1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
#===========================================================================#
# caTools - R library #
# Copyright (C) 2005 Jarek Tuszynski #
# Distributed under GNU General Public License version 3 #
#===========================================================================#
#source('C:/programs/R/R-2.6.0/src/library/caTools/R/runfunc.R')
runmean = function(x, k, alg=c("C", "R", "fast", "exact"),
endrule=c("mean", "NA", "trim", "keep", "constant", "func"))
{
alg = match.arg(alg)
endrule = match.arg(endrule)
n = length(x)
if (k<=1) return (x)
if (k >n) k = n
k2 = k%/%2
y=double(n)
if (alg=="exact") {
.C("runmean_exact", x, y , as.integer(n), as.integer(k),
NAOK=TRUE, DUP=FALSE, PACKAGE="caTools")
} else if (alg=="C") {
.C("runmean", as.double(x), y , as.integer(n), as.integer(k),
NAOK=TRUE, DUP=FALSE, PACKAGE="caTools")
} else if (alg=="fast") {
.C("runmean_lite", as.double(x), y , as.integer(n), as.integer(k),
NAOK=TRUE, DUP=FALSE, PACKAGE="caTools")
} else { # the similar algorithm implemented in R language
k1 = k-k2-1
y = c( sum(x[1:k]), diff(x,k) ); # find the first sum and the differences from it
y = cumsum(y)/k # apply precomputed differences
y = c(rep(0,k1), y, rep(0,k2)) # make y the same length as x
if (endrule=="mean") endrule="func"
}
if (endrule!="mean") y = EndRule(x, y, k, endrule, mean, na.rm=TRUE)
return(y)
}
#==============================================================================
runmin = function(x, k, alg=c("C", "R"),
endrule=c("min", "NA", "trim", "keep", "constant", "func"))
{
alg = match.arg(alg)
endrule = match.arg(endrule)
n = length(x)
if (k<=1) return (x)
if (k >n) k = n
y=double(n)
if (alg=="C") {
.C("runmin", as.double(x) ,y , as.integer(n), as.integer(k),
NAOK=TRUE, DUP=FALSE, PACKAGE="caTools")
} else { # the similar algorithm implemented in R language
k2 = k%/%2
k1 = k-k2-1
a <- y[k1+1] <- min(x[1:k], na.rm=TRUE)
if (k!=n) for (i in (2+k1):(n-k2)) {
if (a==y[i-1]) # point leaving the window was the min, so ...
y[i] = min(x[(i-k1):(i+k2)], na.rm=TRUE) # recalculate min of the window
else # min=y[i-1] is still inside the window
y[i] = min(y[i-1], x[i+k2 ], na.rm=TRUE) # compare it with the new point
a = x[i-k1] # point that will be removed from the window next
if (!is.finite(a)) a=y[i-1]+1 # this will force the 'else' option
}
if (endrule=="min") endrule="func"
}
if (endrule!="min") y = EndRule(x, y, k, endrule, min, na.rm=TRUE)
return(y)
}
#==============================================================================
runmax = function(x, k, alg=c("C", "R"),
endrule=c("max", "NA", "trim", "keep", "constant", "func"))
{
alg = match.arg(alg)
endrule = match.arg(endrule)
n = length(x)
k = as.integer(k)
if (k<=1) return (x)
if (k >n) k = n
y=double(n)
if (alg=="C") {
.C("runmax", as.double(x) ,y , as.integer(n), as.integer(k),
NAOK=TRUE, DUP=FALSE, PACKAGE="caTools")
} else { # the same algorithm implemented in R language
k2 = k%/%2
k1 = k-k2-1
a <- y[k1+1] <- max(x[1:k], na.rm=TRUE)
if (k!=n) for (i in (2+k1):(n-k2)) {
if (a==y[i-1]) # point leaving the window was the max, so ...
y[i] = max(x[(i-k1):(i+k2)], na.rm=TRUE) # recalculate max of the window
else # max=y[i-1] is still inside the window
y[i] = max(y[i-1], x[i+k2 ], na.rm=TRUE) # compare it with the new point
a = x[i-k1] # point that will be removed from the window next
if (!is.finite(a)) a=y[i-1]+1 # this will force the 'else' option
}
if (endrule=="max") endrule="func"
}
if (endrule!="max") y = EndRule(x, y, k, endrule, max, na.rm=TRUE)
return(y)
}
#==============================================================================
runquantile = function(x, k, probs, type=7,
endrule=c("quantile", "NA", "trim", "keep", "constant", "func"))
{ ## see http://mathworld.wolfram.com/Quantile.html for very clear definition
## of different quantile types
endrule = match.arg(endrule)
n = length(x)
np = length(probs)
k = as.integer(k)
type = as.integer(type)
if (k<=1) return (rep(x,n,np))
if (k >n) k = n
if (is.na(type) || (type < 1 | type > 9))
warning("'type' outside allowed range [1,9]; changing 'type' to ", type<-7)
y=double(n*np)
.C("runquantile", as.double(x) ,y , as.integer(n), as.integer(k),
as.double(probs), as.integer(np),as.integer(type),
NAOK=TRUE, DUP=FALSE, PACKAGE="caTools")
dim(y) = c(n,np)
if (endrule=="trim") {
yy = double((n-k+1)*np)
dim(yy) = c(n-k+1,np)
for (i in 1:np) # for each percentile
yy[,i] = EndRule(x, y[,i], k, endrule, quantile, probs=probs[i], type=type, na.rm=TRUE)
y=yy
} else if (endrule!="quantile") {
for (i in 1:np) # for each percentile
y[,i] = EndRule(x, y[,i], k, endrule, quantile, probs=probs[i], type=type, na.rm=TRUE)
}
attr(y, "k") = k
return(y)
}
#==============================================================================
runmad = function(x, k, center = runmed(x,k), constant = 1.4826,
endrule=c("mad", "NA", "trim", "keep", "constant", "func"))
{
endrule = match.arg(endrule)
n = length(x)
if (k<3) stop("'k' must be larger than 2")
if (k>n) k = n
y = double(n)
.C("runmad", as.double(x), as.double(center), y, as.integer(n),
as.integer(k), NAOK=TRUE, DUP=FALSE, PACKAGE="caTools")
if (endrule!="mad") y = EndRule(x, y, k, endrule, mad, constant=1, na.rm=TRUE)
return(constant*y)
}
#==============================================================================
runsd = function(x, k, center = runmean(x,k),
endrule=c("sd", "NA", "trim", "keep", "constant", "func"))
{
endrule = match.arg(endrule)
n = length(x)
if (k<3) stop("'k' must be larger than 2")
if (k>n) k = n
y = double(n)
.C("runsd", as.double(x), as.double(center), y, as.integer(n),
as.integer(k), NAOK=TRUE, DUP=FALSE, PACKAGE="caTools")
if (endrule!="sd") y = EndRule(x, y, k, endrule, sd, na.rm=TRUE)
return(y)
}
#==============================================================================
EndRule = function(x, y, k,
endrule=c("NA", "trim", "keep", "constant", "func"), Func, ...)
{
n = length(x)
if (length(y)!=n) stop("vectors 'x' and 'y' have to have the same length.")
k = as.integer(k)
k2 = k%/%2
if (k2<1) k2 = 1
if (k >n) k2 = (n-1)%/%2
k1 = k-k2-1
idx1 = 1:k1
idx2 = (n-k2+1):n
endrule = match.arg(endrule)
if (endrule=="NA") {
y[idx1] = NA
y[idx2] = NA
} else if (endrule=="keep") {
y[idx1] = x[idx1]
y[idx2] = x[idx2]
} else if (endrule=="constant") {
y[idx1] = y[k1+1]
y[idx2] = y[n-k2]
} else if (endrule=="trim") {
y = y[(k1+1):(n-k2)]
} else if (endrule=="func") {
for (i in idx1) y[i] = Func(x[1:(i+k2)], ...)
for (i in idx2) y[i] = Func(x[(i-k1):n], ...)
}
return(y)
}
|