1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
\name{runmad}
\alias{runmad}
\title{Median Absolute Deviation of Moving Windows}
\description{ Moving (aka running, rolling) Window MAD (Median Absolute
Deviation) calculated over a vector}
\usage{
runmad(x, k, center = runmed(x,k), constant = 1.4826,
endrule=c("mad", "NA", "trim", "keep", "constant", "func"),
align = c("center", "left", "right"))
}
\arguments{
\item{x}{numeric vector of length n or matrix with n rows. If \code{x} is a
matrix than each column will be processed separately.}
\item{k}{width of moving window; must be an integer between one and n. In case
of even k's one will have to provide different \code{center} function, since
\code{\link{runmed}} does not take even k's.}
\item{endrule}{character string indicating how the values at the beginning
and the end, of the data, should be treated. Only first and last \code{k2}
values at both ends are affected, where \code{k2} is the half-bandwidth
\code{k2 = k \%/\% 2}.
\itemize{
\item \code{"mad"} - applies the mad function to
smaller and smaller sections of the array. Equivalent to:
\code{for(i in 1:k2) out[i]=mad(x[1:(i+k2)])}.
\item \code{"trim"} - trim the ends; output array length is equal to
\code{length(x)-2*k2 (out = out[(k2+1):(n-k2)])}. This option mimics
output of \code{\link{apply}} \code{(\link{embed}(x,k),1,FUN)} and other
related functions.
\item \code{"keep"} - fill the ends with numbers from \code{x} vector
\code{(out[1:k2] = x[1:k2])}. This option makes more sense in case of
smoothing functions, kept here for consistency.
\item \code{"constant"} - fill the ends with first and last calculated
value in output array \code{(out[1:k2] = out[k2+1])}
\item \code{"NA"} - fill the ends with NA's \code{(out[1:k2] = NA)}
\item \code{"func"} - same as \code{"mad"} option except that implemented
in R for testing purposes. Avoid since it can be very slow for large windows.
}
Similar to \code{endrule} in \code{\link{runmed}} function which has the
following options: \dQuote{\code{c("median", "keep", "constant")}} .
}
\item{center}{moving window center. Defaults
to running median (\code{\link{runmed}} function). Similar to \code{center}
in \code{\link{mad}} function. For best acuracy at the edges use
\code{\link{runquantile}(x,k,0.5,type=2)}, which is slower than default
\code{\link{runmed}(x,k,endrule="med")}. If \code{x} is a 2D array (and
\code{endrule="mad"}) or if \code{endrule="func"} than array edges are
filled by repeated calls to
\dQuote{\code{\link{mad}(x, center=\link{median}(x), na.rm=TRUE)}} function.
Runmad's \code{center} parameter will be ignored for the beggining and the
end of output \code{y}. Please use
\code{center=\link{runquantile}(x,k,0.5,type=2)} for those cases.
}
\item{constant}{scale factor such that for Gaussian
distribution X, \code{\link{mad}}(X) is the same as \code{\link{sd}}(X).
Same as \code{constant} in \code{\link{mad}} function.}
\item{align}{specifies whether result should be centered (default),
left-aligned or right-aligned. If \code{endrule}="mad" then setting
\code{align} to "left" or "right" will fall back on slower implementation
equivalent to \code{endrule}="func". }
}
\details{
Apart from the end values, the result of y = runmad(x, k) is the same as
\dQuote{\code{for(j=(1+k2):(n-k2)) y[j]=mad(x[(j-k2):(j+k2)], na.rm = TRUE)}}.
It can handle non-finite numbers like NaN's and Inf's
(like \dQuote{\code{\link{mad}(x, na.rm = TRUE)}}).
The main incentive to write this set of functions was relative slowness of
majority of moving window functions available in R and its packages. With the
exception of \code{\link{runmed}}, a running window median function, all
functions listed in "see also" section are slower than very inefficient
\dQuote{\code{\link{apply}(\link{embed}(x,k),1,FUN)}} approach.
Functions \code{runquantile} and \code{runmad} are using insertion sort to
sort the moving window, but gain speed by remembering results of the previous
sort. Since each time the window is moved, only one point changes, all but one
points in the window are already sorted. Insertion sort can fix that in O(k)
time.
}
\value{
Returns a numeric vector or matrix of the same size as \code{x}. Only in case of
\code{endrule="trim"} the output vectors will be shorter and output matrices
will have fewer rows.
}
\references{
About insertion sort used in \code{runmad} function see:
R. Sedgewick (1988): \emph{Algorithms}. Addison-Wesley (page 99)
}
\author{Jarek Tuszynski (SAIC) \email{jaroslaw.w.tuszynski@saic.com}}
\seealso{
Links related to:
\itemize{
\item \code{runmad} - \code{\link{mad}}, \code{\link[fSeries]{rollVar}} from
\pkg{fSeries} library
\item Other moving window functions from this package: \code{\link{runmin}},
\code{\link{runmax}}, \code{\link{runquantile}}, \code{\link{runmean}} and
\code{\link{runsd}}
\item generic running window functions: \code{\link{apply}}\code{
(\link{embed}(x,k), 1, FUN)} (fastest), \code{\link[fSeries]{rollFun}}
from \pkg{fSeries} (slow), \code{\link[gtools]{running}} from \pkg{gtools}
package (extremely slow for this purpose), \code{\link[zoo]{rapply}} from
\pkg{zoo} library, \code{\link[magic]{subsums}} from
\pkg{magic} library can perform running window operations on data with any
dimensions.
}
}
\examples{
# show runmed function
k=25; n=200;
x = rnorm(n,sd=30) + abs(seq(n)-n/4)
col = c("black", "red", "green")
m=runmed(x, k)
y=runmad(x, k, center=m)
plot(x, col=col[1], main = "Moving Window Analysis Functions")
lines(m , col=col[2])
lines(m-y/2, col=col[3])
lines(m+y/2, col=col[3])
lab = c("data", "runmed", "runmed-runmad/2", "runmed+runmad/2")
legend(0,0.9*n, lab, col=col, lty=1 )
# basic tests against apply/embed
eps = .Machine$double.eps ^ 0.5
k=25 # odd size window
a = runmad(x,k, center=runmed(x,k), endrule="trim")
b = apply(embed(x,k), 1, mad)
stopifnot(all(abs(a-b)<eps));
k=24 # even size window
a = runmad(x,k, center=runquantile(x,k,0.5,type=2), endrule="trim")
b = apply(embed(x,k), 1, mad)
stopifnot(all(abs(a-b)<eps));
# test against loop approach
# this test works fine at the R prompt but fails during package check - need to investigate
k=24; n=200;
x = rnorm(n,sd=30) + abs(seq(n)-n/4) # create random data
x = rep(1:5,40)
#x[seq(1,n,11)] = NaN; # commented out for time beeing - on to do list
#x[5] = NaN; # commented out for time beeing - on to do list
k2 = k%/%2
k1 = k-k2-1
ac = array(runquantile(x,k,0.5))
a = runmad(x, k, center=ac)
bc = array(0,n)
b = array(0,n)
for(j in 1:n) {
lo = max(1, j-k1)
hi = min(n, j+k2)
bc[j] = median(x[lo:hi], na.rm = TRUE)
b [j] = mad (x[lo:hi], na.rm = TRUE, center=bc[j])
}
eps = .Machine$double.eps ^ 0.5
#stopifnot(all(abs(ac-bc)<eps)); # commented out for time beeing - on to do list
#stopifnot(all(abs(a-b)<eps)); # commented out for time beeing - on to do list
# compare calculation at array ends
k=25; n=200;
x = rnorm(n,sd=30) + abs(seq(n)-n/4)
c = runquantile(x,k,0.5,type=2) # find the center
a = runmad(x, k, center=c, endrule="mad" ) # fast C code
b = runmad(x, k, center=c, endrule="func") # slow R code
stopifnot(all(abs(a-b)<eps));
# test if moving windows forward and backward gives the same results
k=51;
a = runmad(x , k)
b = runmad(x[n:1], k)
stopifnot(all(a[n:1]==b, na.rm=TRUE));
# test vector vs. matrix inputs, especially for the edge handling
nRow=200; k=25; nCol=10
x = rnorm(nRow,sd=30) + abs(seq(nRow)-n/4)
X = matrix(rep(x, nCol ), nRow, nCol) # replicate x in columns of X
a = runmad(x, k, center = runquantile(x,k,0.5,type=2))
b = runmad(X, k, center = runquantile(X,k,0.5,type=2))
stopifnot(all(abs(a-b[,1])<eps)); # vector vs. 2D array
stopifnot(all(abs(b[,1]-b[,nCol])<eps)); # compare rows within 2D array
# speed comparison
\dontrun{
x=runif(1e5); k=51; # reduce vector and window sizes
system.time(runmad( x,k,endrule="trim"))
system.time(apply(embed(x,k), 1, mad))
}
}
\keyword{ts}
\keyword{array}
\keyword{utilities}
\concept{moving mad}
\concept{rolling mad}
\concept{running mad}
\concept{running window}
|