File: array_sensitivity_tests.c

package info (click to toggle)
cbmc 5.10-5
  • links: PTS
  • area: main
  • in suites: buster
  • size: 73,416 kB
  • sloc: cpp: 264,330; ansic: 38,268; java: 19,025; python: 4,539; yacc: 4,275; makefile: 2,547; lex: 2,394; sh: 932; perl: 525; xml: 289; pascal: 169
file content (101 lines) | stat: -rw-r--r-- 2,462 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#include <assert.h>

int main(int argc, char *argv[])
{
  // A uniform constant array
  int a[3]={0, 0, 0};
  // A non-uniform constant array
  int b[3]={1, 0, 0};

  // Test if we can represent uniform constant arrays
  assert(a[1]==0);
  assert(a[1]==1);

  // Test if we can represent constant arrays which aren't uniform
  assert(b[1]==0);
  assert(b[1]==1);

  // Test alternative syntax for accessing an array value
  assert(*(b+1)==0);
  assert(*(b+1)==1);
  assert(*(1+b)==0);
  assert(*(1+b)==1);
  assert(1[b]==0);
  assert(1[b]==1);

  // c and d are arrays whose values requiring merging paths in the CFG. For
  // c[0] there is only one possibility after merging and for d[0] there are
  // two.
  int c[3]={0, 0, 0};
  int d[3]={0, 0, 0};
  if(argc>2)
  {
    c[0]=0;
    d[0]=1;
  }

  // Test how well we can deal with merging for an array value
  assert(c[0]==0);
  assert(c[0]==1);
  assert(d[0]==0);
  assert(d[0]==2);
  assert(d[1]==0);

  // The variables i, j and k will be used as indexes into arrays of size 3.
  // They all require merging paths in the CFG. For i there is only one value on
  // both paths, which is a valid index. The rest can each take two different
  // values. For j both of these values are valid indexes. For k one is and one
  // isn't.
  int i=0;
  int j=0;
  int k=0;
  if(argc>3)
  {
    i=0;
    j=1;
    k=100;
  }

  // Test how well we can deal with merging for an index on a uniform array
  assert(a[i]==0);
  assert(a[i]==1);
  assert(a[j]==0);
  assert(a[j]==1);

  // Test how well we can deal with merging for an index on a non-uniform array
  assert(b[i]==1);
  assert(b[i]==0);
  assert(b[j]==0);
  assert(b[j]==1);

  // Test how we deal with reading off the end of an array
  assert(a[100]==0);

  // Test how we deal with writing off the end of an array
  a[100]=1;
  assert(b[1]==0);

  // Test how we deal with merging for an index with one possible value when
  // writing to an array
  int ei[3]={0, 0, 0};
  ei[i]=1;
  assert(ei[0]==1);
  assert(ei[0]==0);
  assert(ei[2]==0);
  assert(ei[2]==1);

  // Test how we deal with merging for an index with two possible values when
  // writing to an array
  int ej[3]={0, 0, 0};
  ej[j]=1;
  assert(ej[0]==0);
  assert(ej[2]==0);

  // Test how we deal with merging for an index with two possible values when
  // it means writing to an array element that may be out of bounds
  int ek[3]={0, 0, 0};
  ek[k]=1;
  assert(ek[0]==0);

  return 0;
}