File: array_of_array_sensitivity_tests.c

package info (click to toggle)
cbmc 5.10-5
  • links: PTS
  • area: main
  • in suites: buster
  • size: 73,416 kB
  • sloc: cpp: 264,330; ansic: 38,268; java: 19,025; python: 4,539; yacc: 4,275; makefile: 2,547; lex: 2,394; sh: 932; perl: 525; xml: 289; pascal: 169
file content (150 lines) | stat: -rw-r--r-- 3,809 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#include <assert.h>

int main(int argc, char *argv[])
{
  // A uniform constant array
  int a[3][3]={{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
  // A non-uniform constant array
  int b[3][3]={{0, 1, 2}, {3, 4, 5}, {6, 7, 8}};

  // Test if we can represent uniform constant arrays
  assert(a[1][2]==0);
  assert(a[1][2]==1);

  // Test if we can represent constant arrays which aren't uniform
  assert(b[1][2]==5);
  assert(b[1][2]==0);

  // Test alternative syntax for accessing an array value
  assert(*(b[1]+2)==5);
  assert(*(b[1]+2)==0);
  assert((*(b+1))[2]==5);
  assert((*(b+1))[2]==0);
  assert(*(*(b+1)+2)==5);
  assert(*(*(b+1)+2)==0);
  assert(1[b][2]==5);
  assert(1[b][2]==0);
  assert(*(1[b]+2)==5);
  assert(*(1[b]+2)==0);
  assert((*(1+b))[2]==5);
  assert((*(1+b))[2]==0);
  assert(*(*(1+b)+2)==5);
  assert(*(*(1+b)+2)==0);
  assert(2[1[b]]==5);
  assert(2[1[b]]==0);
  assert(*(2+1[b])==5);
  assert(*(2+1[b])==0);
  assert(*(2+*(1+b))==5);
  assert(*(2+*(1+b))==0);

  // Test how well we can deal with merging for an array value when there is one
  // possible value
  if(argc>2)
  {
    a[0][1]=0;
  }
  assert(a[0][1]==0);
  assert(a[0][1]==1);
  assert(a[0][2]==0);

  // Test how well we can deal with merging for an array value when there are
  // two possible values
  if(argc>2)
  {
    b[0][1]=2;
  }
  assert(b[0][1]==2);
  assert(b[0][1]==3);
  assert(b[0][2]==2);

  // Reset this change to ensure tests later work as expected
  b[0][1]=1;

  // The variables i, j and k will be used as indexes into arrays of size 3.
  // They all require merging paths in the CFG. For i there is only one value on
  // both paths, which is a valid index. The rest can each take two different
  // values. For j both of these values are valid indexes. For k one is and one
  // isn't.
  int i=0;
  int j=0;
  int k=0;
  if(argc>3)
  {
    i=0;
    j=1;
    k=100;
  }

  // Test how well we can deal with merging for an index on a uniform array when
  // the index has one possible value
  assert(a[i][1]==0);
  assert(a[i][1]==1);
  assert(a[1][i]==0);
  assert(a[1][i]==1);
  assert(a[i][i]==0);
  assert(a[i][i]==1);

  // Test how well we can deal with merging for an index on a uniform array when
  // the index has two possible values
  assert(a[j][1]==0);
  assert(a[j][1]==1);
  assert(a[1][j]==0);
  assert(a[1][j]==1);
  assert(a[j][j]==0);
  assert(a[j][j]==1);

  // Test how well we can deal with merging for an index on a non-uniform array

  assert(b[i][1]==1);
  assert(b[i][1]==11);
  assert(b[1][i]==3);
  assert(b[1][i]==11);
  assert(b[i][i]==0);
  assert(b[i][i]==11);

  // Test how well we can deal with merging for an index on a non-uniform array
  assert(b[j][1]==1);
  assert(b[j][1]==11);
  assert(b[1][j]==3);
  assert(b[1][j]==11);
  assert(b[j][j]==0);
  assert(b[j][j]==11);

  // Test how we deal with reading off the end of an array
  assert(a[100][0]==0);
  assert(a[0][100]==0);

  // Test how we deal with writing off the end of an array
  int c=0;
  a[100][0]=1;
  assert(c==0);
  c=0;
  a[0][100]=1;
  assert(c==0);

  // Test how we deal with merging for an index with one possible value when
  // writing to an array
  int ei[3][3]={{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
  ei[i][1]=1;
  assert(ei[0][1]==1);
  assert(ei[0][1]==0);
  assert(ei[2][1]==0);
  assert(ei[2][1]==1);

  // Test how we deal with merging for an index with two possible values when
  // writing to an array
  int ej[3][3]={{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
  ej[j][1]=1;
  assert(ej[0][1]==0);
  assert(ej[2][1]==0);

  // Test how we deal with merging for an index with two possible values when
  // it means writing to an array element that may be out of bounds
  int ek[3][3]={{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
  c=0;
  ek[k][1]=1;
  assert(ek[0][1]==0);
  assert(c==0);

  return 0;
}