1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
/*******************************************************************\
Module: Unit test for call graph generation
Author:
\*******************************************************************/
#include <util/symbol_table.h>
#include <goto-programs/goto_model.h>
#include <analyses/call_graph.h>
#include <analyses/call_graph_helpers.h>
#include <ansi-c/goto-conversion/goto_convert_functions.h>
#include <testing-utils/call_graph_test_utils.h>
#include <testing-utils/use_catch.h>
#include <iostream>
SCENARIO("call_graph",
"[core][util][call_graph]")
{
GIVEN("Some cyclic function calls")
{
// Create code like:
// void A()
// {
// A();
// B();
// B();
// }
// void B()
// {
// C();
// D();
// }
// void C() { }
// void D() { }
// void E() { }
goto_modelt goto_model;
code_typet void_function_type({}, empty_typet());
{
code_blockt calls(
{code_function_callt(symbol_exprt("A", void_function_type)),
code_function_callt(symbol_exprt("B", void_function_type)),
code_function_callt(symbol_exprt("B", void_function_type))});
goto_model.symbol_table.add(
create_void_function_symbol("A", calls));
}
{
code_blockt calls(
{code_function_callt(symbol_exprt("C", void_function_type)),
code_function_callt(symbol_exprt("D", void_function_type))});
goto_model.symbol_table.add(
create_void_function_symbol("B", calls));
}
goto_model.symbol_table.add(
create_void_function_symbol("C", code_skipt()));
goto_model.symbol_table.add(
create_void_function_symbol("D", code_skipt()));
goto_model.symbol_table.add(
create_void_function_symbol("E", code_skipt()));
stream_message_handlert msg(std::cout);
goto_convert(goto_model, msg);
call_grapht call_graph_from_goto_functions(goto_model);
WHEN("A call graph is constructed from the GOTO functions")
{
THEN("We expect A -> { A, B, B }, B -> { C, D }")
{
const auto &check_graph=call_graph_from_goto_functions.edges;
REQUIRE(check_graph.size()==5);
REQUIRE(multimap_key_matches(check_graph, "A", {"A", "B", "B"}));
REQUIRE(multimap_key_matches(check_graph, "B", {"C", "D"}));
}
THEN("No callsite data should be collected")
{
REQUIRE(call_graph_from_goto_functions.callsites.empty());
}
}
WHEN("The call graph is inverted")
{
call_grapht inverse_call_graph_from_goto_functions=
call_graph_from_goto_functions.get_inverted();
THEN("We expect A -> { A }, B -> { A, A }, C -> { B }, D -> { B }")
{
const auto &check_graph=inverse_call_graph_from_goto_functions.edges;
REQUIRE(check_graph.size()==5);
REQUIRE(multimap_key_matches(check_graph, "A", {"A"}));
REQUIRE(multimap_key_matches(check_graph, "B", {"A", "A"}));
REQUIRE(multimap_key_matches(check_graph, "C", {"B"}));
REQUIRE(multimap_key_matches(check_graph, "D", {"B"}));
}
}
WHEN("A call graph is constructed with call-site tracking")
{
call_grapht call_graph_from_goto_functions_tracking(goto_model, true);
THEN("We expect two callsites for the A -> B edge, one for all others")
{
const auto &check_callsites =
call_graph_from_goto_functions_tracking.callsites;
for(const auto &edge : call_graph_from_goto_functions_tracking.edges)
{
if(edge==call_grapht::edgest::value_type("A", "B"))
REQUIRE(check_callsites.at(edge).size()==2);
else
REQUIRE(check_callsites.at(edge).size()==1);
}
}
WHEN("Such a graph is inverted")
{
call_grapht inverted =
call_graph_from_goto_functions_tracking.get_inverted();
THEN("The callsite data should be discarded")
{
REQUIRE(inverted.callsites.empty());
}
}
}
WHEN("A call graph is constructed from a root and callsite tracking is on")
{
call_grapht call_graph_with_specific_root =
call_grapht::create_from_root_function(goto_model, "B", true);
THEN("The graph should contain nodes for only B, C and D")
{
call_grapht::nodest correct_value {"B", "C", "D"};
REQUIRE(call_graph_with_specific_root.nodes == correct_value);
}
THEN("Only B -> C and B -> D edges should exist, each with one callsite")
{
const auto &check_callsites=call_graph_with_specific_root.callsites;
call_grapht::edgest correct_value { {"B", "C"}, {"B", "D"} };
REQUIRE(call_graph_with_specific_root.edges == correct_value);
for(const auto &edge : call_graph_with_specific_root.edges)
{
REQUIRE(check_callsites.at(edge).size()==1);
}
}
}
WHEN("A call-graph is constructed rooted at B")
{
call_grapht call_graph_from_b =
call_grapht::create_from_root_function(goto_model, "B", false);
THEN("We expect only B -> C and B -> D in the resulting graph")
{
const auto &check_graph=call_graph_from_b.edges;
REQUIRE(check_graph.size()==2);
REQUIRE(multimap_key_matches(check_graph, "B", {"C", "D"}));
}
}
WHEN("The call graph is exported as a grapht")
{
call_grapht::directed_grapht exported=
call_graph_from_goto_functions.get_directed_graph();
typedef call_grapht::directed_grapht::node_indext node_indext;
std::map<irep_idt, node_indext> nodes_by_name;
for(node_indext i=0; i<exported.size(); ++i)
nodes_by_name[exported[i].function]=i;
THEN("We expect 5 nodes")
{
REQUIRE(exported.size() == 5);
}
THEN("We expect edges A -> { A, B }, B -> { C, D }")
{
// Note that means the extra A -> B edge has gone away (the grapht
// structure can't represent the parallel edge)
REQUIRE(exported.has_edge(nodes_by_name["A"], nodes_by_name["A"]));
REQUIRE(exported.has_edge(nodes_by_name["A"], nodes_by_name["B"]));
REQUIRE(exported.has_edge(nodes_by_name["B"], nodes_by_name["C"]));
REQUIRE(exported.has_edge(nodes_by_name["B"], nodes_by_name["D"]));
}
THEN("We expect {A,B} to be reachable from {A} in 1 step")
{
irep_idt function_name = "A";
std::size_t depth = 1;
std::set<irep_idt> reachable = get_functions_reachable_within_n_steps(
exported, function_name, depth);
REQUIRE(reachable.size() == 2);
REQUIRE(reachable.count("A"));
REQUIRE(reachable.count("B"));
}
THEN("We expect {A,B,C,D} to be reachable from {A} in 2 and 3 steps")
{
irep_idt function_name = "A";
std::size_t depth = 2;
std::set<irep_idt> reachable = get_functions_reachable_within_n_steps(
exported, function_name, depth);
REQUIRE(reachable.size() == 4);
REQUIRE(reachable.count("A"));
REQUIRE(reachable.count("B"));
REQUIRE(reachable.count("C"));
REQUIRE(reachable.count("D"));
depth = 3;
reachable = get_functions_reachable_within_n_steps(
exported, function_name, depth);
REQUIRE(reachable.size() == 4);
REQUIRE(reachable.count("A"));
REQUIRE(reachable.count("B"));
REQUIRE(reachable.count("C"));
REQUIRE(reachable.count("D"));
}
THEN("We expect only {A} to be reachable from {A} in 0 steps")
{
irep_idt function_name = "A";
std::size_t depth = 0;
std::set<irep_idt> reachable = get_functions_reachable_within_n_steps(
exported, function_name, depth);
REQUIRE(reachable.size() == 1);
REQUIRE(reachable.count("A"));
}
THEN("We expect A to have successors {A, B}")
{
std::set<irep_idt> successors = get_callees(exported, "A");
REQUIRE(successors.size() == 2);
REQUIRE(successors.count("A"));
REQUIRE(successors.count("B"));
}
THEN("We expect C to have predecessors {B}")
{
std::set<irep_idt> predecessors = get_callers(exported, "C");
REQUIRE(predecessors.size() == 1);
REQUIRE(predecessors.count("B"));
}
THEN("We expect all of {A, B, C, D} to be reachable from A")
{
std::set<irep_idt> successors =
get_reachable_functions(exported, "A");
REQUIRE(successors.size() == 4);
REQUIRE(successors.count("A"));
REQUIRE(successors.count("B"));
REQUIRE(successors.count("C"));
REQUIRE(successors.count("D"));
}
THEN("We expect {D, B, A} to be able to reach D")
{
std::set<irep_idt> predecessors =
get_reaching_functions(exported, "D");
REQUIRE(predecessors.size() == 3);
REQUIRE(predecessors.count("A"));
REQUIRE(predecessors.count("B"));
REQUIRE(predecessors.count("D"));
}
THEN("We expect {E} to be able to reach E")
{
std::set<irep_idt> predecessors =
get_reaching_functions(exported, "E");
REQUIRE(predecessors.size() == 1);
REQUIRE(predecessors.count("E"));
}
}
WHEN("The call graph, with call sites, is exported as a grapht")
{
call_grapht call_graph_from_goto_functions_tracking(goto_model, true);
call_grapht::directed_grapht exported =
call_graph_from_goto_functions_tracking.get_directed_graph();
typedef call_grapht::directed_grapht::node_indext node_indext;
std::map<irep_idt, node_indext> nodes_by_name;
for(node_indext i=0; i<exported.size(); ++i)
nodes_by_name[exported[i].function]=i;
THEN("We expect 5 nodes")
{
REQUIRE(exported.size() == 5);
}
THEN("We expect edges A -> { A, B }, B -> { C, D }")
{
// Note that means the extra A -> B edge has gone away (the grapht
// structure can't represent the parallel edge)
REQUIRE(exported.has_edge(nodes_by_name["A"], nodes_by_name["A"]));
REQUIRE(exported.has_edge(nodes_by_name["A"], nodes_by_name["B"]));
REQUIRE(exported.has_edge(nodes_by_name["B"], nodes_by_name["C"]));
REQUIRE(exported.has_edge(nodes_by_name["B"], nodes_by_name["D"]));
}
THEN("We expect all edges to have one callsite apart from A -> B with 2")
{
for(node_indext i=0; i<exported.size(); ++i)
{
const auto &node=exported[i];
for(const auto &edge : node.out)
{
if(i==nodes_by_name["A"] && edge.first==nodes_by_name["B"])
REQUIRE(edge.second.callsites.size()==2);
else
REQUIRE(edge.second.callsites.size()==1);
}
}
}
}
}
}
|