1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
extern int __VERIFIER_nondet_int();
/* Testcase from Threader's distribution. For details see:
http://www.model.in.tum.de/~popeea/research/threader
This file is adapted from the Promela code introduced in the paper:
Using Promela and Spin to verify parallel algorithms
by Paul McKenney
*/
int idx=0; // boolean to control which of the two elements will be used by readers
// (idx <= 0) then ctr1 is used
// (idx >= 1) then ctr2 is used
int ctr1=1, ctr2=0;
int readerprogress1=0, readerprogress2=0; // the progress is indicated by an integer:
// 0: reader not yet started
// 1: reader withing QRCU read-side critical section
// 2: reader finished with QRCU read-side critical section
void __VERIFIER_atomic_use1(int myidx) {
__VERIFIER_assume(myidx <= 0 && ctr1>0);
ctr1++;
}
void __VERIFIER_atomic_use2(int myidx) {
__VERIFIER_assume(myidx >= 1 && ctr2>0);
ctr2++;
}
void __VERIFIER_atomic_use_done(int myidx) {
if (myidx <= 0) { ctr1--; }
else { ctr2--; }
}
void __VERIFIER_atomic_take_snapshot(int *readerstart1, int *readerstart2) {
/* Snapshot reader state. */
*readerstart1 = readerprogress1;
*readerstart2 = readerprogress2;
}
void __VERIFIER_atomic_check_progress1(int readerstart1) {
/* Verify reader progress. */
if (__VERIFIER_nondet_int()) {
__VERIFIER_assume(readerstart1 == 1 && readerprogress1 == 1);
assert(0);
}
return;
}
void __VERIFIER_atomic_check_progress2(int readerstart2) {
if (__VERIFIER_nondet_int()) {
__VERIFIER_assume(readerstart2 == 1 && readerprogress2 == 1);
assert(0);
}
return;
}
void *qrcu_reader1() {
int myidx;
/* rcu_read_lock */
while (1) {
myidx = idx;
if (__VERIFIER_nondet_int()) {
__VERIFIER_atomic_use1(myidx);
break;
} else {
if (__VERIFIER_nondet_int()) {
__VERIFIER_atomic_use2(myidx);
break;
} else {}
}
}
readerprogress1 = 1;
readerprogress1 = 2;
/* rcu_read_unlock */
__VERIFIER_atomic_use_done(myidx);
return 0;
}
void *qrcu_reader2() {
int myidx;
/* rcu_read_lock */
while (1) {
myidx = idx;
if (__VERIFIER_nondet_int()) {
__VERIFIER_atomic_use1(myidx);
break;
} else {
if (__VERIFIER_nondet_int()) {
__VERIFIER_atomic_use2(myidx);
break;
} else {}
}
}
readerprogress2 = 1;
readerprogress2 = 2;
/* rcu_read_unlock */
__VERIFIER_atomic_use_done(myidx);
return 0;
}
void* qrcu_updater() {
int i;
int readerstart1, readerstart2;
int sum;
__VERIFIER_atomic_take_snapshot(&readerstart1, &readerstart2);
sum = ctr2;
sum = sum + ctr1;
if (sum > 1) {
if (idx <= 0) { ctr2++; idx = 1; ctr1--; }
else { ctr1++; idx = 0; ctr2--; }
if (idx <= 0) { __CPROVER_assume (ctr1 <= 0); }
else { __CPROVER_assume (ctr2 <= 0); }
} else {}
__VERIFIER_atomic_check_progress1(readerstart1);
__VERIFIER_atomic_check_progress2(readerstart2);
return 0;
}
int main() {
__CPROVER_ASYNC_1: qrcu_reader1();
__CPROVER_ASYNC_2:
qrcu_reader2();
__CPROVER_ASYNC_3:
qrcu_updater();
return 0;
}
|