
}
return efficiency;
}
static void print_stats( const efficiency_stat &st )
{
if( st.min() == st.max() ) {
printf( "All results %d.\n", st.min() );
} else {
printf( "Min %d, Max %d, Midpoint %f.\n", st.min(), st.max(),
( st.min() + st.max() ) / 2.0 );
}
}
static void print_efficiency(
const vproto_id &type, int expected_mass, const std::string &terrain, const int delay,
const bool smooth )
{
printf( "Testing %s on %s with %s: ",
type.c_str(), terrain.c_str(), ( delay < 0 ) ? "no resets" : "resets every 5 turns" );
print_stats( find_inner( type, expected_mass, terrain, delay, smooth ) );
}
static void find_efficiency( const vproto_id &type )
{
SECTION( "finding efficiency of " + type.str() ) {
print_efficiency( type, 0, "t_pavement", -1, false );
print_efficiency( type, 0, "t_dirt", -1, false );
print_efficiency( type, 0, "t_pavement", 5, false );
print_efficiency( type, 0, "t_dirt", 5, false );
}
}
static int average_from_stat( const efficiency_stat &st )
{
const int ugly_integer = ( st.min() + st.max() ) / 2.0;
// Round to 4 most significant places
const int magnitude = std::max<int>( 0, std::floor( std::log10( ugly_integer ) ) );
const int precision = std::max<int>( 1, std::round( std::pow( 10.0, magnitude - 3 ) ) );
return ugly_integer - ugly_integer % precision;
}
// Behold: power of laziness
static void print_test_strings( const vproto_id &type )
{
// should look like this
// "beetle": { "forward": [ 707777, 399680, 358994, 110952, 91402 ], "reverse": [ 707777, 58800, 58800, 45900, 44560 ] },
const float acceptable = 1.25;
std::ostringstream ss;
int expected_mass = 0;
ss << R"( ")" << type << R"(": { "forward": [ )";
const int d_forward = average_from_stat( find_inner( type, expected_mass, "t_pavement", -1,
false ) );
ss << expected_mass << ", " << d_forward << ", ";
ss << average_from_stat( find_inner( type, expected_mass, "t_dirt", -1, false ) ) << ", ";
ss << average_from_stat( find_inner( type, expected_mass, "t_pavement", 5, false ) ) << ", ";
ss << average_from_stat( find_inner( type, expected_mass, "t_dirt", 5, false ) );
//ss << average_from_stat( find_inner( type, "t_pavement", 5, true ) ) << ", ";
//ss << average_from_stat( find_inner( type, "t_dirt", 5, true ) );
ss << R"( ], "reverse": [ )";
ss << expected_mass << ", ";
const int d_reverse = average_from_stat( find_inner( type, expected_mass, "t_pavement", -1, false,
false,
true ) );
CHECK( d_reverse < ( acceptable * d_forward ) );
ss << d_reverse << ", ";
ss << average_from_stat( find_inner( type, expected_mass, "t_dirt", -1, false, false,
true ) ) << ", ";
ss << average_from_stat( find_inner( type, expected_mass, "t_pavement", 5, false, false,
true ) ) << ", ";
ss << average_from_stat( find_inner( type, expected_mass, "t_dirt", 5, false, false, true ) );
ss << " ] }," << std::endl;
printf( "%s", ss.str().c_str() );
static_cast<void>( fflush( stdout ) );
}
static void test_vehicle(
const vproto_id &type, int expected_mass,
const int pavement_target, const int dirt_target,
const int pavement_target_w_stops, const int dirt_target_w_stops,
const int pavement_target_smooth_stops = 0, const int dirt_target_smooth_stops = 0,
const bool in_reverse = false )
{
std::string name = type.str() + ( in_reverse ? " reverse" : " " );
SECTION( name + " on pavement" ) {
test_efficiency( type, expected_mass, ter_id( "t_pavement" ), -1,
pavement_target, false, true, in_reverse );
}
SECTION( name + " on dirt" ) {
test_efficiency( type, expected_mass, ter_id( "t_dirt" ), -1,
dirt_target, false, true, in_reverse );
}
SECTION( name + " on pavement, full stop every 5 turns" ) {
test_efficiency( type, expected_mass, ter_id( "t_pavement" ), 5,
pavement_target_w_stops, false, true, in_reverse );
}
SECTION( name + " on dirt, full stop every 5 turns" ) {
test_efficiency( type, expected_mass, ter_id( "t_dirt" ), 5,
dirt_target_w_stops, false, true, in_reverse );
}
if( pavement_target_smooth_stops > 0 ) {
SECTION( name +
" on pavement, alternating 5 turns of acceleration and 5 turns of decceleration" ) {
test_efficiency( type, expected_mass, ter_id( "t_pavement" ), 5,
pavement_target_smooth_stops, true, true, in_reverse );
}
}
if( dirt_target_smooth_stops > 0 ) {
SECTION( name +
" on dirt, alternating 5 turns of acceleration and 5 turns of decceleration" ) {
test_efficiency( type, expected_mass, ter_id( "t_dirt" ), 5,
dirt_target_smooth_stops, true, true, in_reverse );
}
}
}
/** This isn't a test per se, it executes this code to
* determine the current state of vehicle efficiency.
**/
TEST_CASE( "vehicle_find_efficiency", "[.]" )
{
for( const auto &veh : test_data::eff_data ) {
find_efficiency( veh.first );
}
}
/** This is even less of a test. It generates C++ lines for the actual test below */
TEST_CASE( "make_vehicle_efficiency_case", "[.]" )
{
for( const auto &veh : test_data::eff_data ) {
print_test_strings( veh.first );
}
}
// TODO:
// Amount of fuel needed to reach safe speed.
// Amount of cruising range for a fixed amount of fuel.
// Fix test for electric vehicles
TEST_CASE( "vehicle_efficiency", "[vehicle] [engine]" )
{
REQUIRE_FALSE( test_data::eff_data.empty() );
for( auto &vehicle : test_data::eff_data ) {
test_vehicle( vehicle.first, vehicle.second.forward[0], vehicle.second.forward[1],
vehicle.second.forward[2], vehicle.second.forward[3], vehicle.second.forward[4] );
test_vehicle( vehicle.first, vehicle.second.reverse[0], vehicle.second.reverse[1],
vehicle.second.reverse[2], vehicle.second.reverse[3], vehicle.second.reverse[4], 0, 0, true );
}
}
|