File: main.c

package info (click to toggle)
cbmc 6.6.0-4
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 153,852 kB
  • sloc: cpp: 386,459; ansic: 114,466; java: 28,405; python: 6,003; yacc: 4,552; makefile: 4,041; lex: 2,487; xml: 2,388; sh: 2,050; perl: 557; pascal: 184; javascript: 163; ada: 36
file content (384 lines) | stat: -rw-r--r-- 7,154 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
// Benchmark built by Alex Horn
// This small ANSI C file can be compiled with various options.
// For example, "CC -D_EXPOSE_BUG_ generic_hw_sw_benchmark.c"
// produces an executable file that when run exposes the
// concurrency bug in the hardware/software interface.

// ========= Build specifics =========

#ifdef _ENABLE_CBMC_

#  define ASYNC(n, c) __CPROVER_ASYNC_##n : (c)
#  define ATOMIC_BEGIN __CPROVER_atomic_begin()
#  define ATOMIC_END __CPROVER_atomic_end()

char symbolic_char(char);

#else

#include <assert.h>
#undef ASYNC

char symbolic_char(char c)
{
  return c;
}

#endif

#ifdef _ENABLE_POSIX_

#include <pthread.h>

#define ATOMIC_BEGIN pthread_mutex_lock(&hw->lock)
#define ATOMIC_END pthread_mutex_unlock(&hw->lock)

#endif

// There are three ways to expose the concurrency bug:
// 1) delay enabling of interrupt so that an intermittent
//    stimulus won't trigger an interrupt;
// 2) delay the firing of the interrupt handler until
//    after the verification condition check;
// 3) generate stimulus before polling starts.
#ifdef _EXPOSE_BUG_
#include <unistd.h>

#define SHORT_DELAY 1
#define LONG_DELAY 3
#endif

// Marginally useful in case of concurrent outputs
#ifdef _ENABLE_OUTPUT_
#include <stdio.h>
#endif

// ========= C conveniences =========

typedef unsigned bool;

#define true 1
#define false 0

#if !defined(_ENABLE_POSIX_) && !defined(NULL)
#define NULL 0
#endif

// ========= Hardware model =========

typedef char Register;
#define ZERO_BYTE '\0'

enum RegisterId
{
  SIGNAL_REG_ID = 0,
  DATA_A_REG_ID = 1,

  REG_NR = 2
};

typedef enum RegisterId RegisterId;
typedef void* (*InterruptHandler)(void*);

struct Hardware
{
  struct Firmware* fw;

#ifdef _ENABLE_POSIX_
  pthread_mutex_t lock;
#endif

  Register regs[REG_NR];
  bool is_on;

  // Fire interrupt whenever handler is not null
  InterruptHandler interrupt_handler;
};

// By default interrupts are disabled
void turn_on(struct Hardware *hw)
{
  ATOMIC_BEGIN;

#ifdef _ENABLE_POSIX_
  pthread_mutex_init(&hw->lock, NULL);
#endif

#ifdef _ENABLE_OUTPUT_
  printf("Turn on hardware\n");
#endif

  for (unsigned reg_id = 0; reg_id < REG_NR; ++reg_id)
    hw->regs[reg_id] = ZERO_BYTE;

  hw->is_on = true;
  hw->interrupt_handler = NULL;

  ATOMIC_END;
}

void turn_off(struct Hardware *hw)
{
  ATOMIC_BEGIN;

#ifdef _ENABLE_OUTPUT_
  printf("Turn off hardware\n");
#endif

  hw->is_on = false;

  ATOMIC_END;
}

// Does not write any registers but sets function pointer
void enable_interrupts(struct Hardware *hw, InterruptHandler interrupt_handler)
{
  ATOMIC_BEGIN;

  hw->interrupt_handler = interrupt_handler;

  ATOMIC_END;
}

// Read control register
Register read_signal_register(struct Hardware *hw)
{
  ATOMIC_BEGIN;

  Register reg = ZERO_BYTE;
  if (!hw->is_on)
  {
#ifdef _ENABLE_OUTPUT_
    printf("Read signal [off]\n");
#endif
    goto SKIP;
  }

  reg = hw->regs[SIGNAL_REG_ID];

SKIP:
  ATOMIC_END;
  return reg;
}

// Internal check that `reg_id' refers to a data register
void check_data_register(RegisterId reg_id)
{
  assert(0 < reg_id && reg_id < REG_NR);
}

// Read data from hardware register
Register read_data_register(struct Hardware *hw, RegisterId reg_id)
{
  ATOMIC_BEGIN;
  check_data_register(reg_id);

  Register value = ZERO_BYTE;

  if (!hw->is_on)
  {
#ifdef _ENABLE_OUTPUT_
    printf("Read register [off] %d\n", reg_id);
#endif
    goto SKIP;
  }

  value = hw->regs[reg_id];
  hw->regs[SIGNAL_REG_ID] &= ~reg_id;

#ifdef _ENABLE_OUTPUT_
  printf("Read register [on] reg_id: %d value: %c\n", reg_id, value);
#endif

SKIP:
  ATOMIC_END;
  return value;
}

// Write data to hardware register
void* write_data_register(struct Hardware *hw, RegisterId reg_id, Register value)
{
  ATOMIC_BEGIN;
  check_data_register(reg_id);

  if (!hw->is_on)
  {
#ifdef _ENABLE_OUTPUT_
    printf("Write register [off] reg_id: %d value: %c\n", reg_id, value);
#endif
    goto SKIP;
  }

#ifdef _ENABLE_OUTPUT_
  printf("Write register [on] reg_id: %d value: %c\n", reg_id, value);
#endif

  hw->regs[reg_id] = value;
  hw->regs[SIGNAL_REG_ID] |= reg_id;

  if (hw->interrupt_handler)
#ifdef _ENABLE_POSIX_
  {
#ifdef _ENABLE_OUTPUT_
    printf("Fire interrupt\n");
#endif

#ifdef _EXPOSE_BUG_
    // delay firing of interrupt
    sleep(LONG_DELAY);
#endif

    // caution: detached thread!
    pthread_t interrupt_thread;
    pthread_create(&interrupt_thread, NULL, hw->interrupt_handler, (void *) hw->fw);
  }
#else
    ASYNC(1, hw->interrupt_handler((void *)hw->fw));
#endif

SKIP:
  ATOMIC_END;
  return NULL;
}

// ========= Firmware =========

// Reads the data registers
//
// Switches to interrupt mode if there
// is no data to read.
struct Firmware
{
  struct Hardware* hw;
};

// Interrupt handler for incoming data
void* handle_interrupt(void *ptr)
{
#ifdef _ENABLE_OUTPUT_
  printf("Handle interrupt\n");
#endif

  struct Firmware *fw = (struct Firmware*) ptr;
  read_data_register(fw->hw, DATA_A_REG_ID);

#ifdef _ENABLE_POSIX_
  pthread_exit(0);
#endif

  return NULL;
}

// Firmware's main function

// Switches from polling to interrupt mode if
// there is no newly written data to read.
void* poll(void *ptr)
{
  struct Firmware *fw = (struct Firmware*) ptr;
  char byte = read_signal_register(fw->hw);

  if (byte == ZERO_BYTE)
  {
#ifdef _ENABLE_OUTPUT_
    printf("Switch from polling to interrupt mode\n");
#endif

    enable_interrupts(fw->hw, handle_interrupt);
  }
  else
  {
#ifdef _ENABLE_OUTPUT_
    printf("Stay in polling mode and read hardware register\n");
#endif

    read_data_register(fw->hw, DATA_A_REG_ID);
  }

#ifdef _ENABLE_POSIX_
  pthread_exit(0);
#endif

  return NULL;
}

// ========= Test harness =========

void* stimulus(void *ptr)
{
  struct Hardware *hw = (struct Hardware*) ptr;
  Register value = symbolic_char('A');

#ifdef _ENABLE_OUTPUT_
  printf("Generate stimulus\n");
#endif

  write_data_register(hw, DATA_A_REG_ID, value);

#ifdef _ENABLE_POSIX_
  pthread_exit(0);
#endif

  return NULL;
}

int main(void)
{
#ifdef _ENABLE_OUTPUT_
  printf("C main(void) function\n");
#endif

  struct Hardware hardware;
  struct Hardware* hw = &hardware;

  struct Firmware firmware;
  struct Firmware* fw = &firmware;

  // burn firmware on chip
  firmware.hw = hw;
  hardware.fw = fw;

  // start hardware
  turn_on(hw);

  // start firmware
#ifdef _ENABLE_POSIX_
  pthread_t firmware_thread;
  pthread_create(&firmware_thread, NULL, poll, (void *) fw);
#else
  ASYNC(1, poll((void *)fw));
#endif

#ifdef _EXPOSE_BUG_
  sleep(SHORT_DELAY);
#endif

  // environment stimulus
#ifdef _ENABLE_POSIX_
  pthread_t stimulus_thread;
  pthread_create(&stimulus_thread, NULL, stimulus, (void *) hw);
#else
  ASYNC(2, stimulus((void *)hw));
#endif

#ifdef _EXPOSE_BUG_
  sleep(SHORT_DELAY);
#endif

  // stop hardware
  turn_off(hw);

  // check verification condition:
  //
  // the firmware must have reacted to every environment
  // stimulus that triggered the hardware functionality.
  assert(hardware.regs[SIGNAL_REG_ID] == 0);

#ifdef _ENABLE_POSIX_
  pthread_join(firmware_thread, NULL);
  pthread_join(stimulus_thread, NULL);
  pthread_mutex_destroy(&hw->lock);
#endif

  return 0;
}