File: graph.cpp

package info (click to toggle)
cbmc 6.6.0-4
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 153,852 kB
  • sloc: cpp: 386,459; ansic: 114,466; java: 28,405; python: 6,003; yacc: 4,552; makefile: 4,041; lex: 2,487; xml: 2,388; sh: 2,050; perl: 557; pascal: 184; javascript: 163; ada: 36
file content (353 lines) | stat: -rw-r--r-- 10,141 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/*******************************************************************\

Module: Unit test for graph.h

Author: Diffblue Ltd

\*******************************************************************/

#include <testing-utils/use_catch.h>

#include <util/graph.h>

template<class E>
static inline bool operator==(
  const graph_nodet<E> &gn1, const graph_nodet<E> &gn2)
{
  return gn1.in == gn2.in && gn1.out == gn2.out;
}

template<class N>
static inline bool operator==(const grapht<N> &g1, const grapht<N> &g2)
{
  if(g1.size() != g2.size())
    return false;

  for(typename grapht<N>::node_indext i = 0; i < g1.size(); ++i)
  {
    if(!(g1[i] == g2[i]))
      return false;
  }

  return true;
}

/// To verify make_chordal is working as intended: naively search for a
/// hole (a chordless 4+-cycle)
template<class N>
static bool contains_hole(
  const grapht<N> &g,
  const std::vector<typename grapht<N>::node_indext> &cycle_so_far)
{
  const auto &successors_map = g[cycle_so_far.back()].out;

  // If this node has a triangular edge (one leading to cycle_so_far[-3]) then
  // this isn't a hole:
  if(cycle_so_far.size() >= 3 &&
     successors_map.count(cycle_so_far[cycle_so_far.size() - 3]) != 0)
  {
    return false;
  }

  // If this node has an edge leading to any other cycle member (except our
  // immediate predecessor) then we've found a hole:
  if(cycle_so_far.size() >= 4)
  {
    for(std::size_t i = 0; i <= cycle_so_far.size() - 4; ++i)
    {
      if(successors_map.count(cycle_so_far[i]) != 0)
        return true;
    }
  }

  // Otherwise try to extend the cycle:
  for(const auto &successor : successors_map)
  {
    // The input is undirected, so a 2-cycle is always present:
    if(cycle_so_far.size() >= 2 &&
       successor.first == cycle_so_far[cycle_so_far.size() - 2])
    {
      continue;
    }

    // Work around spurious GCC 14 warning about __builtin_memmove accessing
    // elements out-of-bounds
#pragma GCC diagnostic push
#ifndef __clang__
#  pragma GCC diagnostic ignored "-Warray-bounds"
#  pragma GCC diagnostic ignored "-Wstringop-overflow"
#endif
    std::vector<typename grapht<N>::node_indext> extended_cycle = cycle_so_far;
#pragma GCC diagnostic pop
    extended_cycle.push_back(successor.first);
    if(contains_hole(g, extended_cycle))
      return true;
  }

  return false;
}

template<class N>
static bool contains_hole(const grapht<N> &g)
{
  // For each node in the graph, check for cycles starting at that node.
  // This is pretty dumb, but I figure this formulation is simple enough to
  // check by hand and the complexity isn't too bad for small examples.

  for(typename grapht<N>::node_indext i = 0; i < g.size(); ++i)
  {
    std::vector<typename grapht<N>::node_indext> start_node(1, i);
    if(contains_hole(g, start_node))
      return true;
  }

  return false;
}

typedef grapht<graph_nodet<empty_edget>> simple_grapht;

SCENARIO("graph-make-chordal",
  "[core][util][graph]")
{
  GIVEN("An acyclic graph")
  {
    simple_grapht graph;
    simple_grapht::node_indext indices[5];

    for(int i = 0; i < 5; ++i)
      indices[i] = graph.add_node();

    // Make a graph: 0 <-> 1 <-> 4
    //                \->  2  <-/
    //                 \-> 3
    graph.add_undirected_edge(indices[0], indices[1]);
    graph.add_undirected_edge(indices[0], indices[2]);
    graph.add_undirected_edge(indices[0], indices[3]);
    graph.add_undirected_edge(indices[1], indices[4]);
    graph.add_undirected_edge(indices[2], indices[4]);

    WHEN("The graph is made chordal")
    {
      simple_grapht chordal_graph = graph;
      chordal_graph.make_chordal();

      THEN("The graph should be unchanged")
      {
        // This doesn't pass, as make_chordal actually adds triangular edges to
        // *all* common neighbours, even nodes that aren't part of a cycle.
        // REQUIRE(graph == chordal_graph);

        // At least it shouldn't be chordal!
        REQUIRE(!contains_hole(chordal_graph));
      }
    }
  }

  GIVEN("A cyclic graph that is already chordal")
  {
    simple_grapht graph;
    simple_grapht::node_indext indices[5];

    for(int i = 0; i < 5; ++i)
      indices[i] = graph.add_node();

    // Make a graph: 0 <-> 1 <-> 2 <-> 0
    //               3 <-> 1 <-> 2 <-> 3
    //               4 <-> 1 <-> 2 <-> 4
    graph.add_undirected_edge(indices[0], indices[1]);
    graph.add_undirected_edge(indices[1], indices[2]);
    graph.add_undirected_edge(indices[2], indices[0]);
    graph.add_undirected_edge(indices[3], indices[1]);
    graph.add_undirected_edge(indices[2], indices[3]);
    graph.add_undirected_edge(indices[4], indices[1]);
    graph.add_undirected_edge(indices[2], indices[4]);

    WHEN("The graph is made chordal")
    {
      simple_grapht chordal_graph = graph;
      chordal_graph.make_chordal();

      THEN("The graph should be unchanged")
      {
        // This doesn't pass, as make_chordal actually adds triangular edges to
        // *all* common neighbours, even cycles that are already chordal.
        // REQUIRE(graph == chordal_graph);

        // At least it shouldn't be chordal!
        REQUIRE(!contains_hole(chordal_graph));
      }
    }
  }

  GIVEN("A simple 4-cycle")
  {
    simple_grapht graph;
    simple_grapht::node_indext indices[4];

    for(int i = 0; i < 4; ++i)
      indices[i] = graph.add_node();

    graph.add_undirected_edge(indices[0], indices[1]);
    graph.add_undirected_edge(indices[1], indices[2]);
    graph.add_undirected_edge(indices[2], indices[3]);
    graph.add_undirected_edge(indices[3], indices[0]);

    // Check the contains_hole predicate is working as intended:
    REQUIRE(contains_hole(graph));

    WHEN("The graph is made chordal")
    {
      simple_grapht chordal_graph = graph;
      chordal_graph.make_chordal();

      THEN("The graph should gain a chord")
      {
        REQUIRE(!contains_hole(chordal_graph));
      }
    }
  }

  GIVEN("A more complicated graph with a hole")
  {
    simple_grapht graph;
    simple_grapht::node_indext indices[8];

    for(int i = 0; i < 8; ++i)
      indices[i] = graph.add_node();

    // A 5-cycle:
    graph.add_undirected_edge(indices[0], indices[1]);
    graph.add_undirected_edge(indices[1], indices[2]);
    graph.add_undirected_edge(indices[2], indices[3]);
    graph.add_undirected_edge(indices[3], indices[4]);
    graph.add_undirected_edge(indices[4], indices[0]);

    // A 3-cycle connected to the 5:
    graph.add_undirected_edge(indices[4], indices[5]);
    graph.add_undirected_edge(indices[5], indices[6]);
    graph.add_undirected_edge(indices[6], indices[4]);

    // Another 3-cycle joined onto the 5:
    graph.add_undirected_edge(indices[1], indices[7]);
    graph.add_undirected_edge(indices[3], indices[7]);

    // Check we've made the input correctly:
    REQUIRE(contains_hole(graph));

    WHEN("The graph is made chordal")
    {
      simple_grapht chordal_graph = graph;
      chordal_graph.make_chordal();

      THEN("The graph's 5-cycle should be completed with chords")
      {
        REQUIRE(!contains_hole(chordal_graph));
      }
    }
  }
}

SCENARIO("graph-connected-subgraphs",
  "[core][util][graph]")
{
  GIVEN("A connected graph")
  {
    simple_grapht graph;
    simple_grapht::node_indext indices[5];

    for(int i = 0; i < 5; ++i)
      indices[i] = graph.add_node();

    // Make a graph: 0 <-> 1 <-> 4
    //                \->  2  <-/
    //                 \-> 3
    graph.add_undirected_edge(indices[0], indices[1]);
    graph.add_undirected_edge(indices[0], indices[2]);
    graph.add_undirected_edge(indices[0], indices[3]);
    graph.add_undirected_edge(indices[1], indices[4]);
    graph.add_undirected_edge(indices[2], indices[4]);

    WHEN("We take its connected subgraphs")
    {
      std::vector<simple_grapht::node_indext> subgraphs;
      graph.connected_subgraphs(subgraphs);

      REQUIRE(subgraphs.size() == graph.size());
      simple_grapht::node_indext only_subgraph = subgraphs.at(0);

      // Check everything is in one subgraph:
      REQUIRE(
        subgraphs ==
        std::vector<simple_grapht::node_indext>(graph.size(), only_subgraph));
    }
  }

  GIVEN("A graph with three unconnected subgraphs")
  {
    simple_grapht graph;
    simple_grapht::node_indext indices[6];

    for(int i = 0; i < 6; ++i)
      indices[i] = graph.add_node();

    graph.add_undirected_edge(indices[0], indices[1]);
    graph.add_undirected_edge(indices[2], indices[3]);
    graph.add_undirected_edge(indices[4], indices[5]);

    WHEN("We take its connected subgraphs")
    {
      std::vector<simple_grapht::node_indext> subgraphs;
      graph.connected_subgraphs(subgraphs);

      REQUIRE(subgraphs.size() == graph.size());
      simple_grapht::node_indext first_subgraph = subgraphs.at(0);
      simple_grapht::node_indext second_subgraph = subgraphs.at(2);
      simple_grapht::node_indext third_subgraph = subgraphs.at(4);

      std::vector<simple_grapht::node_indext> expected_subgraphs
      {
        first_subgraph,
        first_subgraph,
        second_subgraph,
        second_subgraph,
        third_subgraph,
        third_subgraph
      };

      REQUIRE(subgraphs == expected_subgraphs);
    }
  }
}

SCENARIO("predecessors-successors-graph", "[core][util][graph]")
{
  GIVEN("A graph")
  {
    simple_grapht graph;
    simple_grapht::node_indext indices[2];

    for(int i = 0; i < 2; ++i)
      indices[i] = graph.add_node();

    graph.add_edge(indices[0], indices[1]);

    THEN("Nodes should have correct successors and predecessors")
    {
      REQUIRE(graph.get_predecessors(indices[0]).size() == 0);
      REQUIRE(graph.get_successors(indices[0]).size() == 1);
      REQUIRE(graph.get_predecessors(indices[1]).size() == 1);
      REQUIRE(graph.get_successors(indices[1]).size() == 0);

      int count = 0;
      graph.for_each_predecessor(
        indices[1], [&](const simple_grapht::node_indext &n) { count++; });
      REQUIRE(count == 1);

      // Refresh counter.
      count = 0;
      graph.for_each_successor(
        indices[1], [&](const simple_grapht::node_indext &n) { count++; });
      REQUIRE(count == 0);
    }
  }
}