1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
|
#include <assert.h>
int main(int argc, char *argv[])
{
// A uniform constant array
int a[3]={0, 0, 0};
// A non-uniform constant array
int b[3]={1, 0, 0};
// Test if we can represent uniform constant arrays
assert(a[1]==0);
assert(a[1]==1);
// Test if we can represent constant arrays which aren't uniform
assert(b[1]==0);
assert(b[1]==1);
// Test alternative syntax for accessing an array value
assert(*(b+1)==0);
assert(*(b+1)==1);
assert(*(1+b)==0);
assert(*(1+b)==1);
assert(1[b]==0);
assert(1[b]==1);
// c and d are arrays whose values requiring merging paths in the CFG. For
// c[0] there is only one possibility after merging and for d[0] there are
// two.
int c[3]={0, 0, 0};
int d[3]={0, 0, 0};
if(argc>2)
{
c[0]=0;
d[0]=1;
}
// Test how well we can deal with merging for an array value
assert(c[0]==0);
assert(c[0]==1);
assert(d[0]==0);
assert(d[0]==2);
assert(d[1]==0);
// The variables i, j and k will be used as indexes into arrays of size 3.
// They all require merging paths in the CFG. For i there is only one value on
// both paths, which is a valid index. The rest can each take two different
// values. For j both of these values are valid indexes. For k one is and one
// isn't.
int i=0;
int j=0;
int k=0;
if(argc>3)
{
i=0;
j=1;
k=100;
}
// Test how well we can deal with merging for an index on a uniform array
assert(a[i]==0);
assert(a[i]==1);
assert(a[j]==0);
assert(a[j]==1);
// Test how well we can deal with merging for an index on a non-uniform array
assert(b[i]==1);
assert(b[i]==0);
assert(b[j]==0);
assert(b[j]==1);
// Test how we deal with reading off the end of an array
assert(a[100]==0);
// Test how we deal with writing off the end of an array
a[100]=1;
assert(b[1]==0);
// Test how we deal with merging for an index with one possible value when
// writing to an array
int ei[3]={0, 0, 0};
ei[i]=1;
assert(ei[0]==1);
assert(ei[0]==0);
assert(ei[2]==0);
assert(ei[2]==1);
// Test how we deal with merging for an index with two possible values when
// writing to an array
int ej[3]={0, 0, 0};
ej[j]=1;
assert(ej[0]==0);
assert(ej[2]==0);
// Test how we deal with merging for an index with two possible values when
// it means writing to an array element that may be out of bounds
int ek[3]={0, 0, 0};
ek[k]=1;
assert(ek[0]==0);
return 0;
}
|