1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
#include <assert.h>
int main(int argc, char *argv[])
{
// Test how well we can represent arrays of pointers
int a0=0;
int a1=1;
int a2=2;
int a3=3;
int b0=10;
int b1=11;
int b2=12;
int b3=13;
int c0=20;
int c1=21;
int c2=22;
int c3=23;
int d0=30;
int d1=31;
int d2=32;
int d3=33;
// A uniform constant array
int *a[3]={&a0, &a0, &a0};
// A non-uniform constant array
int *b[3]={&b0, &b1, &b2};
// Test if we can represent uniform constant arrays
assert(a[1]==&a0);
assert(a[1]==&a3);
assert(*a[1]==0);
assert(*a[1]==3);
// Test if we can represent constant arrays which aren't uniform
assert(b[1]==&b1);
assert(b[1]==&b3);
assert(*b[1]==11);
assert(*b[1]==13);
// Test alternative syntax for accessing an array value
assert(*(b+1)==&b1);
assert(*(b+1)==&b3);
assert(*(1+b)==&b1);
assert(*(1+b)==&b3);
assert(1[b]==&b1);
assert(1[b]==&b3);
assert(**(b+1)==11);
assert(**(b+1)==13);
assert(**(1+b)==11);
assert(**(1+b)==13);
assert(*1[b]==11);
assert(*1[b]==13);
// c and d are arrays whose values requiring merging paths in the CFG. For
// c[0] there is only one possibility after merging and for d[0] there are
// two.
int *c[3]={&c0, &c1, &c2};
int *d[3]={&d0, &d1, &d2};
if(argc>2)
{
c[0]=&c3;
d[0]=&d3;
}
// Test how well we can deal with merging for an array value
assert(c[0]==&c0);
assert(c[0]==&c3);
assert(d[0]==&d0);
assert(d[0]==&d3);
assert(*c[0]==20);
assert(*c[0]==23);
assert(*d[0]==30);
assert(*d[0]==33);
// The variables i, j and k will be used as indexes into arrays of size 3.
// They all require merging paths in the CFG. For i there is only one value on
// both paths, which is a valid index. The rest can each take two different
// values. For j both of these values are valid indexes. For k one is and one
// isn't.
int i=0;
int j=0;
int k=0;
if(argc>3)
{
i=0;
j=1;
k=100;
}
// Test how well we can deal with merging for an index on a uniform array
assert(a[i]==&a0);
assert(a[i]==&a3);
assert(a[j]==&a0);
assert(a[j]==&a3);
assert(*a[i]==0);
assert(*a[i]==3);
assert(*a[j]==0);
assert(*a[j]==3);
// Test how well we can deal with merging for an index on a non-uniform array
assert(b[i]==&b0);
assert(b[i]==&b1);
assert(b[j]==&b0);
assert(b[j]==&b3);
assert(*b[i]==10);
assert(*b[i]==11);
assert(*b[j]==10);
assert(*b[j]==13);
// Test how we deal with reading off the end of an array
assert(a[100]==&a2);
assert(*a[100]==2);
// Test how we deal with writing off the end of an array
a[100]=&a2;
assert(b[1]==&b1);
assert(*b[1]==11);
// Test how we deal with merging for an index with one possible value when
// writing to an array
int ei0=40;
int ei1=41;
int *ei[3]={&ei0, &ei0, &ei0};
ei[i]=&ei1;
assert(ei[0]==&ei1);
assert(ei[0]==&ei0);
assert(ei[2]==&ei0);
assert(ei[2]==&ei1);
assert(*ei[0]==41);
assert(*ei[0]==40);
assert(*ei[2]==40);
assert(*ei[2]==41);
// Test how we deal with merging for an index with two possible values when
// writing to an array
int ej0=50;
int ej1=51;
int *ej[3]={&ej0, &ej0, &ej0};
ej[j]=&ej1;
assert(ej[0]==&ej0);
assert(ej[2]==&ej0);
assert(ej[2]==&ej1);
assert(*ej[0]==50);
assert(*ej[2]==50);
assert(*ej[2]==51);
// Test how we deal with merging for an index with two possible values when
// it means writing to an array element that may be out of bounds
int ek0=60;
int ek1=61;
int *ek[3]={&ek0, &ek0, &ek0};
ek[k]=&ek1;
assert(ek[0]==&ek0);
assert(*ek[0]==60);
return 0;
}
|