File: dps_peaksearch.c

package info (click to toggle)
cbflib 0.9.7%2Bdfsg1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 65,272 kB
  • sloc: ansic: 131,361; python: 22,780; sh: 3,108; makefile: 2,088; yacc: 659; java: 223; f90: 214; xml: 210; cpp: 58
file content (660 lines) | stat: -rw-r--r-- 22,352 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
/*=======================================================================
 * All files in the distribution of the DPS system are Copyright
 * 1996 by the Computational Biology group in the Department of Biological
 * Sciences at Purdue University.  All rights reserved.
 *
 * Redistribution and use in source and binary forms are permitted
 * provided that this entire copyright notice is duplicated in all such
 * copies, and that any documentation, announcements, and other materials
 * related to such distribution and use acknowledge that the software was
 * developed by the Computational Biology group in the Department of
 * Biological Sciences at Purdue University, W. Lafayette, IN by Ingo
 * Steller and Michael G. Rossmann. No charge may be made for copies,
 * derivations, or distributions of this material without the express
 * written consent of the copyright holder.  Neither the name of the
 * University nor the names of the authors may be used to endorse or
 * promote products derived from this material without specific prior
 * written permission.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE.
 *======================================================================*/

/*=====================================================================*
 *                                                                     *
 *                         Data Processing Suite                       *
 *                                                                     *
 *                            Utility-Library                          *
 *                                                                     *
 *                        Written by Ingo Steller                      *
 *                                                                     *
 *                         File: dps_peaksearch.c                      *
 *                                                                     *
 *=====================================================================*/

/* Modifed 3/24/98 By Andy Arvai to be a subroutine where the data
 * is passed as a pointer.
 */
/* Modified 10/24/2015 by H. J. Bernstein to use doubles, rather than
 * floats and, reject peaks with background points below half the background
 * and clean up the comments to reflect the current subroutinized version
 * built on the Chris Neilson, John Skinner version of 2015, which was
 * built on the Andy Arvai version.  Further extended 10/31/2015 by HJB to allow
 * for large fuzzy spots
 */

/* dps_peaksearch
 
 The original standalone program was used as dps_peakssearch frame.file
 This version is used as a function call:
 
 #include "dps_peaksearch.h
 
 int dps_peaksearch(unsigned short *data, // The 16 bit data
 int nx, int ny,       // The dimensions of the data
 int npeaks_out,       // The maximum number of peaks
 double min_isigma,    // The minimum I/sigma to accept
 int min_spacing,      // The minimum spacing in pixels
 DPS_Peak *pptr);      // The array of peaks
 
 */

/* This program does a peak search on a given image and returns a list of
 R, S coordinates in pixel. It uses the read_frame routine from the util
 library and a modified algorithm of Sangsoo Kim.			*/


#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "dps_peaksearch.h"


int xirint(double x) {
    if (x == (int)x)
        return((int)x);
    if (x > 0.0)
        return((int)(x+0.5));
    else
        return((int)(x-0.5));
}


#if defined (__linux__)||defined(sun)
/* Round a double to an integer */


/* Calculate sin() and cos(). */
void
sincos(x, s, c)
double x, *s, *c;
{
    *s = sin(x);
    *c = cos(x);
}
#endif /* __linux__ */

#if defined(sgi)||defined(Alpha)||defined(hppa)||defined(convex)||defined(rs6000)


/* Calculate sin() and cos(). */
void
sincos(x, s, c)
double x, *s, *c;
{
    *s = sin(x);
    *c = cos(x);
}


/* Round a double to an integer */
double
rint(x)
register double x;
{
    if (x == (int)x)
        return(x);
    if (x > 0.0)
        return((double)((int)(x+0.5)));
    else
        return((double)((int)(x-0.5)));
}

#endif /* sgi */


int	fsign(double x)
{
    if (x >= 0.0)
        return(1);
    else
        return(-1);
}
/* Find the "center of mass" around a "spot" centered at x,y in the array
 * idata.
 *
 */

void
cmass (idata, iwidth, iheight, x, y, cm_x, cm_y, cm_nx, cm_ny)
register unsigned short  *idata;
int iwidth, iheight, x, y;
double *cm_x, *cm_y;
int cm_nx, cm_ny;
{
    register int i, j, val;
    double sum_x=0, sum_y=0, sum_z=0.0;
    int prev_x, prev_y;
    
    prev_x = x;
    prev_y = y;
    
    for(j= -cm_ny/2;j<=cm_ny/2;j++)
        for(i= -cm_nx/2;i<=cm_nx/2;i++) {
            if (((j+y) >= iheight) || ((j+y) < 0)
                || ((i+x) >= iwidth) || ((i+x) < 0))
                continue;
            val = idata[(j+y)*iwidth + (i+x)];
            sum_x += ((double)i+x)*val;
            sum_y += ((double)j+y)*val;
            sum_z += val;
        }
    if (sum_z == 0.0) {
        *cm_x = x;
        *cm_y = y;
    }
    else {
        *cm_x = sum_x / sum_z;
        *cm_y = sum_y / sum_z;
    }
    
    /* Do a second pass to get a better value */
    sum_x = sum_y = sum_z = 0;
    x = xirint(*cm_x);
    y = xirint(*cm_y);
    
    if ((x == prev_x) && (y == prev_y))
        return;
    
    for(j= -cm_ny/2;j<=cm_ny/2;j++)
        for(i= -cm_nx/2;i<=cm_nx/2;i++) {
            if (((j+y) >= iheight) || ((j+y) < 0)
                || ((i+x) >= iwidth) || ((i+x) < 0))
                continue;
            val = idata[(j+y)*iwidth + (i+x)];
            sum_x += ((double)i+x)*val;
            sum_y += ((double)j+y)*val;
            sum_z += val;
        }
    if (sum_z == 0.0) {
        *cm_x = x;
        *cm_y = y;
    }
    else {
        *cm_x = sum_x / sum_z;
        *cm_y = sum_y / sum_z;
    }
}


static	DPS_Peak *dps_peaks = NULL;

static	int	ccd_image_saturation = 0;

int dps_peaksearch(unsigned short *data, int nx, int ny,
                   int npeaks_out, double min_isigma,
                   int min_spacing, DPS_Peak *pptr, int min_value)
{
    
    int stepx;
    int stepy;
    int small_stepx;
    int small_stepy;
    double back_count;
    double spot_count;
    double cm_x, cm_y;
    int i, j; /* counter */
    int y, dy; /* more counter */
    int value; /* variable to store an actual od_value */
    int maxval;
    int bmax, bmin;
    int k, l; /* many more counter... */
    int x_max, y_max;
    int bma_x, bmi_x, bma_y, bmi_y;
    int back, spot;
    double noise_thresh = 1.0;
    double A, B, I, sigmaI;
    int overload = 55000;
    int npeaks=0;
    int maxpeaks=20480;
    int sortfunc();
    int nover;
    int nunder;
    int	nxfer;
    DPS_Peak dps_temp;
    int peakfw, peakfh;
    int next_good_y[nx];
    int collide;
    
    stepx = (min_spacing+1)/2;  /* Initial stepsize for scanning through the image */
    if (stepx < 1) stepx = 1;
    stepy = stepx;
    small_stepx = stepx;
    if (small_stepx > 3) small_stepx = 3;
    small_stepy = stepy;
    if (small_stepy > 3) small_stepy = 3;
    
    back_count = 4*stepx+4*stepy; /* Number of background pixels */
    spot_count = (2*stepx-1)*(2*stepy-1); /* Number of spot pixels (see below) */
    
    
    if (min_isigma > 0)
        noise_thresh = min_isigma;
    
    if (ccd_image_saturation > 0)
        overload = ccd_image_saturation;
    
    if (dps_peaks != NULL)
        free(dps_peaks);
    
    dps_peaks = (DPS_Peak *)malloc(maxpeaks * sizeof(DPS_Peak));
    if (dps_peaks == NULL) {
        fprintf(stderr,"error: not enough memory for dps_peaksearch.\n");
        fflush(stderr);
        return 0;
    }
    
    /* Initialize the next_good_y  array to 0 */
    for (i=0; i < nx; i++) next_good_y[i]= 0;
    
    /* The next two loops go over the whole frame with stepsize
     * small_stepx and small_stepy, but looking at boxes 2*stepx by 2*stepy.
     */
    for(j=2*stepy;j<ny-2*stepy;j=j+small_stepy) {
        for(i=2*stepx;i<nx-2*stepx;i=i+small_stepx) {
            
            /* Skip this pixel if too close to prior spots */
            
            collide = 0;
            
            for (l=i-stepx; l<=i+stepx; l++) {
                if (next_good_y[l] > j-stepy-1 ) {
                    collide = 1;
                    break;
                }
            }
            if (collide) continue;
            
            /* y hold the index of the pixel at i,j */
            y = j*nx+i;
            
            /* dx is the difference in index between i,j and
             * i, j+stepy  */
            dy = stepy*nx;
            
            value=data[y];
            
            /* Check if we have a maximum at i,j */
            if ((value > data[y+stepx]) &&
                (value > data[y-stepx]) &&
                (value > data[y+dy])    &&
                (value > data[y-dy])    &&
                (value > data[y+stepy+dy]) &&
                (value > data[y-stepy+dy]) &&
                (value > data[y+stepy-dy]) &&
                (value > data[y-stepy-dy])        ) {
                
                /* If we have a maximum, try to find the maximum
                 * in a box around i, j with size 2*stepy x 2*stepx
                 * and stepsize 1. */
                maxval=data[y];
                
                /* x_max, y_max will hold the final maximum */
                x_max=j;
                y_max=i;
                for(k=j-stepy;k<=j+stepy;k++) {
                    for(l=i-stepx;l<=i+stepx;l++) {
                        
                        /* Same as above only with stepsize 1 */
                        y = k*nx+l;
                        dy = nx;
                        value=data[y];
                        if((value >= data[y+1])  &&
                           (value >= data[y-1])  &&
                           (value >= data[y+dy]) &&
                           (value >= data[y-dy]) &&
                           (value >= maxval)         ) {
                            maxval=value;
                            x_max=l;
                            y_max=k;
                        }
                    }
                }
                
                cmass (data, nx, ny, x_max, y_max, &cm_x, &cm_y, 2*stepx+1, 2*stepy+1);
                x_max = cm_x + 0.5;
                y_max = cm_y + 0.5;
                
                /* Now we calculate the average background and
                 * spot values for this position. The box goes
                 * from i-stepy to i+stepy and j-stepx to
                 * i+stepx. The background pixels are the pixels
                 * of a one pixel frame at the border of the box,
                 * the rest are spot pixels. For stepy=stepy=3 this
                 * gives 25 spot pixels and 24 background pixels
                 */
                
                /* Borders of the box */
                bma_y = y_max+stepy;
                bmi_y = y_max-stepy;
                bma_x = x_max+stepx;
                bmi_x = x_max-stepx;
                
                if (bma_y >= ny) bma_y = ny-1;
                if (bma_x >= nx) bma_x = nx-1;
                if (bmi_y < 0) bmi_y = 0;
                if (bmi_x < 0) bmi_x = 0;
                
                back = 0;
                bmax = -1;
                bmin = 999999;
                spot = 0;
                
                nover=0;
                nunder=0;
                for(k=bmi_y;k<=bma_y;k++) {
                    for(l=bmi_x;l<=bma_x;l++) {
                        
                        /* see above */
                        y = k*nx+l;
                        value=data[y];
                        value &= 0xFFFF;
                        
                        if (value >= overload) {
                            nover++;
                        }
                        
                        if (value < min_value) {
                            nunder++;
                        }
                        
                        /* if counter at border of box, the pixel
                         * is a background pixel otherwise it is a
                         * spot pixel */
                        if ((k == bma_y) ||
                            (k == bmi_y) ||
                            (l == bma_x) ||
                            (l == bmi_x)    ) {
                            back = back + value;
                            if (value > bmax) bmax = value;
                            if (value < bmin) bmin = value;
                        }
                        else {
                            spot = spot + value;
                        }
                    }
                }
                /* If the average spot pixel value is larger by a
                 * certain factor than the average background pixel value
                 * write the reflection to the output file. Check also
                 * if the maximum value is an overload value.... */
                
                A = (double)spot;
                B = (double)back*spot_count/back_count;
                I = A - B;
                sigmaI = sqrt(A + B);
                if ((sigmaI > 0.0)
                    && (I/sigmaI > noise_thresh)
                    && (nover <= 4)
                    && (nunder < 1)
                    &&!near_edge(data, nx, ny, x_max, y_max,
                                 ((double)back)/((double)(back_count)),
                                 maxval, bmax, bmin, stepx, stepy,
                                 &peakfw, &peakfh, min_value)) {
                    dps_peaks[npeaks].x = cm_x;
                    dps_peaks[npeaks].y = cm_y;
                    dps_peaks[npeaks].isigma = I/sigmaI;
                    dps_peaks[npeaks].peakfw = peakfw;
                    dps_peaks[npeaks].peakfh = peakfh;
                    npeaks++;
                        
                    /* Update next_good_y for this peak */

                        for (l=x_max-peakfw/2; l<=x_max+peakfw/2; l++) {
                        if (next_good_y[l] < y_max+stepy+1 ) {
                            next_good_y[l] = y_max+stepy+1;
                        }
                    }


                    if (x_max+peakfw/2-small_stepx > i) i = x_max+peakfw/2-small_stepx;
                        
                    if (npeaks >= maxpeaks) {
                        maxpeaks *= 2;
                        dps_peaks = (DPS_Peak *)realloc(dps_peaks, sizeof(DPS_Peak)*maxpeaks);
                        if (dps_peaks == NULL) {
                            fprintf(stderr,"error: not enough memory for dps_peaksearch (%d spots).\n",npeaks);
                            return 0;
                        }
                    }
                        
                }
            }
        }
    }
    
    if (min_spacing > 0) {
        for(i=0;i<npeaks;i++)
            for(j=i+1;j<npeaks;j++) {
                if ((fabs(dps_peaks[i].x - dps_peaks[j].x) < (dps_peaks[i].peakfw + dps_peaks[j].peakfw)/2) &&
                    (fabs(dps_peaks[i].y - dps_peaks[j].y) < (dps_peaks[i].peakfh + dps_peaks[j].peakfh)/2)) {
                    
                    if (dps_peaks[i].isigma > dps_peaks[j].isigma)
                        dps_peaks[j].isigma = dps_peaks[j].x = dps_peaks[j].y = -9999;
                    else
                        dps_peaks[i].isigma = dps_peaks[i].x = dps_peaks[i].y = -9999;
                }
            }
    }
    qsort(dps_peaks,npeaks,sizeof(DPS_Peak),sortfunc);
    
    if ((npeaks_out <= 0) || (npeaks < npeaks_out))
        npeaks_out = npeaks;
    
    nxfer = 0;
    
    for(i=0;i<npeaks_out;i++)
    {
        if(dps_peaks[i].x < 0 || dps_peaks[i].y < 0)
            continue;
        dps_temp.x = dps_peaks[i].x;
        dps_temp.y = dps_peaks[i].y;
        dps_temp.isigma = dps_peaks[i].isigma;
        dps_temp.peakfw = dps_peaks[i].peakfw;
        dps_temp.peakfh = dps_peaks[i].peakfh;
        *pptr++ = dps_temp;
        nxfer++;
    }
    
    free(dps_peaks);
    return(nxfer);
}

/* Sort pixel value
 */
int
sortfunc(pk1, pk2)
DPS_Peak *pk1, *pk2;
{
    if (pk2->isigma > pk1->isigma)
        return 1;
    else
        if (pk2->isigma < pk1->isigma)
            return -1;
        else
            return 0;
}

/* Test if there are more than stepx+stepy pixels within the spot or the spot overlaps the edge
 */
int	near_edge(unsigned short *data,
              int width, int height,
              int xpos, int ypos,
              double back, int peak, int bmax, int bmin,
              int stepx, int stepy, int* peakfw, int* peakfh, int min_value)
{
    int x,y, is, it;
    int minstep, maxstep;
    int value;
    int smin, smax;
    double bavg;
    
    x = xpos;
    y = ypos;
    
    if (x < stepx)
        return 1;
    if (x >= width-stepx)
        return 1;
    if (y < stepy)
        return 1;
    if (y >= height-stepy)
        return 1;
    if (bmax >= peak)
        return 1;
    
    minstep = maxstep = stepx;
    if (stepy > maxstep) maxstep = stepy;
    if (stepy < minstep) minstep = stepy;
    
    
    /* Loop through bounding boxes 
       When we are is from the peak, we have 
       2*(2*is+1)+2*(2*is-1) = 8*is points */
    for (is = 1; is <= minstep; is++) {
        smax = -1;
        smin = 999999;
        bavg = 0;
        for (it = -is; it <= is; it ++) {
            value = data[width*(ypos -is)+xpos+it];
            value &= 0xFFFF;
            if (value !=0xFFFF && (value & 0XFFFC) == 0xFFFC) return 1;
            if (value < min_value) return 1;
            if (value > smax) smax = value;
            if (value < smin) smin = value;
            bavg += (double)value;
            value = data[width*(ypos +is)+xpos+it];
            value &= 0xFFFF;
            if (value !=0xFFFF && (value & 0XFFFC) == 0xFFFC) return 1;
            if (value > smax) smax = value;
            if (value < smin) smin = value;
            bavg += (double)value;
        }
        for (it = -is+1; it <= is-1; it ++) {
            value = data[width*(ypos +it)+xpos-is];
            value &= 0xFFFF;
            if (value !=0xFFFF && (value & 0XFFFC) == 0xFFFC) return 1;
            if (value > smax) smax = value;
            if (value < smin) smin = value;
            bavg += (double)value;
            value = data[width*(ypos +it)+xpos+is];
            value &= 0xFFFF;
            if (value !=0xFFFF && (value & 0XFFFC) == 0xFFFC) return 1;
            if (value > smax) smax = value;
            if (value < smin) smin = value;
            bavg += (double)value;
        }
        bavg /= (double)(8*is);
        if ((double)smin < back/2. && smin < bmin) return 1;
        if ((double)bavg >= back*1.1 ) continue;
        if (smax <= bmax) {
            *peakfw = *peakfh = is*2-1;
            return 0;
        }
    }
    for (is = minstep+1; is <= maxstep; is++) {
        smax = -1;
        smin = 999999;
        bavg = 0;
        if (stepy > stepx) {
            for (it = -minstep; it <= minstep; it ++) {
                value = data[width*(ypos -is)+xpos+it];
                value &= 0xFFFF;
                if (value !=0xFFFF && (value & 0XFFFC) == 0xFFFC) return 1;
                if (value > smax) smax = value;
                if (value < smin) smin = value;
                bavg += (double)value;
                value = data[width*(ypos +is)+xpos+it];
                value &= 0xFFFF;
                if (value !=0xFFFF && (value & 0XFFFC) == 0xFFFC) return 1;
                if (value > smax) smax = value;
                if (value < smin) smin = value;
                bavg += (double)value;
            }
            for (it = -is+1; it <= is-1; it ++) {
                value = data[width*(ypos +it)+xpos-minstep];
                value &= 0xFFFF;
                if (value !=0xFFFF && (value & 0XFFFC) == 0xFFFC) return 1;
                if (value > smax) smax = value;
                if (value < smin) smin = value;
                bavg += (double)value;
                value = data[width*(ypos +it)+xpos+minstep];
                value &= 0xFFFF;
                if (value !=0xFFFF && (value & 0XFFFC) == 0xFFFC) return 1;
                if (value > smax) smax = value;
                if (value < smin) smin = value;
                bavg += (double)value;
            }
            
        } else if (stepx < stepy) {
            
            for (it = -is; it <= is; it ++) {
                value = data[width*(ypos -minstep)+xpos+it];
                value &= 0xFFFF;
                if (value !=0xFFFF && (value & 0XFFFC) == 0xFFFC) return 1;
                if (value > smax) smax = value;
                if (value < smin) smin = value;
                bavg += (double)value;
                value = data[width*(ypos +minstep)+xpos+it];
                value &= 0xFFFF;
                if (value !=0xFFFF && (value & 0XFFFC) == 0xFFFC) return 1;
                if (value > smax) smax = value;
                if (value < smin) smin = value;
                bavg += (double)value;
            }
            for (it = -minstep+1; it <= minstep-1; it ++) {
                value = data[width*(ypos +it)+xpos-is];
                value &= 0xFFFF;
                if (value !=0xFFFF && (value & 0XFFFC) == 0xFFFC) return 1;
                if (value > smax) smax = value;
                if (value < smin) smin = value;
                bavg += (double)value;
                value = data[width*(ypos +it)+xpos+is];
                value &= 0xFFFF;
                if (value !=0xFFFF && (value & 0XFFFC) == 0xFFFC) return 1;
                if (value > smax) smax = value;
                if (value < smin) smin = value;
                bavg += (double)value;
            }
        }
        bavg /= (double)(4*is+4*minstep);
        if ((double)smin < back/2. && smin < bmin) return 1;
        if ((double)bavg >= back*1.1 ) continue;
        if (smax <= bmax) {
            if (stepx < stepy) {
                *peakfh = 2*minstep-1;
                *peakfw = 2*is-1;
            } else {
                *peakfw = 2*minstep-1;
                *peakfh = 2*is-1;
            }
            return 0;
        }
    }
    *peakfh = 2*stepy+1;
    *peakfw = 2*stepx+1;
    return 0;
    
 }