File: ca65.sgml

package info (click to toggle)
cc65 2.19-2
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 20,268 kB
  • sloc: ansic: 117,151; asm: 66,339; pascal: 4,248; makefile: 1,009; perl: 607
file content (5029 lines) | stat: -rw-r--r-- 172,592 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
<!doctype linuxdoc system>

<article>
<title>ca65 Users Guide
<author><url url="mailto:uz@cc65.org" name="Ullrich von Bassewitz">,<newline>
<url url="mailto:greg.king5@verizon.net" name="Greg King">

<abstract>
ca65 is a powerful macro assembler for the 6502, 65C02, and 65816 CPUs. It is
used as a companion assembler for the cc65 crosscompiler, but it may also be
used as a standalone product.
</abstract>

<!-- Table of contents -->
<toc>

<!-- Begin the document -->

<sect>Overview<p>

ca65 is a replacement for the ra65 assembler that was part of the cc65 C
compiler, originally developed by John R. Dunning. I had some problems with
ra65 and the copyright does not permit some things which I wanted to be
possible, so I decided to write a completely new assembler/linker/archiver
suite for the cc65 compiler. ca65 is part of this suite.

Some parts of the assembler (code generation and some routines for symbol
table handling) are taken from an older crossassembler named a816 written
by me a long time ago.


<sect1>Design criteria<p>

Here's a list of the design criteria, that I considered important for the
development:

<itemize>

<item>  The assembler must support macros. Macros are not essential, but they
        make some things easier, especially when you use the assembler in the
        backend of a compiler.
<item>  The assembler must support the newer 65C02 and 65816 CPUs. I have been
        thinking about a 65816 backend for the C compiler, and even my old
        a816 assembler had support for these CPUs, so this wasn't really a
        problem.
<item>  The assembler must produce relocatable code. This is necessary for the
        compiler support, and it is more convenient.
<item>  Conditional assembly must be supported. This is a must for bigger
        projects written in assembler (like Elite128).
<item>  The assembler must support segments, and it must support more than
        three segments (this is the count, most other assemblers support).
        Having more than one code segments helps developing code for systems
        with a divided ROM area (like the C64).
<item>  The linker must be able to resolve arbitrary expressions. It should
        be able to get things like
<tscreen><verb>
        .import S1, S2
        .export Special
        Special = 2*S1 + S2/7
</verb></tscreen>
        right.
<item>  True lexical nesting for symbols. This is very convenient for larger
        assembly projects.
<item>  "Cheap" local symbols without lexical nesting for those quick, late
        night hacks.
<item>  I liked the idea of "options" as Anre Fachats .o65 format has it, so I
        introduced the concept into the object file format use by the new cc65
        binutils.
<item>  The assembler will be a one pass assembler. There was no real need for
        this decision, but I've written several multipass assemblers, and it
        started to get boring. A one pass assembler needs much more elaborated
        data structures, and because of that it's much more fun:-)
<item>  Non-GPLed code that may be used in any project without restrictions or
        fear of "GPL infecting" other code.
</itemize>
<p>


<sect>Usage<p>


<sect1>Command line option overview<p>

The assembler accepts the following options:

<tscreen><verb>
---------------------------------------------------------------------------
Usage: ca65 [options] file
Short options:
  -D name[=value]               Define a symbol
  -I dir                        Set an include directory search path
  -U                            Mark unresolved symbols as import
  -V                            Print the assembler version
  -W n                          Set warning level n
  -d                            Debug mode
  -g                            Add debug info to object file
  -h                            Help (this text)
  -i                            Ignore case of symbols
  -l name                       Create a listing file if assembly was ok
  -mm model                     Set the memory model
  -o name                       Name the output file
  -s                            Enable smart mode
  -t sys                        Set the target system
  -v                            Increase verbosity

Long options:
  --auto-import                 Mark unresolved symbols as import
  --bin-include-dir dir         Set a search path for binary includes
  --cpu type                    Set cpu type
  --create-dep name             Create a make dependency file
  --create-full-dep name        Create a full make dependency file
  --debug                       Debug mode
  --debug-info                  Add debug info to object file
  --feature name                Set an emulation feature
  --help                        Help (this text)
  --ignore-case                 Ignore case of symbols
  --include-dir dir             Set an include directory search path
  --large-alignment             Don't warn about large alignments
  --listing name                Create a listing file if assembly was ok
  --list-bytes n                Maximum number of bytes per listing line
  --memory-model model          Set the memory model
  --pagelength n                Set the page length for the listing
  --relax-checks                Relax some checks (see docs)
  --smart                       Enable smart mode
  --target sys                  Set the target system
  --verbose                     Increase verbosity
  --version                     Print the assembler version
---------------------------------------------------------------------------
</verb></tscreen>


<sect1>Command line options in detail<p>

Here is a description of all the command line options:

<descrip>

  <label id="option--bin-include-dir">
  <tag><tt>--bin-include-dir dir</tt></tag>

  Name a directory which is searched for binary include files. The option
  may be used more than once to specify more than one directory to search. The
  current directory is always searched first before considering any
  additional directories. See also the section about <ref id="search-paths"
  name="search paths">.


  <label id="option--cpu">
  <tag><tt>--cpu type</tt></tag>

  Set the default for the CPU type. The option takes a parameter, which
  may be one of

        6502, 6502X, 65SC02, 65C02, 65816, sweet16, HuC6280, 4510


  <label id="option-create-dep">
  <tag><tt>--create-dep name</tt></tag>

  Tells the assembler to generate a file containing the dependency list for
  the assembled module in makefile syntax. The output is written to a file
  with the given name. The output does not include files passed via debug
  information to the assembler.


  <label id="option-create-full-dep">
  <tag><tt>--create-full-dep name</tt></tag>

  Tells the assembler to generate a file containing the dependency list for
  the assembled module in makefile syntax. The output is written to a file
  with the given name. The output does include files passed via debug
  information to the assembler.


  <tag><tt>-d, --debug</tt></tag>

  Enables debug mode, something that should not be needed for mere
  mortals:-)


  <label id="option--feature">
  <tag><tt>--feature name</tt></tag>

  Enable an emulation feature. This is identical as using <tt/.FEATURE/
  in the source with two exceptions: Feature names must be lower case, and
  each feature must be specified by using an extra <tt/--feature/ option,
  comma separated lists are not allowed.

  See the discussion of the <tt><ref id=".FEATURE" name=".FEATURE"></tt>
  command for a list of emulation features.


  <label id="option-g">
  <tag><tt>-g, --debug-info</tt></tag>

  When this option (or the equivalent control command <tt/.DEBUGINFO/) is
  used, the assembler will add a section to the object file that contains
  all symbols (including local ones) together with the symbol values and
  source file positions. The linker will put these additional symbols into
  the VICE label file, so even local symbols can be seen in the VICE
  monitor.


  <label id="option-h">
  <tag><tt>-h, --help</tt></tag>

  Print the short option summary shown above.


  <label id="option-i">
  <tag><tt>-i, --ignore-case</tt></tag>

  This option makes the assembler case insensitive on identifiers and labels.
  This option will override the default, but may itself be overridden by the
  <tt><ref id=".CASE" name=".CASE"></tt> control command.


  <label id="option-l">
  <tag><tt>-l name, --listing name</tt></tag>

  Generate an assembler listing with the given name. A listing file will
  never be generated in case of assembly errors.


  <label id="option--large-alignment">
  <tag><tt>--large-alignment</tt></tag>

  Disable warnings about a large combined alignment. See the discussion of the
  <tt><ref id=".ALIGN" name=".ALIGN"></tt> directive for further information.


  <label id="option--list-bytes">
  <tag><tt>--list-bytes n</tt></tag>

  Set the maximum number of bytes printed in the listing for one line of
  input. See the <tt><ref id=".LISTBYTES" name=".LISTBYTES"></tt> directive
  for more information. The value zero can be used to encode an unlimited
  number of printed bytes.


  <label id="option-mm">
  <tag><tt>-mm model, --memory-model model</tt></tag>

  Define the default memory model. Possible model specifiers are near, far and
  huge.


  <label id="option-o">
  <tag><tt>-o name</tt></tag>

  The default output name is the name of the input file with the extension
  replaced by ".o". If you don't like that, you may give another name with
  the -o option. The output file will be placed in the same directory as
  the source file, or, if -o is given, the full path in this name is used.


  <label id="option--pagelength">
  <tag><tt>--pagelength n</tt></tag>

  sets the length of a listing page in lines. See the <tt><ref
  id=".PAGELENGTH" name=".PAGELENGTH"></tt> directive for more information.


  <label id="option--relax-checks">
  <tag><tt>--relax-checks</tt></tag>

  Relax some checks done by the assembler. This will allow code that is an
  error in most cases and flagged as such by the assembler, but can be valid
  in special situations.

  Examples are:
<itemize>
<item>Short branches between two different segments.
<item>Byte sized address loads where the address is not a zeropage address.
</itemize>


  <label id="option-s">
  <tag><tt>-s, --smart-mode</tt></tag>

  In smart mode (enabled by -s or the <tt><ref id=".SMART" name=".SMART"></tt>
  pseudo instruction) the assembler will track usage of the <tt/REP/ and
  <tt/SEP/ instructions in 65816 mode and update the operand sizes
  accordingly. If the operand of such an instruction cannot be evaluated by
  the assembler (for example, because the operand is an imported symbol), a
  warning is issued.

  Beware: Since the assembler cannot trace the execution flow this may
  lead to false results in some cases. If in doubt, use the .ixx and .axx
  instructions to tell the assembler about the current settings. Smart
  mode is off by default.


  <label id="option-t">
  <tag><tt>-t sys, --target sys</tt></tag>

  Set the target system. This will enable translation of character strings and
  character constants into the character set of the target platform. The
  default for the target system is "none", which means that no translation
  will take place. The assembler supports the same target systems as the
  compiler, see there for a list.

  Depending on the target, the default CPU type is also set. This can be
  overriden by using the <tt/<ref id="option--cpu" name="--cpu">/ option.


  <label id="option-v">
  <tag><tt>-v, --verbose</tt></tag>

  Increase the assembler verbosity. Usually only needed for debugging
  purposes. You may use this option more than one time for even more
  verbose output.


  <label id="option-D">
  <tag><tt>-D</tt></tag>

  This option allows you to define symbols on the command line. Without a
  value, the symbol is defined with the value zero. When giving a value,
  you may use the '&dollar;' prefix for hexadecimal symbols. Please note
  that for some operating systems, '&dollar;' has a special meaning, so
  you may have to quote the expression.


  <label id="option-I">
  <tag><tt>-I dir, --include-dir dir</tt></tag>

  Name a directory which is searched for include files. The option may be
  used more than once to specify more than one directory to search. The
  current directory is always searched first before considering any
  additional directories. See also the section about <ref id="search-paths"
  name="search paths">.


  <label id="option-U">
  <tag><tt>-U, --auto-import</tt></tag>

  Mark symbols that are not defined in the sources as imported symbols. This
  should be used with care since it delays error messages about typos and such
  until the linker is run. The compiler uses the equivalent of this switch
  (<tt><ref id=".AUTOIMPORT" name=".AUTOIMPORT"></tt>) to enable auto imported
  symbols for the runtime library. However, the compiler is supposed to
  generate code that runs through the assembler without problems, something
  which is not always true for assembler programmers.


  <label id="option-V">
  <tag><tt>-V, --version</tt></tag>

  Print the version number of the assembler. If you send any suggestions
  or bugfixes, please include the version number.


  <label id="option-W">
  <tag><tt>-Wn</tt></tag>

  Set the warning level for the assembler. Using -W2 the assembler will
  even warn about such things like unused imported symbols. The default
  warning level is 1, and it would probably be silly to set it to
  something lower.

</descrip>
<p>



<sect>Search paths<label id="search-paths"><p>

Normal include files are searched in the following places:

<enum>
<item>The current file's directory.
<item>Any directory added with the <tt/<ref id="option-I" name="-I">/ option
on the command line.
<item>The value of the environment variable <tt/CA65_INC/ if it is defined.
<item>A subdirectory named <tt/asminc/ of the directory defined in the
      environment variable <tt/CC65_HOME/, if it is defined.
<item>An optionally compiled-in directory.
</enum>

Binary include files are searched in the following places:

<enum>
<item>The current file's directory.
<item>Any directory added with the <tt/<ref id="option--bin-include-dir"
name="--bin-include-dir">/ option on the command line.
</enum>



<sect>Input format<p>

<sect1>Assembler syntax<p>

The assembler accepts the standard 6502/65816 assembler syntax. One line may
contain a label (which is identified by a colon), and, in addition to the
label, an assembler mnemonic, a macro, or a control command (see section <ref
id="control-commands" name="Control Commands"> for supported control
commands). Alternatively, the line may contain a symbol definition using
the '=' token. Everything after a semicolon is handled as a comment (that is,
it is ignored).

Here are some examples for valid input lines:

<tscreen><verb>
        Label:                          ; A label and a comment
                lda     #$20            ; A 6502 instruction plus comment
        L1:     ldx     #$20            ; Same with label
        L2:     .byte   "Hello world"   ; Label plus control command
                mymac   $20             ; Macro expansion
                MySym = 3*L1            ; Symbol definition
        MaSym   = Label                 ; Another symbol
</verb></tscreen>

The assembler accepts

<itemize>
<item>all valid 6502 mnemonics when in 6502 mode (the default or after the
      <tt><ref id=".P02" name=".P02"></tt> command was given).
<item>all valid 6502 mnemonics plus a set of illegal instructions when in
      <ref id="6502X-mode" name="6502X mode">.
<item>all valid 65SC02 mnemonics when in 65SC02 mode (after the
      <tt><ref id=".PSC02" name=".PSC02"></tt> command was given).
<item>all valid 65C02 mnemonics when in 65C02 mode (after the
      <tt><ref id=".PC02" name=".PC02"></tt> command was given).
<item>all valid 65816 mnemonics when in 65816 mode (after the
      <tt><ref id=".P816" name=".P816"></tt> command was given).
<item>all valid 4510 mnemonics when in 4510 mode (after the
      <tt><ref id=".P4510" name=".P4510"></tt> command was given).
</itemize>


<sect1>65816 mode<p>

In 65816 mode, several aliases are accepted, in addition to the official
mnemonics:

<itemize>
<item><tt>CPA</tt> is an alias for <tt>CMP</tt>
<item><tt>DEA</tt> is an alias for <tt>DEC A</tt>
<item><tt>INA</tt> is an alias for <tt>INC A</tt>
<item><tt>SWA</tt> is an alias for <tt>XBA</tt>
<item><tt>TAD</tt> is an alias for <tt>TCD</tt>
<item><tt>TAS</tt> is an alias for <tt>TCS</tt>
<item><tt>TDA</tt> is an alias for <tt>TDC</tt>
<item><tt>TSA</tt> is an alias for <tt>TSC</tt>
</itemize>


<sect1>6502X mode<label id="6502X-mode"><p>

6502X mode is an extension to the normal 6502 mode. In this mode, several
mnemonics for illegal instructions of the NMOS 6502 CPUs are accepted. Since
these instructions are illegal, there are no official mnemonics for them. The
unofficial ones are taken from <url
url="http://www.oxyron.de/html/opcodes02.html">. Please note that only the
ones marked as "stable" are supported. The following table uses information
from the mentioned web page, for more information, see there.

<itemize>
<item><tt>ALR: A:=(A and #{imm})/2;</tt>
<item><tt>ANC: A:=A and #{imm};</tt> Generates opcode &dollar;0B.
<item><tt>ARR: A:=(A and #{imm})/2;</tt>
<item><tt>AXS: X:=A and X-#{imm};</tt>
<item><tt>DCP: {adr}:={adr}-1; A-{adr};</tt>
<item><tt>ISC: {adr}:={adr}+1; A:=A-{adr};</tt>
<item><tt>LAS: A,X,S:={adr} and S;</tt>
<item><tt>LAX: A,X:={adr};</tt>
<item><tt>RLA: {adr}:={adr}rol; A:=A and {adr};</tt>
<item><tt>RRA: {adr}:={adr}ror; A:=A adc {adr};</tt>
<item><tt>SAX: {adr}:=A and X;</tt>
<item><tt>SLO: {adr}:={adr}*2; A:=A or {adr};</tt>
<item><tt>SRE: {adr}:={adr}/2; A:=A xor {adr};</tt>
</itemize>


<sect1>4510 mode<p>

The 4510 is a microcontroller that is the core of the Commodore C65 aka C64DX.
It contains among other functions a slightly modified 65CE02/4502 CPU, to allow
address mapping for 20 bits of address space (1 megabyte addressable area).
As compared to the description of the CPU in the
<url url="http://www.zimmers.net/anonftp/pub/cbm/c65/c65manualupdated.txt.gz"
name="C65 System Specification">
<url url="https://raw.githubusercontent.com/MEGA65/c65-specifications/master/c65manualupdated.txt"
name="(updated version)"> uses these changes:
<itemize>
<item><tt>LDA (d,SP),Y</tt> may also be written as <tt>LDA (d,S),Y</tt>
(matching the 65816 notataion).
<item>All branch instruction allow now 16 bit offsets. To use a 16 bit
branch you have to prefix these with an "L" (e.g. "<tt>LBNE</tt>" instead of
"<tt>BNE</tt>"). This might change at a later implementation of the assembler.
</itemize>
For more information about the Commodore C65/C64DX and the 4510 CPU, see
<url url="http://www.zimmers.net/anonftp/pub/cbm/c65/"> and
<url url="https://en.wikipedia.org/wiki/Commodore_65" name="Wikipedia">.


<sect1>sweet16 mode<label id="sweet16-mode"><p>

SWEET 16 is an interpreter for a pseudo 16 bit CPU written by Steve Wozniak
for the Apple ][ machines. It is available in the Apple ][ ROM. ca65 can
generate code for this pseudo CPU when switched into sweet16 mode. The
following is special in sweet16 mode:

<itemize>

<item>The '@' character denotes indirect addressing and is no longer available
for cheap local labels. If you need cheap local labels, you will have to
switch to another lead character using the <tt/<ref id=".LOCALCHAR"
name=".LOCALCHAR">/ command.

<item>Registers are specified using <tt/R0/ .. <tt/R15/. In sweet16 mode,
these identifiers are reserved words.

</itemize>

Please note that the assembler does neither supply the interpreter needed for
SWEET 16 code, nor the zero page locations needed for the SWEET 16 registers,
nor does it call the interpreter. All this must be done by your program. Apple
][ programmers do probably know how to use sweet16 mode.

For more information about SWEET 16, see
<url url="http://www.6502.org/source/interpreters/sweet16.htm">.


<sect1>Number format<p>

For literal values, the assembler accepts the widely used number formats: A
preceding '&dollar;' or a trailing 'h' denotes a hex value, a preceding '%'
denotes a binary value, and a bare number is interpreted as a decimal. There
are currently no octal values and no floats.


<sect1>Conditional assembly<p>

Please note that when using the conditional directives (<tt/.IF/ and friends),
the input must consist of valid assembler tokens, even in <tt/.IF/ branches
that are not assembled. The reason for this behaviour is that the assembler
must still be able to detect the ending tokens (like <tt/.ENDIF/), so
conversion of the input stream into tokens still takes place. As a consequence
conditional assembly directives may <bf/not/ be used to prevent normal text
(used as a comment or similar) from being assembled. <p>


<sect>Expressions<p>


<sect1>Expression evaluation<p>

All expressions are evaluated with (at least) 32 bit precision. An
expression may contain constant values and any combination of internal and
external symbols. Expressions that cannot be evaluated at assembly time
are stored inside the object file for evaluation by the linker.
Expressions referencing imported symbols must always be evaluated by the
linker.


<sect1>Size of an expression result<p>

Sometimes, the assembler must know about the size of the value that is the
result of an expression. This is usually the case, if a decision has to be
made, to generate a zero page or an absolute memory references. In this
case, the assembler has to make some assumptions about the result of an
expression:

<itemize>
<item>  If the result of an expression is constant, the actual value is
        checked to see if it's a byte sized expression or not.
<item>  If the expression is explicitly casted to a byte sized expression by
        one of the '&gt;', '&lt;' or '^' operators, it is a byte expression.
<item>  If this is not the case, and the expression contains a symbol,
        explicitly declared as zero page symbol (by one of the .importzp or
        .exportzp instructions), then the whole expression is assumed to be
        byte sized.
<item>  If the expression contains symbols that are not defined, and these
        symbols are local symbols, the enclosing scopes are searched for a
        symbol with the same name. If one exists and this symbol is defined,
        its attributes are used to determine the result size.
<item>  In all other cases the expression is assumed to be word sized.
</itemize>

Note: If the assembler is not able to evaluate the expression at assembly
time, the linker will evaluate it and check for range errors as soon as
the result is known.


<sect1>Boolean expressions<p>

In the context of a boolean expression, any non zero value is evaluated as
true, any other value to false. The result of a boolean expression is 1 if
it's true, and zero if it's false. There are boolean operators with extreme
low precedence with version 2.x (where x &gt; 0). The <tt/.AND/ and <tt/.OR/
operators are shortcut operators. That is, if the result of the expression is
already known, after evaluating the left hand side, the right hand side is
not evaluated.


<sect1>Constant expressions<p>

Sometimes an expression must evaluate to a constant without looking at any
further input. One such example is the <tt/<ref id=".IF" name=".IF">/ command
that decides if parts of the code are assembled or not. An expression used in
the <tt/.IF/ command cannot reference a symbol defined later, because the
decision about the <tt/.IF/ must be made at the point when it is read. If the
expression used in such a context contains only constant numerical values,
there is no problem. When unresolvable symbols are involved it may get harder
for the assembler to determine if the expression is actually constant, and it
is even possible to create expressions that aren't recognized as constant.
Simplifying the expressions will often help.

In cases where the result of the expression is not needed immediately, the
assembler will delay evaluation until all input is read, at which point all
symbols are known. So using arbitrary complex constant expressions is no
problem in most cases.



<sect1>Available operators<label id="operators"><p>

<table>
<tabular ca="clc">
<bf/Operator/| <bf/Description/| <bf/Precedence/@<hline>
| Built-in string functions| 0@
||~@
| Built-in pseudo-variables| 1@
| Built-in pseudo-functions| 1@
+| Unary positive| 1@
-| Unary negative| 1@
&tilde;<newline>
.BITNOT| Unary bitwise not| 1@
&lt;<newline>
.LOBYTE| Unary low-byte operator| 1@
&gt;<newline>
.HIBYTE| Unary high-byte operator| 1@
^<newline>
.BANKBYTE| Unary bank-byte operator| 1@
||~@
*| Multiplication| 2@
/| Division| 2@
.MOD| Modulo operator| 2@
&amp;<newline>
.BITAND| Bitwise and| 2@
^<newline>
.BITXOR| Binary bitwise xor| 2@
&lt;&lt;<newline>
.SHL| Shift-left operator| 2@
&gt;&gt;<newline>
.SHR| Shift-right operator| 2@
||~@
+| Binary addition| 3@
-| Binary subtraction| 3@
&verbar;<newline>
.BITOR| Bitwise or| 3@
||~@
= | Compare operator (equal)| 4@
&lt;&gt;| Compare operator (not equal)| 4@
&lt;| Compare operator (less)| 4@
&gt;| Compare operator (greater)| 4@
&lt;=| Compare operator (less or equal)| 4@
&gt;=| Compare operator (greater or equal)| 4@
||~@
&amp;&amp;<newline>
.AND| Boolean and| 5@
.XOR| Boolean xor| 5@
||~@
&verbar;&verbar;<newline>
.OR| Boolean or| 6@
||~@
!<newline>
.NOT| Boolean not| 7@<hline>
</tabular>
<caption>Available operators, sorted by precedence
</table>

To force a specific order of evaluation, parentheses may be used, as usual.



<sect>Symbols and labels<p>

A symbol or label is an identifier that starts with a letter and is followed
by letters and digits. Depending on some features enabled (see
<tt><ref id="at_in_identifiers" name="at_in_identifiers"></tt>,
<tt><ref id="dollar_in_identifiers" name="dollar_in_identifiers"></tt> and
<tt><ref id="leading_dot_in_identifiers" name="leading_dot_in_identifiers"></tt>)
other characters may be present. Use of identifiers consisting of a single
character will not work in all cases, because some of these identifiers are
reserved keywords (for example "A" is not a valid identifier for a label,
because it is the keyword for the accumulator).

The assembler allows you to use symbols instead of naked values to make
the source more readable. There are a lot of different ways to define and
use symbols and labels, giving a lot of flexibility.

<sect1>Numeric constants<p>

Numeric constants are defined using the equal sign or the label assignment
operator. After doing

<tscreen><verb>
        two = 2
</verb></tscreen>

may use the symbol "two" in every place where a number is expected, and it is
evaluated to the value 2 in this context. The label assignment operator is
almost identical, but causes the symbol to be marked as a label, so it may be
handled differently in a debugger:

<tscreen><verb>
        io := $d000
</verb></tscreen>

The right side can of course be an expression:

<tscreen><verb>
        four = two * two
</verb></tscreen>


<label id="variables">
<sect1>Numeric variables<p>

Within macros and other control structures (<tt><ref id=".REPEAT"
name=".REPEAT"></tt>, ...) it is sometimes useful to have some sort of
variable. This can be achieved by the <tt>.SET</tt> operator. It creates a
symbol that may get assigned a different value later:

<tscreen><verb>
        four .set 4
        lda     #four           ; Loads 4 into A
        four .set 3
        lda     #four           ; Loads 3 into A
</verb></tscreen>

Since the value of the symbol can change later, it must be possible to
evaluate it when used (no delayed evaluation as with normal symbols). So the
expression used as the value must be constant.

Following is an example for a macro that generates a different label each time
it is used. It uses the <tt><ref id=".SPRINTF" name=".SPRINTF"></tt> function
and a numeric variable named <tt>lcount</tt>.

<tscreen><verb>
        .lcount .set 0          ; Initialize the counter

        .macro  genlab
                .ident (.sprintf ("L%04X", lcount)):
                lcount .set lcount + 1
        .endmacro
</verb></tscreen>


<sect1>Standard labels<p>

A label is defined by writing the name of the label at the start of the line
(before any instruction mnemonic, macro or pseudo directive), followed by a
colon. This will declare a symbol with the given name and the value of the
current program counter.


<sect1>Local labels and symbols<p>

Using the <tt><ref id=".PROC" name=".PROC"></tt> directive, it is possible to
create regions of code where the names of labels and symbols are local to this
region. They are not known outside of this region and cannot be accessed from
there. Such regions may be nested like PROCEDUREs in Pascal.

See the description of the <tt><ref id=".PROC" name=".PROC"></tt>
directive for more information.


<sect1>Cheap local labels<p>

Cheap local labels are defined like standard labels, but the name of the
label must begin with a special symbol (usually '@', but this can be
changed by the <tt><ref id=".LOCALCHAR" name=".LOCALCHAR"></tt>
directive).

Cheap local labels are visible only between two non cheap labels. As soon as a
standard symbol is encountered (this may also be a local symbol if inside a
region defined with the <tt><ref id=".PROC" name=".PROC"></tt> directive), the
cheap local symbol goes out of scope.

You may use cheap local labels as an easy way to reuse common label
names like "Loop". Here is an example:

<tscreen><verb>
        Clear:  lda    #$00             ; Global label
                ldy    #$20
        @Loop:  sta    Mem,y            ; Local label
                dey
                bne    @Loop            ; Ok
                rts
        Sub:    ...                     ; New global label
                bne    @Loop            ; ERROR: Unknown identifier!
</verb></tscreen>

<sect1>Unnamed labels<p>

If you really want to write messy code, there are also unnamed labels. These
labels do not have a name (you guessed that already, didn't you?). A colon is
used to mark the absence of the name.

Unnamed labels may be accessed by using the colon plus several minus or plus
characters as a label designator. Using the '-' characters will create a back
reference (use the n'th label backwards), using '+' will create a forward
reference (use the n'th label in forward direction). An example will help to
understand this:

<tscreen><verb>
        :       lda     (ptr1),y        ; #1
                cmp     (ptr2),y
                bne     :+              ; -> #2
                tax
                beq     :+++            ; -> #4
                iny
                bne     :-              ; -> #1
                inc     ptr1+1
                inc     ptr2+1
                bne     :-              ; -> #1

        :       bcs     :+              ; #2 -> #3
                ldx     #$FF
                rts

        :       ldx     #$01            ; #3
        :       rts                     ; #4
</verb></tscreen>

As you can see from the example, unnamed labels will make even short
sections of code hard to understand, because you have to count labels
to find branch targets (this is the reason why I for my part do
prefer the "cheap" local labels). Nevertheless, unnamed labels are
convenient in some situations, so it's your decision.

<em/Note:/ <ref id="scopes" name="Scopes"> organize named symbols, not
unnamed ones, so scopes don't have an effect on unnamed labels.



<sect1>Using macros to define labels and constants<p>

While there are drawbacks with this approach, it may be handy in a few rare
situations. Using <tt><ref id=".DEFINE" name=".DEFINE"></tt>, it is possible
to define symbols or constants that may be used elsewhere. One of the
advantages is that you can use it to define string constants (this is not
possible with the other symbol types).

Please note: <tt/.DEFINE/ style macros do token replacements on a low level,
so the names do not adhere to scoping, diagnostics may be misleading, there
are no symbols to look up in the map file, and there is no debug info.
Especially the first problem in the list can lead to very nasty programming
errors. Because of these problems, the general advice is, <bf/NOT/ do use
<tt/.DEFINE/ if you don't have to.

Example:

<tscreen><verb>
        .DEFINE two     2
        .DEFINE version "SOS V2.3"

        four = two * two        ; Ok
        .byte   version         ; Ok

        .PROC                   ; Start local scope
        two = 3                 ; Will give "2 = 3" - invalid!
        .ENDPROC
</verb></tscreen>


<sect1>Symbols and <tt>.DEBUGINFO</tt><p>

If <tt><ref id=".DEBUGINFO" name=".DEBUGINFO"></tt> is enabled (or <ref
id="option-g" name="-g"> is given on the command line), global, local and
cheap local labels are written to the object file and will be available in the
symbol file via the linker. Unnamed labels are not written to the object file,
because they don't have a name which would allow to access them.



<sect>Scopes<label id="scopes"><p>

ca65 implements several sorts of scopes for symbols.

<sect1>Global scope<p>

All (non cheap local) symbols that are declared outside of any nested scopes
are in global scope.


<sect1>Cheap locals<p>

A special scope is the scope for cheap local symbols. It lasts from one non
local symbol to the next one, without any provisions made by the programmer.
All other scopes differ in usage but use the same concept internally.


<sect1>Generic nested scopes<p>

A nested scoped for generic use is started with <tt/<ref id=".SCOPE"
name=".SCOPE">/ and closed with <tt/<ref id=".ENDSCOPE" name=".ENDSCOPE">/.
The scope can have a name, in which case it is accessible from the outside by
using <ref id="scopesyntax" name="explicit scopes">. If the scope does not
have a name, all symbols created within the scope are local to the scope, and
aren't accessible from the outside.

A nested scope can access symbols from the local or from enclosing scopes by
name without using explicit scope names. In some cases there may be
ambiguities, for example if there is a reference to a local symbol that is not
yet defined, but a symbol with the same name exists in outer scopes:

<tscreen><verb>
        .scope  outer
                foo     = 2
                .scope  inner
                        lda     #foo
                        foo     = 3
                .endscope
        .endscope
</verb></tscreen>

In the example above, the <tt/lda/ instruction will load the value 3 into the
accumulator, because <tt/foo/ is redefined in the scope. However:

<tscreen><verb>
        .scope  outer
                foo     = $1234
                .scope  inner
                        lda     foo,x
                        foo     = $12
                .endscope
        .endscope
</verb></tscreen>

Here, <tt/lda/ will still load from <tt/$12,x/, but since it is unknown to the
assembler that <tt/foo/ is a zeropage symbol when translating the instruction,
absolute mode is used instead. In fact, the assembler will not use absolute
mode by default, but it will search through the enclosing scopes for a symbol
with the given name. If one is found, the address size of this symbol is used.
This may lead to errors:

<tscreen><verb>
        .scope  outer
                foo     = $12
                .scope  inner
                        lda     foo,x
                        foo     = $1234
                .endscope
        .endscope
</verb></tscreen>

In this case, when the assembler sees the symbol <tt/foo/ in the <tt/lda/
instruction, it will search for an already defined symbol <tt/foo/. It will
find <tt/foo/ in scope <tt/outer/, and a close look reveals that it is a
zeropage symbol. So the assembler will use zeropage addressing mode. If
<tt/foo/ is redefined later in scope <tt/inner/, the assembler tries to change
the address in the <tt/lda/ instruction already translated, but since the new
value needs absolute addressing mode, this fails, and an error message "Range
error" is output.

Of course the most simple solution for the problem is to move the definition
of <tt/foo/ in scope <tt/inner/ upwards, so it precedes its use. There may be
rare cases when this cannot be done. In these cases, you can use one of the
address size override operators:

<tscreen><verb>
        .scope  outer
                foo     = $12
                .scope  inner
                        lda     a:foo,x
                        foo     = $1234
                .endscope
        .endscope
</verb></tscreen>

This will cause the <tt/lda/ instruction to be translated using absolute
addressing mode, which means changing the symbol reference later does not
cause any errors.


<sect1>Nested procedures<p>

A nested procedure is created by use of <tt/<ref id=".PROC" name=".PROC">/. It
differs from a <tt/<ref id=".SCOPE" name=".SCOPE">/ in that it must have a
name, and a it will introduce a symbol with this name in the enclosing scope.
So

<tscreen><verb>
        .proc   foo
                ...
        .endproc
</verb></tscreen>

is actually the same as

<tscreen><verb>
        foo:
        .scope  foo
                ...
        .endscope
</verb></tscreen>

This is the reason why a procedure must have a name. If you want a scope
without a name, use <tt/<ref id=".SCOPE" name=".SCOPE">/.

<em/Note:/ As you can see from the example above, scopes and symbols live in
different namespaces. There can be a symbol named <tt/foo/ and a scope named
<tt/foo/ without any conflicts (but see the section titled <ref
id="scopesearch" name="&quot;Scope search order&quot;">).


<sect1>Structs, unions and enums<p>

Structs, unions and enums are explained in a <ref id="structs" name="separate
section">, I do only cover them here, because if they are declared with a
name, they open a nested scope, similar to <tt/<ref id=".SCOPE"
name=".SCOPE">/. However, when no name is specified, the behaviour is
different: In this case, no new scope will be opened, symbols declared within
a struct, union, or enum declaration will then be added to the enclosing scope
instead.


<sect1>Explicit scope specification<label id="scopesyntax"><p>

Accessing symbols from other scopes is possible by using an explicit scope
specification, provided that the scope where the symbol lives in has a name.
The namespace token (<tt/::/) is used to access other scopes:

<tscreen><verb>
        .scope  foo
        bar:    .word   0
        .endscope

                ...
                lda     foo::bar        ; Access foo in scope bar
</verb></tscreen>

The only way to deny access to a scope from the outside is to declare a scope
without a name (using the <tt/<ref id=".SCOPE" name=".SCOPE">/ command).

A special syntax is used to specify the global scope: If a symbol or scope is
preceded by the namespace token, the global scope is searched:

<tscreen><verb>
        bar     = 3

        .scope  foo
                bar     = 2
                lda     #::bar  ; Access the global bar (which is 3)
        .endscope
</verb></tscreen>


<sect1>Scope search order<label id="scopesearch"><p>

The assembler searches for a scope in a similar way as for a symbol. First, it
looks in the current scope, and then it walks up the enclosing scopes until
the scope is found.

However, one important thing to note when using explicit scope syntax is, that
a symbol may be accessed before it is defined, but a scope may <bf/not/ be
used without a preceding definition. This means that in the following
example:

<tscreen><verb>
        .scope  foo
                bar     = 3
        .endscope

        .scope  outer
                lda     #foo::bar  ; Will load 3, not 2!
                .scope  foo
                        bar     = 2
                .endscope
        .endscope
</verb></tscreen>

the reference to the scope <tt/foo/ will use the global scope, and not the
local one, because the local one is not visible at the point where it is
referenced.

Things get more complex if a complete chain of scopes is specified:

<tscreen><verb>
        .scope  foo
                .scope  outer
                        .scope  inner
                                bar = 1
                        .endscope
                .endscope
                .scope  another
                        .scope  nested
                                lda     #outer::inner::bar      ; 1
                        .endscope
                .endscope
        .endscope

        .scope  outer
                .scope  inner
                        bar = 2
                .endscope
        .endscope
</verb></tscreen>

When <tt/outer::inner::bar/ is referenced in the <tt/lda/ instruction, the
assembler will first search in the local scope for a scope named <tt/outer/.
Since none is found, the enclosing scope (<tt/another/) is checked. There is
still no scope named <tt/outer/, so scope <tt/foo/ is checked, and finally
scope <tt/outer/ is found. Within this scope, <tt/inner/ is searched, and in
this scope, the assembler looks for a symbol named <tt/bar/.

Please note that once the anchor scope is found, all following scopes
(<tt/inner/ in this case) are expected to be found exactly in this scope. The
assembler will search the scope tree only for the first scope (if it is not
anchored in the root scope). Starting from there on, there is no flexibility,
so if the scope named <tt/outer/ found by the assembler does not contain a
scope named <tt/inner/, this would be an error, even if such a pair does exist
(one level up in global scope).

Ambiguities that may be introduced by this search algorithm may be removed by
anchoring the scope specification in the global scope. In the example above,
if you want to access the "other" symbol <tt/bar/, you would have to write:

<tscreen><verb>
        .scope  foo
                .scope  outer
                        .scope  inner
                                bar = 1
                        .endscope
                .endscope
                .scope  another
                        .scope  nested
                                lda     #::outer::inner::bar    ; 2
                        .endscope
                .endscope
        .endscope

        .scope  outer
                .scope  inner
                        bar = 2
                .endscope
        .endscope
</verb></tscreen>


<sect>Address sizes and memory models<label id="address-sizes"><p>

<sect1>Address sizes<p>

ca65 assigns each segment and each symbol an address size. This is true, even
if the symbol is not used as an address. You may also think of a value range
of the symbol instead of an address size.

Possible address sizes are:

<itemize>
<item>Zeropage or direct (8 bits)
<item>Absolute (16 bits)
<item>Far (24 bits)
<item>Long (32 bits)
</itemize>

Since the assembler uses default address sizes for the segments and symbols,
it is usually not necessary to override the default behaviour. In cases, where
it is necessary, the following keywords may be used to specify address sizes:

<itemize>
<item>DIRECT, ZEROPAGE or ZP for zeropage addressing (8 bits).
<item>ABSOLUTE, ABS or NEAR for absolute addressing (16 bits).
<item>FAR for far addressing (24 bits).
<item>LONG or DWORD for long addressing (32 bits).
</itemize>


<sect1>Address sizes of segments<p>

The assembler assigns an address size to each segment. Since the
representation of a label within this segment is "segment start + offset",
labels will inherit the address size of the segment they are declared in.

The address size of a segment may be changed, by using an optional address
size modifier. See the <tt/<ref id=".SEGMENT" name="segment directive">/ for
an explanation on how this is done.


<sect1>Address sizes of symbols<p>

The address size of a symbol can be specified with a prefix:

<itemize>
<item>z: zeropage addressing (8 bits).
<item>a: absolute addressing (16 bits).
<item>f: far addressing (24 bits).
</itemize>

The zeropage addressing override can be used to ensure the use of optimal
zeropage instructions, or correct cases where the size isn't yet known
due to the single-pass assembly model.

The larger addressing overrides can be used to promote a smaller address
to absolute or far addressing, instead of being automatically fit into
a smaller addressing type.


<sect1>Memory models<p>

The default address size of a segment depends on the memory model used. Since
labels inherit the address size from the segment they are declared in,
changing the memory model is an easy way to change the address size of many
symbols at once.




<sect>Pseudo variables<label id="pseudo-variables"><p>

Pseudo variables are readable in all cases, and in some special cases also
writable.

<sect1><tt>*</tt><p>

  Reading this pseudo variable will return the program counter at the start
  of the current input line.

  Assignment to this variable is possible when <tt/<ref id=".FEATURE"
  name=".FEATURE pc_assignment">/ is used. Note: You should not use
  assignments to <tt/*/, use <tt/<ref id=".ORG" name=".ORG">/ instead.


<sect1><tt>.ASIZE</tt><label id=".ASIZE"><p>

  Reading this pseudo variable will return the current size of the
  Accumulator in bits.

  For the 65816 instruction set .ASIZE will return either 8 or 16, depending
  on the current size of the operand in immediate accu addressing mode.

  For all other CPU instruction sets, .ASIZE will always return 8.

  Example:

  <tscreen><verb>
        ; Reverse Subtract with Accumulator
        ; A = memory - A
        .macro rsb param
                .if .asize = 8
                        eor     #$ff
                .else
                        eor     #$ffff
                .endif
                sec
                adc     param
        .endmacro
  </verb></tscreen>

  See also: <tt><ref id=".ISIZE" name=".ISIZE"></tt>


<sect1><tt>.CPU</tt><label id=".CPU"><p>

  Reading this pseudo variable will give a constant integer value that
  tells which CPU is currently enabled. It can also tell which instruction
  set the CPU is able to translate. The value read from the pseudo variable
  should be further examined by using one of the constants defined by the
  "cpu" macro package (see <tt/<ref id=".MACPACK" name=".MACPACK">/).

  It may be used to replace the .IFPxx pseudo instructions or to construct
  even more complex expressions.

  Example:

  <tscreen><verb>
        .macpack        cpu
        .if     (.cpu .bitand CPU_ISET_65816)
                phx
                phy
        .else
                txa
                pha
                tya
                pha
        .endif
  </verb></tscreen>


<sect1><tt>.ISIZE</tt><label id=".ISIZE"><p>

  Reading this pseudo variable will return the current size of the Index
  register in bits.

  For the 65816 instruction set .ISIZE will return either 8 or 16, depending
  on the current size of the operand in immediate index addressing mode.

  For all other CPU instruction sets, .ISIZE will always return 8.

  See also: <tt><ref id=".ASIZE" name=".ASIZE"></tt>


<sect1><tt>.PARAMCOUNT</tt><label id=".PARAMCOUNT"><p>

  This builtin pseudo variable is only available in macros. It is replaced by
  the actual number of parameters that were given in the macro invocation.

  Example:

  <tscreen><verb>
        .macro  foo     arg1, arg2, arg3
        .if     .paramcount <> 3
        .error  "Too few parameters for macro foo"
        .endif
        ...
        .endmacro
  </verb></tscreen>

  See section <ref id="macros" name="Macros">.


<sect1><tt>.TIME</tt><label id=".TIME"><p>

  Reading this pseudo variable will give a constant integer value that
  represents the current time in POSIX standard (as seconds since the
  Epoch).

  It may be used to encode the time of translation somewhere in the created
  code.

  Example:

  <tscreen><verb>
        .dword  .time   ; Place time here
  </verb></tscreen>


<sect1><tt>.VERSION</tt><label id=".VERSION"><p>

  Reading this pseudo variable will give the assembler version according to
  the following formula:

        VER_MAJOR*$100 + VER_MINOR*$10

  It may be used to encode the assembler version or check the assembler for
  special features not available with older versions.

  Example:

  Version 2.14 of the assembler will return $2E0 as numerical constant when
  reading the pseudo variable <tt/.VERSION/.



<sect>Pseudo functions<label id="pseudo-functions"><p>

Pseudo functions expect their arguments in parenthesis, and they have a result,
either a string or an expression.


<sect1><tt>.ADDRSIZE</tt><label id=".ADDRSIZE"><p>

  The <tt/.ADDRSIZE/ function is used to return the interal address size
  associated with a symbol. This can be helpful in macros when knowing the address
  size of symbol can help with custom instructions.

  Example:

  <tscreen><verb>
        .macro myLDA foo
                .if .ADDRSIZE(foo) = 1
                        ;do custom command based on zeropage addressing:
                        .byte 0A5h, foo
                .elseif .ADDRSIZE(foo) = 2
                        ;do custom command based on absolute addressing:
                        .byte 0ADh
                        .word foo
                .elseif .ADDRSIZE(foo) = 0
                        ; no address size defined for this symbol:
                        .out .sprintf("Error, address size unknown for symbol %s", .string(foo))
                .endif
        .endmacro
  </verb></tscreen>

  This command is new and must be enabled with the <tt/.FEATURE addrsize/ command.

  See: <tt><ref id=".FEATURE" name=".FEATURE"></tt>


<sect1><tt>.BANK</tt><label id=".BANK"><p>

  The <tt/.BANK/ function is used to support systems with banked memory. The
  argument is an expression with exactly one segment reference - usually a
  label. The function result is the value of the <tt/bank/ attribute assigned
  to the run memory area of the segment. Please see the linker documentation
  for more information about memory areas and their attributes.

  The value of <tt/.BANK/ can be used to switch memory so that a memory bank
  containing specific data is available.

  The <tt/bank/ attribute is a 32 bit integer and so is the result of the
  <tt/.BANK/ function. You will have to use <tt><ref id=".LOBYTE"
  name=".LOBYTE"></tt> or similar functions to address just part of it.

  Please note that <tt/.BANK/ will always get evaluated in the link stage, so
  an expression containing <tt/.BANK/ can never be used where a constant known
  result is expected (for example with <tt/.RES/).

  Example:

  <tscreen><verb>
        .segment "BANK1"
        .proc   banked_func_1
                ...
        .endproc

        .segment "BANK2"
        .proc   banked_func_2
                ...
        .endproc

        .proc   bank_table
                .addr   banked_func_1
                .byte   <.BANK (banked_func_1)

                .addr   banked_func_2
                .byte   <.BANK (banked_func_2)
        .endproc
  </verb></tscreen>



<sect1><tt>.BANKBYTE</tt><label id=".BANKBYTE"><p>

  The function returns the bank byte (that is, bits 16-23) of its argument.
  It works identical to the '^' operator.

  See: <tt><ref id=".HIBYTE" name=".HIBYTE"></tt>,
       <tt><ref id=".LOBYTE" name=".LOBYTE"></tt>


<sect1><tt>.BLANK</tt><label id=".BLANK"><p>

  Builtin function. The function evaluates its argument in braces and yields
  "false" if the argument is non blank (there is an argument), and "true" if
  there is no argument.  The token list that makes up the function argument
  may optionally be enclosed in curly braces. This allows the inclusion of
  tokens that would otherwise terminate the list (the closing right
  parenthesis). The curly braces are not considered part of the list, a list
  just consisting of curly braces is considered to be empty.

  As an example, the <tt/.IFBLANK/ statement may be replaced by

  <tscreen><verb>
        .if     .blank({arg})
  </verb></tscreen>



<sect1><tt>.CONCAT</tt><label id=".CONCAT"><p>

  Builtin string function. The function allows to concatenate a list of string
  constants separated by commas. The result is a string constant that is the
  concatenation of all arguments. This function is most useful in macros and
  when used together with the <tt/.STRING/ builtin function. The function may
  be used in any case where a string constant is expected.

  Example:

  <tscreen><verb>
        .include        .concat ("myheader", ".", "inc")
  </verb></tscreen>

  This is the same as the command

  <tscreen><verb>
        .include        "myheader.inc"
  </verb></tscreen>


<sect1><tt>.CONST</tt><label id=".CONST"><p>

  Builtin function. The function evaluates its argument in braces and
  yields "true" if the argument is a constant expression (that is, an
  expression that yields a constant value at assembly time) and "false"
  otherwise. As an example, the .IFCONST statement may be replaced by

  <tscreen><verb>
        .if     .const(a + 3)
  </verb></tscreen>


<sect1><tt>.HIBYTE</tt><label id=".HIBYTE"><p>

  The function returns the high byte (that is, bits 8-15) of its argument.
  It works identical to the '>' operator.

  See: <tt><ref id=".LOBYTE" name=".LOBYTE"></tt>,
       <tt><ref id=".BANKBYTE" name=".BANKBYTE"></tt>


<sect1><tt>.HIWORD</tt><label id=".HIWORD"><p>

  The function returns the high word (that is, bits 16-31) of its argument.

  See: <tt><ref id=".LOWORD" name=".LOWORD"></tt>


<sect1><tt>.IDENT</tt><label id=".IDENT"><p>

  The function expects a string as its argument, and converts this argument
  into an identifier. If the string starts with the current <tt/<ref
  id=".LOCALCHAR" name=".LOCALCHAR">/, it will be converted into a cheap local
  identifier, otherwise it will be converted into a normal identifier.

  Example:

  <tscreen><verb>
        .macro  makelabel       arg1, arg2
                .ident (.concat (arg1, arg2)):
        .endmacro

                makelabel       "foo", "bar"

                .word           foobar          ; Valid label
  </verb></tscreen>


<sect1><tt>.LEFT</tt><label id=".LEFT"><p>

  Builtin function. Extracts the left part of a given token list.

  Syntax:

  <tscreen><verb>
        .LEFT (&lt;int expr&gt;, &lt;token list&gt;)
  </verb></tscreen>

  The first integer expression gives the number of tokens to extract from
  the token list. The second argument is the token list itself. The token
  list may optionally be enclosed into curly braces. This allows the
  inclusion of tokens that would otherwise terminate the list (the closing
  right paren in the given case).

  Example:

  To check in a macro if the given argument has a '#' as first token
  (immediate addressing mode), use something like this:

  <tscreen><verb>
        .macro  ldax    arg
                ...
                .if (.match (.left (1, {arg}), #))

                ; ldax called with immediate operand
                ...

                .endif
                ...
        .endmacro
  </verb></tscreen>

  See also the <tt><ref id=".MID" name=".MID"></tt> and <tt><ref id=".RIGHT"
  name=".RIGHT"></tt> builtin functions.


<sect1><tt>.LOBYTE</tt><label id=".LOBYTE"><p>

  The function returns the low byte (that is, bits 0-7) of its argument.
  It works identical to the '<' operator.

  See: <tt><ref id=".HIBYTE" name=".HIBYTE"></tt>,
       <tt><ref id=".BANKBYTE" name=".BANKBYTE"></tt>


<sect1><tt>.LOWORD</tt><label id=".LOWORD"><p>

  The function returns the low word (that is, bits 0-15) of its argument.

  See: <tt><ref id=".HIWORD" name=".HIWORD"></tt>


<sect1><tt>.MATCH</tt><label id=".MATCH"><p>

  Builtin function. Matches two token lists against each other. This is
  most useful within macros, since macros are not stored as strings, but
  as lists of tokens.

  The syntax is

  <tscreen><verb>
        .MATCH(&lt;token list #1&gt;, &lt;token list #2&gt;)
  </verb></tscreen>

  Both token list may contain arbitrary tokens with the exception of the
  terminator token (comma resp. right parenthesis) and

  <itemize>
  <item>end-of-line
  <item>end-of-file
  </itemize>

  The token lists may optionally be enclosed into curly braces. This allows
  the inclusion of tokens that would otherwise terminate the list (the closing
  right paren in the given case). Often a macro parameter is used for any of
  the token lists.

  Please note that the function does only compare tokens, not token
  attributes. So any number is equal to any other number, regardless of the
  actual value. The same is true for strings. If you need to compare tokens
  <em/and/ token attributes, use the <tt><ref id=".XMATCH"
  name=".XMATCH"></tt> function.

  Example:

  Assume the macro <tt/ASR/, that will shift right the accumulator by one,
  while honoring the sign bit. The builtin processor instructions will allow
  an optional "A" for accu addressing for instructions like <tt/ROL/ and
  <tt/ROR/. We will use the <tt><ref id=".MATCH" name=".MATCH"></tt> function
  to check for this and print and error for invalid calls.

  <tscreen><verb>
        .macro  asr     arg

                .if (.not .blank(arg)) .and (.not .match ({arg}, a))
                .error "Syntax error"
                .endif

                cmp     #$80            ; Bit 7 into carry
                lsr     a               ; Shift carry into bit 7

        .endmacro
  </verb></tscreen>

  The macro will only accept no arguments, or one argument that must be the
  reserved keyword "A".

  See: <tt><ref id=".XMATCH" name=".XMATCH"></tt>


<sect1><tt>.MAX</tt><label id=".MAX"><p>

  Builtin function. The result is the larger of two values.

  The syntax is

  <tscreen><verb>
        .MAX (&lt;value #1&gt;, &lt;value #2&gt;)
  </verb></tscreen>

  Example:

  <tscreen><verb>
        ; Reserve space for the larger of two data blocks
        savearea:       .res .max (.sizeof (foo), .sizeof (bar))
  </verb></tscreen>

  See: <tt><ref id=".MIN" name=".MIN"></tt>


<sect1><tt>.MID</tt><label id=".MID"><p>

  Builtin function. Takes a starting index, a count and a token list as
  arguments. Will return part of the token list.

  Syntax:

  <tscreen><verb>
        .MID (&lt;int expr&gt;, &lt;int expr&gt;, &lt;token list&gt;)
  </verb></tscreen>

  The first integer expression gives the starting token in the list (the first
  token has index 0). The second integer expression gives the number of tokens
  to extract from the token list. The third argument is the token list itself.
  The token list may optionally be enclosed into curly braces. This allows the
  inclusion of tokens that would otherwise terminate the list (the closing
  right paren in the given case).

  Example:

  To check in a macro if the given argument has a '<tt/#/' as first token
  (immediate addressing mode), use something like this:

    <tscreen><verb>
        .macro  ldax    arg
                ...
                .if (.match (.mid (0, 1, {arg}), #))

                ; ldax called with immediate operand
                ...

                .endif
                ...
        .endmacro
  </verb></tscreen>

  See also the <tt><ref id=".LEFT" name=".LEFT"></tt> and <tt><ref id=".RIGHT"
  name=".RIGHT"></tt> builtin functions.


<sect1><tt>.MIN</tt><label id=".MIN"><p>

  Builtin function. The result is the smaller of two values.

  The syntax is

  <tscreen><verb>
        .MIN (&lt;value #1&gt;, &lt;value #2&gt;)
  </verb></tscreen>

  Example:

  <tscreen><verb>
        ; Reserve space for some data, but 256 bytes maximum
        savearea:       .res .min (.sizeof (foo), 256)
  </verb></tscreen>

  See: <tt><ref id=".MAX" name=".MAX"></tt>


<sect1><tt>.REF, .REFERENCED</tt><label id=".REFERENCED"><p>

  Builtin function. The function expects an identifier as argument in braces.
  The argument is evaluated, and the function yields "true" if the identifier
  is a symbol that has already been referenced somewhere in the source file up
  to the current position. Otherwise the function yields false. As an example,
  the <tt><ref id=".IFREF" name=".IFREF"></tt> statement may be replaced by

  <tscreen><verb>
        .if     .referenced(a)
  </verb></tscreen>

  See: <tt><ref id=".DEFINED" name=".DEFINED"></tt>


<sect1><tt>.RIGHT</tt><label id=".RIGHT"><p>

  Builtin function. Extracts the right part of a given token list.

  Syntax:

  <tscreen><verb>
        .RIGHT (&lt;int expr&gt;, &lt;token list&gt;)
  </verb></tscreen>

  The first integer expression gives the number of tokens to extract from the
  token list. The second argument is the token list itself.  The token list
  may optionally be enclosed into curly braces. This allows the inclusion of
  tokens that would otherwise terminate the list (the closing right paren in
  the given case).

  See also the <tt><ref id=".LEFT" name=".LEFT"></tt> and <tt><ref id=".MID"
  name=".MID"></tt> builtin functions.


<sect1><tt>.SIZEOF</tt><label id=".SIZEOF"><p>

  <tt/.SIZEOF()/ is a pseudo function that returns the size of its argument.
  The argument can be a struct/union, a struct member, a scope/procedure, or a
  label. In the case of a procedure or label, its size is defined by the
  amount of data placed in the segment where the label is relative to. If a
  line of code switches segments (for example, in a macro), data placed in
  other segments does not count for the size.

  Please note that a symbol or scope must exist before it can be used together
  with <tt/.SIZEOF()/ (that may get relaxed later, but always will be true for
  scopes). A scope has preference over a symbol with the same name; so, if the
  last part of a name represents both a scope and a symbol, then the scope is
  chosen over the symbol.

  After the following code:

  <tscreen><verb>
        .struct Point                   ; Struct size = 4
                xcoord  .word
                ycoord  .word
        .endstruct

        P:      .tag    Point           ; Declare a point
        @P:     .tag    Point           ; Declare another point

        .code
        .proc   Code
                nop
                .proc   Inner
                        nop
                .endproc
                nop
        .endproc

        .proc   Data
        .data                           ; Segment switch!!!
                .res    4
        .endproc
  </verb></tscreen>

  <descrip>
    <tag><tt/.sizeof(Point)/</tag>
    will have the value 4, because this is the size of struct <tt/Point/.

    <tag><tt/.sizeof(Point::xcoord)/</tag>
    will have the value 2, because this is the size of the member <tt/xcoord/
    in struct <tt/Point/.

    <tag><tt/.sizeof(P)/</tag>
    will have the value 4, this is the size of the data declared on the same
    source line as the label <tt/P/, which is in the same segment that <tt/P/
    is relative to.

    <tag><tt/.sizeof(@P)/</tag>
    will have the value 4, see above. The example demonstrates that <tt/.SIZEOF/
    does also work for cheap local symbols.

    <tag><tt/.sizeof(Code)/</tag>
    will have the value 3, since this is amount of data emitted into the code
    segment, the segment that was active when <tt/Code/ was entered. Note that
    this value includes the amount of data emitted in child scopes (in this
    case <tt/Code::Inner/).

    <tag><tt/.sizeof(Code::Inner)/</tag>
    will have the value 1 as expected.

    <tag><tt/.sizeof(Data)/</tag>
    will have the value 0. Data is emitted within the scope <tt/Data/, but since
    the segment is switched after entry, this data is emitted into another
    segment.
  </descrip>


<sect1><tt>.STRAT</tt><label id=".STRAT"><p>

  Builtin function. The function accepts a string and an index as
  arguments and returns the value of the character at the given position
  as an integer value. The index is zero based.

  Example:

  <tscreen><verb>
        .macro  M       Arg
                ; Check if the argument string starts with '#'
                .if (.strat (Arg, 0) = '#')
                ...
                .endif
        .endmacro
  </verb></tscreen>


<sect1><tt>.SPRINTF</tt><label id=".SPRINTF"><p>

  Builtin function. It expects a format string as first argument. The number
  and type of the following arguments depend on the format string. The format
  string is similar to the one of the C <tt/printf/ function. Missing things
  are: Length modifiers, variable width.

  The result of the function is a string.

  Example:

  <tscreen><verb>
        num     = 3

        ; Generate an identifier:
        .ident (.sprintf ("%s%03d", "label", num)):
  </verb></tscreen>


<sect1><tt>.STRING</tt><label id=".STRING"><p>

  Builtin function. The function accepts an argument in braces and converts
  this argument into a string constant. The argument may be an identifier, or
  a constant numeric value.

  Since you can use a string in the first place, the use of the function may
  not be obvious. However, it is useful in macros, or more complex setups.

  Example:

  <tscreen><verb>
        ; Emulate other assemblers:
        .macro  section name
                .segment        .string(name)
        .endmacro
  </verb></tscreen>


<sect1><tt>.STRLEN</tt><label id=".STRLEN"><p>

  Builtin function. The function accepts a string argument in braces and
  evaluates to the length of the string.

  Example:

  The following macro encodes a string as a pascal style string with
  a leading length byte.

  <tscreen><verb>
        .macro  PString Arg
                .byte   .strlen(Arg), Arg
        .endmacro
  </verb></tscreen>


<sect1><tt>.TCOUNT</tt><label id=".TCOUNT"><p>

  Builtin function. The function accepts a token list in braces. The function
  result is the number of tokens given as argument. The token list may
  optionally be enclosed into curly braces which are not considered part of
  the list and not counted. Enclosement in curly braces allows the inclusion
  of tokens that would otherwise terminate the list (the closing right paren
  in the given case).

  Example:

  The <tt/ldax/ macro accepts the '#' token to denote immediate addressing (as
  with the normal 6502 instructions). To translate it into two separate 8 bit
  load instructions, the '#' token has to get stripped from the argument:

  <tscreen><verb>
        .macro  ldax    arg
                .if (.match (.mid (0, 1, {arg}), #))
                ; ldax called with immediate operand
                lda     #<(.right (.tcount ({arg})-1, {arg}))
                ldx     #>(.right (.tcount ({arg})-1, {arg}))
                .else
                ...
                .endif
        .endmacro
  </verb></tscreen>


<sect1><tt>.XMATCH</tt><label id=".XMATCH"><p>

  Builtin function. Matches two token lists against each other. This is
  most useful within macros, since macros are not stored as strings, but
  as lists of tokens.

  The syntax is

  <tscreen><verb>
        .XMATCH(&lt;token list #1&gt;, &lt;token list #2&gt;)
  </verb></tscreen>

  Both token list may contain arbitrary tokens with the exception of the
  terminator token (comma resp. right parenthesis) and

  <itemize>
  <item>end-of-line
  <item>end-of-file
  </itemize>

  The token lists may optionally be enclosed into curly braces. This allows
  the inclusion of tokens that would otherwise terminate the list (the closing
  right paren in the given case). Often a macro parameter is used for any of
  the token lists.

  The function compares tokens <em/and/ token values. If you need a function
  that just compares the type of tokens, have a look at the <tt><ref
  id=".MATCH" name=".MATCH"></tt> function.

  See: <tt><ref id=".MATCH" name=".MATCH"></tt>



<sect>Control commands<label id="control-commands"><p>

Here's a list of all control commands and a description, what they do:


<sect1><tt>.A16</tt><label id=".A16"><p>

  Valid only in 65816 mode. Switch the accumulator to 16 bit.

  Note: This command will not emit any code, it will tell the assembler to
  create 16 bit operands for immediate accumulator addressing mode.

  See also: <tt><ref id=".SMART" name=".SMART"></tt>


<sect1><tt>.A8</tt><label id=".A8"><p>

  Valid only in 65816 mode. Switch the accumulator to 8 bit.

  Note: This command will not emit any code, it will tell the assembler to
  create 8 bit operands for immediate accu addressing mode.

  See also: <tt><ref id=".SMART" name=".SMART"></tt>


<sect1><tt>.ADDR</tt><label id=".ADDR"><p>

  Define word sized data. In 6502 mode, this is an alias for <tt/.WORD/ and
  may be used for better readability if the data words are address values. In
  65816 mode, the address is forced to be 16 bit wide to fit into the current
  segment. See also <tt><ref id=".FARADDR" name=".FARADDR"></tt>. The command
  must be followed by a sequence of (not necessarily constant) expressions.

  Example:

  <tscreen><verb>
        .addr   $0D00, $AF13, _Clear
  </verb></tscreen>

  See: <tt><ref id=".FARADDR" name=".FARADDR"></tt>, <tt><ref id=".WORD"
       name=".WORD"></tt>


<sect1><tt>.ALIGN</tt><label id=".ALIGN"><p>

  Align data to a given boundary. The command expects a constant integer
  argument in the range 1 ... 65536, plus an optional second argument
  in byte range. If there is a second argument, it is used as fill value,
  otherwise the value defined in the linker configuration file is used
  (the default for this value is zero).

  <tt/.ALIGN/ will insert fill bytes, and the number of fill bytes depend of
  the final address of the segment. <tt/.ALIGN/ cannot insert a variable
  number of bytes, since that would break address calculations within the
  module. So each <tt/.ALIGN/ expects the segment to be aligned to a multiple
  of the alignment, because that allows the number of fill bytes to be
  calculated in advance by the assembler. You are therefore required to
  specify a matching alignment for the segment in the linker config. The
  linker will output a warning if the alignment of the segment is less than
  what is necessary to have a correct alignment in the object file.

  Example:

  <tscreen><verb>
        .align  256
  </verb></tscreen>

  Some unexpected behaviour might occur if there are multiple <tt/.ALIGN/
  commands with different arguments. To allow the assembler to calculate the
  number of fill bytes in advance, the alignment of the segment must be a
  multiple of each of the alignment factors. This may result in unexpectedly
  large alignments for the segment within the module.

  Example:

  <tscreen><verb>
        .align  15
        .byte   15
        .align  18
        .byte   18
  </verb></tscreen>

  For the assembler to be able to align correctly, the segment must be aligned
  to the least common multiple of 15 and 18 which is 90. The assembler will
  calculate this automatically and will mark the segment with this value.

  Unfortunately, the combined alignment may get rather large without the user
  knowing about it, wasting space in the final executable. If we add another
  alignment to the example above

  <tscreen><verb>
        .align  15
        .byte   15
        .align  18
        .byte   18
        .align  251
        .byte   0
  </verb></tscreen>

  the assembler will force a segment alignment to the least common multiple of
  15, 18 and 251 - which is 22590. To protect the user against errors, the
  assembler will issue a warning when the combined alignment exceeds 256. The
  command line option <tt><ref id="option--large-alignment"
  name="--large-alignment"></tt> will disable this warning.

  Please note that with alignments that are a power of two (which were the
  only alignments possible in older versions of the assembler), the problem is
  less severe, because the least common multiple of powers to the same base is
  always the larger one.



<sect1><tt>.ASCIIZ</tt><label id=".ASCIIZ"><p>

  Define a string with a trailing zero.

  Example:

  <tscreen><verb>
        Msg:    .asciiz "Hello world"
  </verb></tscreen>

  This will put the string "Hello world" followed by a binary zero into
  the current segment. There may be more strings separated by commas, but
  the binary zero is only appended once (after the last one).


<sect1><tt>.ASSERT</tt><label id=".ASSERT"><p>

  Add an assertion. The command is followed by an expression, an action
  specifier, and an optional message that is output in case the assertion
  fails. If no message was given, the string "Assertion failed" is used. The
  action specifier may be one of <tt/warning/, <tt/error/, <tt/ldwarning/ or
  <tt/lderror/. In the former two cases, the assertion is evaluated by the
  assembler if possible, and in any case, it's also passed to the linker in
  the object file (if one is generated). The linker will then evaluate the
  expression when segment placement has been done.

  Example:

  <tscreen><verb>
        .assert         * = $8000, error, "Code not at $8000"
  </verb></tscreen>

  The example assertion will check that the current location is at $8000,
  when the output file is written, and abort with an error if this is not
  the case. More complex expressions are possible. The action specifier
  <tt/warning/ outputs a warning, while the <tt/error/ specifier outputs
  an error message. In the latter case, generation of the output file is
  suppressed in both the assembler and linker.


<sect1><tt>.AUTOIMPORT</tt><label id=".AUTOIMPORT"><p>

  Is followed by a plus or a minus character. When switched on (using a
  +), undefined symbols are automatically marked as import instead of
  giving errors. When switched off (which is the default so this does not
  make much sense), this does not happen and an error message is
  displayed. The state of the autoimport flag is evaluated when the
  complete source was translated, before outputting actual code, so it is
  <em/not/ possible to switch this feature on or off for separate sections
  of code. The last setting is used for all symbols.

  You should probably not use this switch because it delays error
  messages about undefined symbols until the link stage. The cc65
  compiler (which is supposed to produce correct assembler code in all
  circumstances, something which is not true for most assembler
  programmers) will insert this command to avoid importing each and every
  routine from the runtime library.

  Example:

  <tscreen><verb>
        .autoimport     +       ; Switch on auto import
  </verb></tscreen>

<sect1><tt>.BANKBYTES</tt><label id=".BANKBYTES"><p>

  Define byte sized data by extracting only the bank byte (that is, bits 16-23) from
  each expression.  This is equivalent to <tt><ref id=".BYTE" name=".BYTE"></tt> with
  the operator '^' prepended to each expression in its list.

  Example:

  <tscreen><verb>
        .define MyTable TableItem0, TableItem1, TableItem2, TableItem3

        TableLookupLo:   .lobytes   MyTable
        TableLookupHi:   .hibytes   MyTable
        TableLookupBank: .bankbytes MyTable
  </verb></tscreen>

  which is equivalent to

  <tscreen><verb>
        TableLookupLo:   .byte &lt;TableItem0, &lt;TableItem1, &lt;TableItem2, &lt;TableItem3
        TableLookupHi:   .byte &gt;TableItem0, &gt;TableItem1, &gt;TableItem2, &gt;TableItem3
        TableLookupBank: .byte ^TableItem0, ^TableItem1, ^TableItem2, ^TableItem3
  </verb></tscreen>

  See also: <tt><ref id=".BYTE" name=".BYTE"></tt>,
            <tt><ref id=".HIBYTES" name=".HIBYTES"></tt>,
            <tt><ref id=".LOBYTES" name=".LOBYTES"></tt>


<sect1><tt>.BSS</tt><label id=".BSS"><p>

  Switch to the BSS segment. The name of the BSS segment is always "BSS",
  so this is a shortcut for

  <tscreen><verb>
        .segment  "BSS"
  </verb></tscreen>

  See also the <tt><ref id=".SEGMENT" name=".SEGMENT"></tt> command.


<sect1><tt>.BYT, .BYTE</tt><label id=".BYTE"><p>

  Define byte sized data. Must be followed by a sequence of (byte ranged)
  expressions or strings.

  Example:

  <tscreen><verb>
        .byte   "Hello "
        .byt    "world", $0D, $00
  </verb></tscreen>


<sect1><tt>.CASE</tt><label id=".CASE"><p>

  Switch on or off case sensitivity on identifiers. The default is off
  (that is, identifiers are case sensitive), but may be changed by the
  -i switch on the command line.
  The command must be followed by a '+' or '-' character to switch the
  option on or off respectively.

  Example:

  <tscreen><verb>
        .case   -               ; Identifiers are not case sensitive
  </verb></tscreen>


<sect1><tt>.CHARMAP</tt><label id=".CHARMAP"><p>

  Apply a custom mapping for characters. The command is followed by two
  numbers. The first one is the index of the source character (range 0..255);
  the second one is the mapping (range 0..255). The mapping applies to all
  character and string constants <em/when/ they generate output; and, overrides
  a mapping table specified with the <tt><ref id="option-t" name="-t"></tt>
  command line switch.

  Example:
  <tscreen><verb>
  .charmap        $41, $61        ; Map 'A' to 'a'
  </verb></tscreen>


<sect1><tt>.CODE</tt><label id=".CODE"><p>

  Switch to the CODE segment. The name of the CODE segment is always
  "CODE", so this is a shortcut for

  <tscreen><verb>
        .segment  "CODE"
  </verb></tscreen>

  See also the <tt><ref id=".SEGMENT" name=".SEGMENT"></tt> command.


<sect1><tt>.CONDES</tt><label id=".CONDES"><p>

  Export a symbol and mark it in a special way. The linker is able to build
  tables of all such symbols. This may be used to automatically create a list
  of functions needed to initialize linked library modules.

  Note: The linker has a feature to build a table of marked routines, but it
  is your code that must call these routines, so just declaring a symbol with
  <tt/.CONDES/ does nothing by itself.

  All symbols are exported as an absolute (16 bit) symbol. You don't need to
  use an additional <tt><ref id=".EXPORT" name=".EXPORT"></tt> statement, this
  is implied by <tt/.CONDES/.

  <tt/.CONDES/ is followed by the type, which may be <tt/constructor/,
  <tt/destructor/ or a numeric value between 0 and 6 (where 0 is the same as
  specifying <tt/constructor/ and 1 is equal to specifying <tt/destructor/).
  The <tt><ref id=".CONSTRUCTOR" name=".CONSTRUCTOR"></tt>, <tt><ref
  id=".DESTRUCTOR" name=".DESTRUCTOR"></tt> and <tt><ref id=".INTERRUPTOR"
  name=".INTERRUPTOR"></tt> commands are actually shortcuts for <tt/.CONDES/
  with a type of <tt/constructor/ resp. <tt/destructor/ or <tt/interruptor/.

  After the type, an optional priority may be specified. Higher numeric values
  mean higher priority. If no priority is given, the default priority of 7 is
  used. Be careful when assigning priorities to your own module constructors
  so they won't interfere with the ones in the cc65 library.

  Example:

  <tscreen><verb>
        .condes         ModuleInit, constructor
        .condes         ModInit, 0, 16
  </verb></tscreen>

  See the <tt><ref id=".CONSTRUCTOR" name=".CONSTRUCTOR"></tt>, <tt><ref
  id=".DESTRUCTOR" name=".DESTRUCTOR"></tt> and <tt><ref id=".INTERRUPTOR"
  name=".INTERRUPTOR"></tt> commands and the separate section <ref id="condes"
  name="Module constructors/destructors"> explaining the feature in more
  detail.


<sect1><tt>.CONSTRUCTOR</tt><label id=".CONSTRUCTOR"><p>

  Export a symbol and mark it as a module constructor. This may be used
  together with the linker to build a table of constructor subroutines that
  are called by the startup code.

  Note: The linker has a feature to build a table of marked routines, but it
  is your code that must call these routines, so just declaring a symbol as
  constructor does nothing by itself.

  A constructor is always exported as an absolute (16 bit) symbol. You don't
  need to use an additional <tt/.export/ statement, this is implied by
  <tt/.constructor/. It may have an optional priority that is separated by a
  comma. Higher numeric values mean a higher priority. If no priority is
  given, the default priority of 7 is used. Be careful when assigning
  priorities to your own module constructors so they won't interfere with the
  ones in the cc65 library.

  Example:

  <tscreen><verb>
        .constructor    ModuleInit
        .constructor    ModInit, 16
  </verb></tscreen>

  See the <tt><ref id=".CONDES" name=".CONDES"></tt> and <tt><ref
  id=".DESTRUCTOR" name=".DESTRUCTOR"></tt> commands and the separate section
  <ref id="condes" name="Module constructors/destructors"> explaining the
  feature in more detail.


<sect1><tt>.DATA</tt><label id=".DATA"><p>

  Switch to the DATA segment. The name of the DATA segment is always
  "DATA", so this is a shortcut for

  <tscreen><verb>
        .segment  "DATA"
  </verb></tscreen>

  See also the <tt><ref id=".SEGMENT" name=".SEGMENT"></tt> command.


<sect1><tt>.DBYT</tt><label id=".DBYT"><p>

  Define word sized data with the hi and lo bytes swapped (use <tt/.WORD/ to
  create word sized data in native 65XX format). Must be followed by a
  sequence of (word ranged) expressions.

  Example:

  <tscreen><verb>
        .dbyt   $1234, $4512
  </verb></tscreen>

  This will emit the bytes

  <tscreen><verb>
        $12 $34 $45 $12
  </verb></tscreen>

  into the current segment in that order.


<sect1><tt>.DEBUGINFO</tt><label id=".DEBUGINFO"><p>

  Switch on or off debug info generation. The default is off (that is,
  the object file will not contain debug infos), but may be changed by the
  -g switch on the command line.
  The command must be followed by a '+' or '-' character to switch the
  option on or off respectively.

  Example:

  <tscreen><verb>
        .debuginfo      +       ; Generate debug info
  </verb></tscreen>


<sect1><tt>.DEFINE</tt><label id=".DEFINE"><p>

  Start a define style macro definition. The command is followed by an
  identifier (the macro name) and optionally by a list of formal arguments
  in braces.

  Please note that <tt/.DEFINE/ shares most disadvantages with its C
  counterpart, so the general advice is, <bf/NOT/ do use <tt/.DEFINE/ if you
  don't have to.

  See also the <tt><ref id=".UNDEFINE" name=".UNDEFINE"></tt> command and
  section <ref id="macros" name="Macros">.


<sect1><tt>.DELMAC, .DELMACRO</tt><label id=".DELMACRO"><p>

  Delete a classic macro (defined with <tt><ref id=".MACRO"
  name=".MACRO"></tt>) . The command is followed by the name of an
  existing macro. Its definition will be deleted together with the name.
  If necessary, another macro with this name may be defined later.

  See: <tt><ref id=".ENDMACRO" name=".ENDMACRO"></tt>,
       <tt><ref id=".EXITMACRO" name=".EXITMACRO"></tt>,
       <tt><ref id=".MACRO" name=".MACRO"></tt>

  See also section <ref id="macros" name="Macros">.


<sect1><tt>.DEF, .DEFINED</tt><label id=".DEFINED"><p>

  Builtin function. The function expects an identifier as argument in braces.
  The argument is evaluated, and the function yields "true" if the identifier
  is a symbol that is already defined somewhere in the source file up to the
  current position. Otherwise the function yields false. As an example, the
  <tt><ref id=".IFDEF" name=".IFDEF"></tt> statement may be replaced by

  <tscreen><verb>
        .if     .defined(a)
  </verb></tscreen>


<sect1><tt>.DEFINEDMACRO</tt><label id=".DEFINEDMACRO"><p>

  Builtin function. The function expects an identifier as argument in braces.
  The argument is evaluated, and the function yields "true" if the identifier
  has already been defined as the name of a macro. Otherwise the function yields
  false. Example:

  <tscreen><verb>
        .macro add foo
                clc
                adc foo
        .endmacro

        .if     .definedmacro(add)
                add #$01
        .else
                clc
                adc #$01
        .endif
  </verb></tscreen>


<sect1><tt>.DESTRUCTOR</tt><label id=".DESTRUCTOR"><p>

  Export a symbol and mark it as a module destructor. This may be used
  together with the linker to build a table of destructor subroutines that
  are called by the startup code.

  Note: The linker has a feature to build a table of marked routines, but it
  is your code that must call these routines, so just declaring a symbol as
  constructor does nothing by itself.

  A destructor is always exported as an absolute (16 bit) symbol. You don't
  need to use an additional <tt/.export/ statement, this is implied by
  <tt/.destructor/. It may have an optional priority that is separated by a
  comma. Higher numerical values mean a higher priority. If no priority is
  given, the default priority of 7 is used. Be careful when assigning
  priorities to your own module destructors so they won't interfere with the
  ones in the cc65 library.

  Example:

  <tscreen><verb>
        .destructor     ModuleDone
        .destructor     ModDone, 16
  </verb></tscreen>

  See the <tt><ref id=".CONDES" name=".CONDES"></tt> and <tt><ref
  id=".CONSTRUCTOR" name=".CONSTRUCTOR"></tt> commands and the separate
  section <ref id="condes" name="Module constructors/destructors"> explaining
  the feature in more detail.


<sect1><tt>.DWORD</tt><label id=".DWORD"><p>

  Define dword sized data (4 bytes) Must be followed by a sequence of
  expressions.

  Example:

  <tscreen><verb>
        .dword  $12344512, $12FA489
  </verb></tscreen>


<sect1><tt>.ELSE</tt><label id=".ELSE"><p>

  Conditional assembly: Reverse the current condition.


<sect1><tt>.ELSEIF</tt><label id=".ELSEIF"><p>

  Conditional assembly: Reverse current condition and test a new one.


<sect1><tt>.END</tt><label id=".END"><p>

  Forced end of assembly. Assembly stops at this point, even if the command
  is read from an include file.


<sect1><tt>.ENDENUM</tt><label id=".ENDENUM"><p>

  End a <tt><ref id=".ENUM" name=".ENUM"></tt> declaration.


<sect1><tt>.ENDIF</tt><label id=".ENDIF"><p>

  Conditional assembly: Close a <tt><ref id=".IF" name=".IF..."></tt> or
  <tt><ref id=".ELSE" name=".ELSE"></tt> branch.


<sect1><tt>.ENDMAC, .ENDMACRO</tt><label id=".ENDMACRO"><p>

  Marks the end of a macro definition.

  See: <tt><ref id=".DELMACRO" name=".DELMACRO"></tt>,
       <tt><ref id=".EXITMACRO" name=".EXITMACRO"></tt>,
       <tt><ref id=".MACRO" name=".MACRO"></tt>

  See also section <ref id="macros" name="Macros">.


<sect1><tt>.ENDPROC</tt><label id=".ENDPROC"><p>

  End of the local lexical level (see <tt><ref id=".PROC" name=".PROC"></tt>).


<sect1><tt>.ENDREP, .ENDREPEAT</tt><label id=".ENDREPEAT"><p>

  End a <tt><ref id=".REPEAT" name=".REPEAT"></tt> block.


<sect1><tt>.ENDSCOPE</tt><label id=".ENDSCOPE"><p>

  End of the local lexical level (see <tt/<ref id=".SCOPE" name=".SCOPE">/).


<sect1><tt>.ENDSTRUCT</tt><label id=".ENDSTRUCT"><p>

  Ends a struct definition. See the <tt/<ref id=".STRUCT" name=".STRUCT">/
  command and the separate section named <ref id="structs" name="&quot;Structs
  and unions&quot;">.


<sect1><tt>.ENDUNION</tt><label id=".ENDUNION"><p>

  Ends a union definition. See the <tt/<ref id=".UNION" name=".UNION">/
  command and the separate section named <ref id="structs" name="&quot;Structs
  and unions&quot;">.


<sect1><tt>.ENUM</tt><label id=".ENUM"><p>

  Start an enumeration. This directive is very similar to the C <tt/enum/
  keyword. If a name is given, a new scope is created for the enumeration,
  otherwise the enumeration members are placed in the enclosing scope.

  In the enumeration body, symbols are declared. The first symbol has a value
  of zero, and each following symbol will get the value of the preceding, plus
  one. That behaviour may be overridden by an explicit assignment. Two symbols
  may have the same value.

  Example:

  <tscreen><verb>
        .enum   errorcodes
                no_error
                file_error
                parse_error
        .endenum
  </verb></tscreen>

  The above example will create a new scope named <tt/errorcodes/ with three
  symbols in it that get the values 0, 1, and 2 respectively. Another way
  to write that would have been:

  <tscreen><verb>
        .scope  errorcodes
                no_error        = 0
                file_error      = 1
                parse_error     = 2
        .endscope
  </verb></tscreen>

  Please note that explicit scoping must be used to access the identifiers:

  <tscreen><verb>
        .word   errorcodes::no_error
  </verb></tscreen>

  A more complex example:

  <tscreen><verb>
        .enum
                EUNKNOWN        = -1
                EOK
                EFILE
                EBUSY
                EAGAIN
                EWOULDBLOCK     = EAGAIN
        .endenum
  </verb></tscreen>

  In that example, the enumeration does not have a name, which means that the
  members will be visible in the enclosing scope, and can be used in that scope
  without explicit scoping. The first member (<tt/EUNKNOWN/) has the value -1.
  The values for the following members are incremented by one; so, <tt/EOK/
  would be zero, and so on. <tt/EWOULDBLOCK/ is an alias for <tt/EAGAIN/; so,
  it has an override for the value, using an already defined symbol.


<sect1><tt>.ERROR</tt><label id=".ERROR"><p>

  Force an assembly error. The assembler will output an error message
  preceded by "User error". Assembly is continued but no object file will
  generated.

  This command may be used to check for initial conditions that must be
  set before assembling a source file.

  Example:

  <tscreen><verb>
        .if     foo = 1
        ...
        .elseif bar = 1
        ...
        .else
        .error  "Must define foo or bar!"
        .endif
  </verb></tscreen>

  See also: <tt><ref id=".FATAL" name=".FATAL"></tt>,
            <tt><ref id=".OUT" name=".OUT"></tt>,
            <tt><ref id=".WARNING" name=".WARNING"></tt>


<sect1><tt>.EXITMAC, .EXITMACRO</tt><label id=".EXITMACRO"><p>

  Abort a macro expansion immediately. This command is often useful in
  recursive macros.

  See: <tt><ref id=".DELMACRO" name=".DELMACRO"></tt>,
       <tt><ref id=".ENDMACRO" name=".ENDMACRO"></tt>,
       <tt><ref id=".MACRO" name=".MACRO"></tt>

  See also section <ref id="macros" name="Macros">.


<sect1><tt>.EXPORT</tt><label id=".EXPORT"><p>

  Make symbols accessible from other modules. Must be followed by a comma
  separated list of symbols to export, with each one optionally followed by an
  address specification and (also optional) an assignment. Using an additional
  assignment in the export statement allows to define and export a symbol in
  one statement. The default is to export the symbol with the address size it
  actually has. The assembler will issue a warning, if the symbol is exported
  with an address size smaller than the actual address size.

  Examples:

  <tscreen><verb>
        .export foo
        .export bar: far
        .export foobar: far = foo * bar
        .export baz := foobar, zap: far = baz - bar
  </verb></tscreen>

  As with constant definitions, using <tt/:=/ instead of <tt/=/ marks the
  symbols as a label.

  See: <tt><ref id=".EXPORTZP" name=".EXPORTZP"></tt>


<sect1><tt>.EXPORTZP</tt><label id=".EXPORTZP"><p>

  Make symbols accessible from other modules. Must be followed by a comma
  separated list of symbols to export. The exported symbols are explicitly
  marked as zero page symbols. An assignment may be included in the
  <tt/.EXPORTZP/ statement. This allows to define and export a symbol in one
  statement.

  Examples:

  <tscreen><verb>
        .exportzp  foo, bar
        .exportzp  baz := &dollar;02
  </verb></tscreen>

  See: <tt><ref id=".EXPORT" name=".EXPORT"></tt>


<sect1><tt>.FARADDR</tt><label id=".FARADDR"><p>

  Define far (24 bit) address data. The command must be followed by a
  sequence of (not necessarily constant) expressions.

  Example:

  <tscreen><verb>
        .faraddr        DrawCircle, DrawRectangle, DrawHexagon
  </verb></tscreen>

  See: <tt><ref id=".ADDR" name=".ADDR"></tt>


<sect1><tt>.FATAL</tt><label id=".FATAL"><p>

  Force an assembly error and terminate assembly. The assembler will output an
  error message preceded by "User error" and will terminate assembly
  immediately.

  This command may be used to check for initial conditions that must be
  set before assembling a source file.

  Example:

  <tscreen><verb>
        .if     foo = 1
        ...
        .elseif bar = 1
        ...
        .else
        .fatal  "Must define foo or bar!"
        .endif
  </verb></tscreen>

  See also: <tt><ref id=".ERROR" name=".ERROR"></tt>,
            <tt><ref id=".OUT" name=".OUT"></tt>,
            <tt><ref id=".WARNING" name=".WARNING"></tt>


<sect1><tt>.FEATURE</tt><label id=".FEATURE"><p>

  This directive may be used to enable one or more compatibility features
  of the assembler. While the use of <tt/.FEATURE/ should be avoided when
  possible, it may be useful when porting sources written for other
  assemblers. There is no way to switch a feature off, once you have
  enabled it, so using

  <tscreen><verb>
        .FEATURE        xxx
  </verb></tscreen>

  will enable the feature until end of assembly is reached.

  The following features are available:

  <descrip>

  <tag><tt>addrsize</tt><label id="addrsize"></tag>

    Enables the .ADDRSIZE pseudo function. This function is experimental and not enabled by default.

    See also: <tt><ref id=".ADDRSIZE" name=".ADDRSIZE"></tt>

  <tag><tt>at_in_identifiers</tt><label id="at_in_identifiers"></tag>

    Accept the at character ('@') as a valid character in identifiers. The
    at character is not allowed to start an identifier, even with this
    feature enabled.

  <tag><tt>bracket_as_indirect</tt><label id="bracket_as_indirect"></tag>

    Use <tt>[]</tt> instead of <tt>()</tt> for the indirect addressing modes.
    Example:

    <tscreen><verb>
        lda     [$82]
        lda     [$82,x]
        lda     [$82],y
        jmp     [$fffe]
        jmp     [table,x]
    </verb></tscreen>
    <em/Note:/ This should not be used in 65186 mode because it conflicts with
    the 65816 instruction syntax for far addressing. See the section covering
    <tt/<ref id="address-sizes" name="address sizes">/ for more information.

  <tag><tt>c_comments</tt><label id="c_comments"></tag>

    Allow C like comments using <tt>/*</tt> and <tt>*/</tt> as left and right
    comment terminators. Note that C comments may not be nested. There's also a
    pitfall when using C like comments: All statements must be terminated by
    "end-of-line". Using C like comments, it is possible to hide the newline,
    which results in error messages. See the following non working example:

    <tscreen><verb>
        lda     #$00  /* This comment hides the newline
*/      sta     $82
    </verb></tscreen>

  <tag><tt>dollar_in_identifiers</tt><label id="dollar_in_identifiers"></tag>

    Accept the dollar sign ('&dollar;') as a valid character in identifiers. The
    dollar character is not allowed to start an identifier, even with this
    feature enabled.

  <tag><tt>dollar_is_pc</tt><label id="dollar_is_pc"></tag>

    The dollar sign may be used as an alias for the star ('*'), which
    gives the value of the current PC in expressions.
    Note: Assignment to the pseudo variable is not allowed.

  <tag><tt>force_range</tt><label id="force_range"></tag>

    Force expressions into their valid range for immediate addressing and
    storage operators like <tt><ref id=".BYTE" name=".BYTE"></tt> and
    <tt><ref id=".WORD" name=".WORD"></tt>. Be very careful with this one,
    since it will completely disable error checks.

  <tag><tt>labels_without_colons</tt><label id="labels_without_colons"></tag>

    Allow labels without a trailing colon. These labels are only accepted,
    if they start at the beginning of a line (no leading white space).

  <tag><tt>leading_dot_in_identifiers</tt><label id="leading_dot_in_identifiers"></tag>

    Accept the dot ('.') as the first character of an identifier. This may be
    used for example to create macro names that start with a dot emulating
    control directives of other assemblers. Note however, that none of the
    reserved keywords built into the assembler, that starts with a dot, may be
    overridden. When using this feature, you may also get into trouble if
    later versions of the assembler define new keywords starting with a dot.

  <tag><tt>loose_char_term</tt><label id="loose_char_term"></tag>

    Accept single quotes as well as double quotes as terminators for char
    constants.

  <tag><tt>loose_string_term</tt><label id="loose_string_term"></tag>

    Accept single quotes as well as double quotes as terminators for string
    constants.

  <tag><tt>missing_char_term</tt><label id="missing_char_term"></tag>

    Accept single quoted character constants where the terminating quote is
    missing.
    <tscreen><verb>
        lda     #'a
    </verb></tscreen>
    <em/Note:/ This does not work in conjunction with <tt/.FEATURE
    loose_string_term/, since in this case the input would be ambiguous.

  <tag><tt>org_per_seg</tt><label id="org_per_seg"></tag>

    This feature makes relocatable/absolute mode local to the current segment.
    Using <tt><ref id=".ORG" name=".ORG"></tt> when <tt/org_per_seg/ is in
    effect will only enable absolute mode for the current segment. Dito for
    <tt><ref id=".RELOC" name=".RELOC"></tt>.

  <tag><tt>pc_assignment</tt><label id="pc_assignment"></tag>

    Allow assignments to the PC symbol ('*' or '&dollar;' if <tt/dollar_is_pc/
    is enabled). Such an assignment is handled identical to the <tt><ref
    id=".ORG" name=".ORG"></tt> command (which is usually not needed, so just
    removing the lines with the assignments may also be an option when porting
    code written for older assemblers).

  <tag><tt>string_escapes</tt><label id="string_escapes"></tag>

    Allow C-style backslash escapes within string constants to embed
    special characters. The following escapes are accepted:
    <itemize>
    <item><tt>\\</tt> backslash (<tt>$5C</tt>)
    <item><tt>\'</tt> single quote (<tt>$27</tt>)
    <item><tt>\&quot;</tt> double quote (<tt>$22</tt>)
    <item><tt>\t</tt> tab (<tt>$09</tt>)
    <item><tt>\r</tt> carriage return (<tt>$0D</tt>)
    <item><tt>\n</tt> newline (<tt>$0A</tt>)
    <item><tt>\xNN</tt>  (<tt>$NN</tt>)
    </itemize>

    Note that string escapes are converted to platform-specific characters in
    the same way that other characters are converted.

  <tag><tt>ubiquitous_idents</tt><label id="ubiquitous_idents"></tag>

    Allow the use of instructions names as names for macros and symbols. This
    makes it possible to "overload" instructions by defining a macro with the
    same name. This does also make it possible to introduce hard to find errors
    in your code, so be careful!

  <tag><tt>underline_in_numbers</tt><label id="underline_in_numbers"></tag>

    Allow underlines within numeric constants. These may be used for grouping
    the digits of numbers for easier reading.
    Example:
    <tscreen><verb>
        .feature        underline_in_numbers
        .word           %1100001110100101
        .word           %1100_0011_1010_0101    ; Identical but easier to read
    </verb></tscreen>

  </descrip>

  It is also possible to specify features on the command line using the
  <tt><ref id="option--feature" name="--feature"></tt> command line option.
  This is useful when translating sources written for older assemblers, when
  you don't want to change the source code.

  As an example, to translate sources written for Andre Fachats xa65
  assembler, the features

  <verb>
        labels_without_colons, pc_assignment, loose_char_term
  </verb>

  may be helpful. They do not make ca65 completely compatible, so you may not
  be able to translate the sources without changes, even when enabling these
  features. However, I have found several sources that translate without
  problems when enabling these features on the command line.


<sect1><tt>.FILEOPT, .FOPT</tt><label id=".FOPT"><p>

  Insert an option string into the object file. There are two forms of
  this command, one specifies the option by a keyword, the second
  specifies it as a number. Since usage of the second one needs knowledge
  of the internal encoding, its use is not recommended and I will only
  describe the first form here.

  The command is followed by one of the keywords

  <tscreen><verb>
        author
        comment
        compiler
  </verb></tscreen>

  a comma and a string. The option is written into the object file
  together with the string value. This is currently unidirectional and
  there is no way to actually use these options once they are in the
  object file.

  Examples:

  <tscreen><verb>
        .fileopt        comment, "Code stolen from my brother"
        .fileopt        compiler, "BASIC 2.0"
        .fopt           author, "J. R. User"
  </verb></tscreen>


<sect1><tt>.FORCEIMPORT</tt><label id=".FORCEIMPORT"><p>

  Import an absolute symbol from another module. The command is followed by a
  comma separated list of symbols to import. The command is similar to <tt>
  <ref id=".IMPORT" name=".IMPORT"></tt>, but the import reference is always
  written to the generated object file, even if the symbol is never referenced
  (<tt><ref id=".IMPORT" name=".IMPORT"></tt> will not generate import
  references for unused symbols).

  Example:

  <tscreen><verb>
        .forceimport    needthisone, needthistoo
  </verb></tscreen>

  See: <tt><ref id=".IMPORT" name=".IMPORT"></tt>


<sect1><tt>.GLOBAL</tt><label id=".GLOBAL"><p>

  Declare symbols as global. Must be followed by a comma separated list of
  symbols to declare. Symbols from the list, that are defined somewhere in the
  source, are exported, all others are imported. Additional <tt><ref
  id=".IMPORT" name=".IMPORT"></tt> or <tt><ref id=".EXPORT"
  name=".EXPORT"></tt> commands for the same symbol are allowed.

  Example:

  <tscreen><verb>
        .global foo, bar
  </verb></tscreen>


<sect1><tt>.GLOBALZP</tt><label id=".GLOBALZP"><p>

  Declare symbols as global. Must be followed by a comma separated list of
  symbols to declare. Symbols from the list, that are defined somewhere in the
  source, are exported, all others are imported. Additional <tt><ref
  id=".IMPORTZP" name=".IMPORTZP"></tt> or <tt><ref id=".EXPORTZP"
  name=".EXPORTZP"></tt> commands for the same symbol are allowed. The symbols
  in the list are explicitly marked as zero page symbols.

  Example:

  <tscreen><verb>
        .globalzp foo, bar
  </verb></tscreen>

<sect1><tt>.HIBYTES</tt><label id=".HIBYTES"><p>

  Define byte sized data by extracting only the high byte (that is, bits 8-15) from
  each expression.  This is equivalent to <tt><ref id=".BYTE" name=".BYTE"></tt> with
  the operator '>' prepended to each expression in its list.

  Example:

  <tscreen><verb>
        .lobytes         $1234, $2345, $3456, $4567
        .hibytes         $fedc, $edcb, $dcba, $cba9
  </verb></tscreen>

  which is equivalent to

  <tscreen><verb>
        .byte            $34, $45, $56, $67
        .byte            $fe, $ed, $dc, $cb
  </verb></tscreen>

  Example:

  <tscreen><verb>
        .define MyTable TableItem0, TableItem1, TableItem2, TableItem3

        TableLookupLo:   .lobytes MyTable
        TableLookupHi:   .hibytes MyTable
  </verb></tscreen>

  which is equivalent to

  <tscreen><verb>
        TableLookupLo:   .byte &lt;TableItem0, &lt;TableItem1, &lt;TableItem2, &lt;TableItem3
        TableLookupHi:   .byte &gt;TableItem0, &gt;TableItem1, &gt;TableItem2, &gt;TableItem3
  </verb></tscreen>

  See also: <tt><ref id=".BYTE" name=".BYTE"></tt>,
            <tt><ref id=".LOBYTES" name=".LOBYTES"></tt>,
            <tt><ref id=".BANKBYTES" name=".BANKBYTES"></tt>


<sect1><tt>.I16</tt><label id=".I16"><p>

  Valid only in 65816 mode. Switch the index registers to 16 bit.

  Note: This command will not emit any code, it will tell the assembler to
  create 16 bit operands for immediate operands.

  See also the <tt><ref id=".I8" name=".I8"></tt> and <tt><ref id=".SMART"
  name=".SMART"></tt> commands.


<sect1><tt>.I8</tt><label id=".I8"><p>

  Valid only in 65816 mode. Switch the index registers to 8 bit.

  Note: This command will not emit any code, it will tell the assembler to
  create 8 bit operands for immediate operands.

  See also the <tt><ref id=".I16" name=".I16"></tt> and <tt><ref id=".SMART"
  name=".SMART"></tt> commands.


<sect1><tt>.IF</tt><label id=".IF"><p>

  Conditional assembly: Evaluate an expression and switch assembler output
  on or off depending on the expression. The expression must be a constant
  expression, that is, all operands must be defined.

  A expression value of zero evaluates to FALSE, any other value evaluates
  to TRUE.


<sect1><tt>.IFBLANK</tt><label id=".IFBLANK"><p>

  Conditional assembly: Check if there are any remaining tokens in this line,
  and evaluate to FALSE if this is the case, and to TRUE otherwise. If the
  condition is not true, further lines are not assembled until an <tt><ref
  id=".ELSE" name=".ELSE"></tt>, <tt><ref id=".ELSEIF" name=".ELSEIF"></tt> or
  <tt><ref id=".ENDIF" name=".ENDIF"></tt> directive.

  This command is often used to check if a macro parameter was given. Since an
  empty macro parameter will evaluate to nothing, the condition will evaluate
  to TRUE if an empty parameter was given.

  Example:

  <tscreen><verb>
        .macro     arg1, arg2
        .ifblank   arg2
                   lda     #arg1
        .else
                   lda     #arg2
        .endif
        .endmacro
  </verb></tscreen>

  See also: <tt><ref id=".BLANK" name=".BLANK"></tt>


<sect1><tt>.IFCONST</tt><label id=".IFCONST"><p>

  Conditional assembly: Evaluate an expression and switch assembler output
  on or off depending on the constness of the expression.

  A const expression evaluates to to TRUE, a non const expression (one
  containing an imported or currently undefined symbol) evaluates to
  FALSE.

  See also: <tt><ref id=".CONST" name=".CONST"></tt>


<sect1><tt>.IFDEF</tt><label id=".IFDEF"><p>

  Conditional assembly: Check if a symbol is defined. Must be followed by
  a symbol name. The condition is true if the the given symbol is already
  defined, and false otherwise.

  See also: <tt><ref id=".DEFINED" name=".DEFINED"></tt>


<sect1><tt>.IFNBLANK</tt><label id=".IFNBLANK"><p>

  Conditional assembly: Check if there are any remaining tokens in this line,
  and evaluate to TRUE if this is the case, and to FALSE otherwise. If the
  condition is not true, further lines are not assembled until an <tt><ref
  id=".ELSE" name=".ELSE"></tt>, <tt><ref id=".ELSEIF" name=".ELSEIF"></tt> or
  <tt><ref id=".ENDIF" name=".ENDIF"></tt> directive.

  This command is often used to check if a macro parameter was given.
  Since an empty macro parameter will evaluate to nothing, the condition
  will evaluate to FALSE if an empty parameter was given.

  Example:

  <tscreen><verb>
        .macro     arg1, arg2
                   lda     #arg1
        .ifnblank  arg2
                   lda     #arg2
        .endif
        .endmacro
  </verb></tscreen>

  See also: <tt><ref id=".BLANK" name=".BLANK"></tt>


<sect1><tt>.IFNDEF</tt><label id=".IFNDEF"><p>

  Conditional assembly: Check if a symbol is defined. Must be followed by
  a symbol name. The condition is true if the the given symbol is not
  defined, and false otherwise.

  See also: <tt><ref id=".DEFINED" name=".DEFINED"></tt>


<sect1><tt>.IFNREF</tt><label id=".IFNREF"><p>

  Conditional assembly: Check if a symbol is referenced. Must be followed
  by a symbol name. The condition is true if if the the given symbol was
  not referenced before, and false otherwise.

  See also: <tt><ref id=".REFERENCED" name=".REFERENCED"></tt>


<sect1><tt>.IFP02</tt><label id=".IFP02"><p>

  Conditional assembly: Check if the assembler is currently in 6502 mode
  (see <tt><ref id=".P02" name=".P02"></tt> command).


<sect1><tt>.IFP4510</tt><label id=".IFP4510"><p>

  Conditional assembly: Check if the assembler is currently in 4510 mode
  (see <tt><ref id=".P4510" name=".P4510"></tt> command).


<sect1><tt>.IFP816</tt><label id=".IFP816"><p>

  Conditional assembly: Check if the assembler is currently in 65816 mode
  (see <tt><ref id=".P816" name=".P816"></tt> command).


<sect1><tt>.IFPC02</tt><label id=".IFPC02"><p>

  Conditional assembly: Check if the assembler is currently in 65C02 mode
  (see <tt><ref id=".PC02" name=".PC02"></tt> command).


<sect1><tt>.IFPSC02</tt><label id=".IFPSC02"><p>

  Conditional assembly: Check if the assembler is currently in 65SC02 mode
  (see <tt><ref id=".PSC02" name=".PSC02"></tt> command).


<sect1><tt>.IFREF</tt><label id=".IFREF"><p>

  Conditional assembly: Check if a symbol is referenced. Must be followed
  by a symbol name. The condition is true if if the the given symbol was
  referenced before, and false otherwise.

  This command may be used to build subroutine libraries in include files
  (you may use separate object modules for this purpose too).

  Example:

  <tscreen><verb>
        .ifref  ToHex                   ; If someone used this subroutine
        ToHex:  tay                     ; Define subroutine
                lda     HexTab,y
                rts
        .endif
  </verb></tscreen>

  See also: <tt><ref id=".REFERENCED" name=".REFERENCED"></tt>


<sect1><tt>.IMPORT</tt><label id=".IMPORT"><p>

  Import a symbol from another module. The command is followed by a comma
  separated list of symbols to import, with each one optionally followed by
  an address specification.

  Example:

  <tscreen><verb>
        .import foo
        .import bar: zeropage
  </verb></tscreen>

  See: <tt><ref id=".IMPORTZP" name=".IMPORTZP"></tt>


<sect1><tt>.IMPORTZP</tt><label id=".IMPORTZP"><p>

  Import a symbol from another module. The command is followed by a comma
  separated list of symbols to import. The symbols are explicitly imported
  as zero page symbols (that is, symbols with values in byte range).

  Example:

  <tscreen><verb>
        .importzp       foo, bar
  </verb></tscreen>

  See: <tt><ref id=".IMPORT" name=".IMPORT"></tt>


<sect1><tt>.INCBIN</tt><label id=".INCBIN"><p>

  Include a file as binary data. The command expects a string argument
  that is the name of a file to include literally in the current segment.
  In addition to that, a start offset and a size value may be specified,
  separated by commas. If no size is specified, all of the file from the
  start offset to end-of-file is used. If no start position is specified
  either, zero is assumed (which means that the whole file is inserted).

  Example:

  <tscreen><verb>
        ; Include whole file
        .incbin         "sprites.dat"

        ; Include file starting at offset 256
        .incbin         "music.dat", $100

        ; Read 100 bytes starting at offset 200
        .incbin         "graphics.dat", 200, 100
  </verb></tscreen>


<sect1><tt>.INCLUDE</tt><label id=".INCLUDE"><p>

  Include another file. Include files may be nested up to a depth of 16.

  Example:

  <tscreen><verb>
        .include        "subs.inc"
  </verb></tscreen>


<sect1><tt>.INTERRUPTOR</tt><label id=".INTERRUPTOR"><p>

  Export a symbol and mark it as an interruptor. This may be used together
  with the linker to build a table of interruptor subroutines that are called
  in an interrupt.

  Note: The linker has a feature to build a table of marked routines, but it
  is your code that must call these routines, so just declaring a symbol as
  interruptor does nothing by itself.

  An interruptor is always exported as an absolute (16 bit) symbol. You don't
  need to use an additional <tt/.export/ statement, this is implied by
  <tt/.interruptor/. It may have an optional priority that is separated by a
  comma. Higher numeric values mean a higher priority. If no priority is
  given, the default priority of 7 is used. Be careful when assigning
  priorities to your own module constructors so they won't interfere with the
  ones in the cc65 library.

  Example:

  <tscreen><verb>
        .interruptor    IrqHandler
        .interruptor    Handler, 16
  </verb></tscreen>

  See the <tt><ref id=".CONDES" name=".CONDES"></tt> command and the separate
  section <ref id="condes" name="Module constructors/destructors"> explaining
  the feature in more detail.


<sect1><tt>.ISMNEM, .ISMNEMONIC</tt><label id=".ISMNEMONIC"><p>

  Builtin function. The function expects an identifier as argument in braces.
  The argument is evaluated, and the function yields "true" if the identifier
  is defined as an instruction mnemonic that is recognized by the assembler.
  Example:

  <tscreen><verb>
        .if     .not .ismnemonic(ina)
                .macro ina
                        clc
                        adc #$01
                .endmacro
        .endif
  </verb></tscreen>


<sect1><tt>.LINECONT</tt><label id=".LINECONT"><p>

  Switch on or off line continuations using the backslash character
  before a newline. The option is off by default.
  Note: Line continuations do not work in a comment. A backslash at the
  end of a comment is treated as part of the comment and does not trigger
  line continuation.
  The command must be followed by a '+' or '-' character to switch the
  option on or off respectively.

  Example:

  <tscreen><verb>
        .linecont       +               ; Allow line continuations

        lda     \
                #$20                    ; This is legal now
  </verb></tscreen>


<sect1><tt>.LIST</tt><label id=".LIST"><p>

  Enable output to the listing. The command must be followed by a boolean
  switch ("on", "off", "+" or "-") and will enable or disable listing
  output.
  The option has no effect if the listing is not enabled by the command line
  switch -l. If -l is used, an internal counter is set to 1. Lines are output
  to the listing file, if the counter is greater than zero, and suppressed if
  the counter is zero. Each use of <tt/.LIST/ will increment or decrement the
  counter.

  Example:

  <tscreen><verb>
        .list   on              ; Enable listing output
  </verb></tscreen>


<sect1><tt>.LISTBYTES</tt><label id=".LISTBYTES"><p>

  Set, how many bytes are shown in the listing for one source line. The
  default is 12, so the listing will show only the first 12 bytes for any
  source line that generates more than 12 bytes of code or data.
  The directive needs an argument, which is either "unlimited", or an
  integer constant in the range 4..255.

  Examples:

  <tscreen><verb>
        .listbytes      unlimited       ; List all bytes
        .listbytes      12              ; List the first 12 bytes
        .incbin         "data.bin"      ; Include large binary file
  </verb></tscreen>


<sect1><tt>.LOBYTES</tt><label id=".LOBYTES"><p>

  Define byte sized data by extracting only the low byte (that is, bits 0-7) from
  each expression.  This is equivalent to <tt><ref id=".BYTE" name=".BYTE"></tt> with
  the operator '<' prepended to each expression in its list.

  Example:

  <tscreen><verb>
        .lobytes         $1234, $2345, $3456, $4567
        .hibytes         $fedc, $edcb, $dcba, $cba9
  </verb></tscreen>

  which is equivalent to

  <tscreen><verb>
        .byte            $34, $45, $56, $67
        .byte            $fe, $ed, $dc, $cb
  </verb></tscreen>

  Example:

  <tscreen><verb>
        .define MyTable TableItem0, TableItem1, TableItem2, TableItem3

        TableLookupLo:   .lobytes MyTable
        TableLookupHi:   .hibytes MyTable
  </verb></tscreen>

  which is equivalent to

  <tscreen><verb>
        TableLookupLo:   .byte &lt;TableItem0, &lt;TableItem1, &lt;TableItem2, &lt;TableItem3
        TableLookupHi:   .byte &gt;TableItem0, &gt;TableItem1, &gt;TableItem2, &gt;TableItem3
  </verb></tscreen>

  See also: <tt><ref id=".BYTE" name=".BYTE"></tt>,
            <tt><ref id=".HIBYTES" name=".HIBYTES"></tt>,
            <tt><ref id=".BANKBYTES" name=".BANKBYTES"></tt>


<sect1><tt>.LOCAL</tt><label id=".LOCAL"><p>

  This command may only be used inside a macro definition. It declares a
  list of identifiers as local to the macro expansion.

  A problem when using macros are labels: Since they don't change their name,
  you get a "duplicate symbol" error if the macro is expanded the second time.
  Labels declared with <tt><ref id=".LOCAL" name=".LOCAL"></tt> have their
  name mapped to an internal unique name (<tt/___ABCD__/) with each macro
  invocation.

  Some other assemblers start a new lexical block inside a macro expansion.
  This has some drawbacks however, since that will not allow <em/any/ symbol
  to be visible outside a macro, a feature that is sometimes useful. The
  <tt><ref id=".LOCAL" name=".LOCAL"></tt> command is in my eyes a better way
  to address the problem.

  You get an error when using <tt><ref id=".LOCAL" name=".LOCAL"></tt> outside
  a macro.


<sect1><tt>.LOCALCHAR</tt><label id=".LOCALCHAR"><p>

  Defines the character that start "cheap" local labels. You may use one
  of '@' and '?' as start character. The default is '@'.

  Cheap local labels are labels that are visible only between two non
  cheap labels. This way you can reuse identifiers like "<tt/loop/" without
  using explicit lexical nesting.

  Example:

  <tscreen><verb>
        .localchar      '?'

        Clear:  lda     #$00            ; Global label
        ?Loop:  sta     Mem,y           ; Local label
                dey
                bne     ?Loop           ; Ok
                rts
        Sub:    ...                     ; New global label
                bne     ?Loop           ; ERROR: Unknown identifier!
  </verb></tscreen>


<sect1><tt>.MACPACK</tt><label id=".MACPACK"><p>

  Insert a predefined macro package. The command is followed by an
  identifier specifying the macro package to insert. Available macro
  packages are:

  <tscreen><verb>
        atari           Defines the scrcode macro.
        cbm             Defines the scrcode macro.
        cpu             Defines constants for the .CPU variable.
        generic         Defines generic macros like add, sub, and blt.
        longbranch      Defines conditional long-jump macros.
  </verb></tscreen>

  Including a macro package twice, or including a macro package that
  redefines already existing macros will lead to an error.

  Example:

  <tscreen><verb>
        .macpack        longbranch      ; Include macro package

                cmp     #$20            ; Set condition codes
                jne     Label           ; Jump long on condition
  </verb></tscreen>

  Macro packages are explained in more detail in section <ref
  id="macropackages" name="Macro packages">.


<sect1><tt>.MAC, .MACRO</tt><label id=".MACRO"><p>

  Start a classic macro definition. The command is followed by an identifier
  (the macro name) and optionally by a comma separated list of identifiers
  that are macro parameters. A macro definition is terminated by <tt><ref
  id=".ENDMACRO" name=".ENDMACRO"></tt>.

  Example:

  <tscreen><verb>
        .macro  ldax    arg             ; Define macro ldax
                lda     arg
                ldx     arg+1
  </verb></tscreen>

  See: <tt><ref id=".DELMACRO" name=".DELMACRO"></tt>,
       <tt><ref id=".ENDMACRO" name=".ENDMACRO"></tt>,
       <tt><ref id=".EXITMACRO" name=".EXITMACRO"></tt>

  See also section <ref id="macros" name="Macros">.


<sect1><tt>.ORG</tt><label id=".ORG"><p>

  Start a section of absolute code. The command is followed by a constant
  expression that gives the new PC counter location for which the code is
  assembled. Use <tt><ref id=".RELOC" name=".RELOC"></tt> to switch back to
  relocatable code.

  By default, absolute/relocatable mode is global (valid even when switching
  segments). Using <tt>.FEATURE <ref id="org_per_seg" name="org_per_seg"></tt>
  it can be made segment local.

  Please note that you <em/do not need/ <tt/.ORG/ in most cases. Placing
  code at a specific address is the job of the linker, not the assembler, so
  there is usually no reason to assemble code to a specific address.

  Example:

  <tscreen><verb>
        .org    $7FF            ; Emit code starting at $7FF
  </verb></tscreen>


<sect1><tt>.OUT</tt><label id=".OUT"><p>

  Output a string to the console without producing an error. This command
  is similar to <tt/.ERROR/, however, it does not force an assembler error
  that prevents the creation of an object file.

  Example:

  <tscreen><verb>
        .out    "This code was written by the codebuster(tm)"
  </verb></tscreen>

  See also: <tt><ref id=".ERROR" name=".ERROR"></tt>,
            <tt><ref id=".FATAL" name=".FATAL"></tt>,
            <tt><ref id=".WARNING" name=".WARNING"></tt>


<sect1><tt>.P02</tt><label id=".P02"><p>

  Enable the 6502 instruction set, disable 65SC02, 65C02 and 65816
  instructions. This is the default if not overridden by the
  <tt><ref id="option--cpu" name="--cpu"></tt> command line option.

  See: <tt><ref id=".PC02" name=".PC02"></tt>, <tt><ref id=".PSC02"
  name=".PSC02"></tt>, <tt><ref id=".P816" name=".P816"></tt> and
  <tt><ref id=".P4510" name=".P4510"></tt>


<sect1><tt>.P4510</tt><label id=".P4510"><p>

  Enable the 4510 instruction set. This is a superset of the 65C02 and
  6502 instruction sets.

  See: <tt><ref id=".P02" name=".P02"></tt>, <tt><ref id=".PSC02"
  name=".PSC02"></tt>, <tt><ref id=".PC02" name=".PC02"></tt> and
  <tt><ref id=".P816" name=".P816"></tt>


<sect1><tt>.P816</tt><label id=".P816"><p>

  Enable the 65816 instruction set. This is a superset of the 65SC02 and
  6502 instruction sets.

  See: <tt><ref id=".P02" name=".P02"></tt>, <tt><ref id=".PSC02"
  name=".PSC02"></tt>, <tt><ref id=".PC02" name=".PC02"></tt> and
  <tt><ref id=".P4510" name=".P4510"></tt>


<sect1><tt>.PAGELEN, .PAGELENGTH</tt><label id=".PAGELENGTH"><p>

  Set the page length for the listing. Must be followed by an integer
  constant. The value may be "unlimited", or in the range 32 to 127. The
  statement has no effect if no listing is generated. The default value is -1
  (unlimited) but may be overridden by the <tt/--pagelength/ command line
  option. Beware: Since ca65 is a one pass assembler, the listing is generated
  after assembly is complete, you cannot use multiple line lengths with one
  source. Instead, the value set with the last <tt/.PAGELENGTH/ is used.

  Examples:

  <tscreen><verb>
        .pagelength     66              ; Use 66 lines per listing page

        .pagelength     unlimited       ; Unlimited page length
  </verb></tscreen>


<sect1><tt>.PC02</tt><label id=".PC02"><p>

  Enable the 65C02 instructions set. This instruction set includes all
  6502 and 65SC02 instructions.

  See: <tt><ref id=".P02" name=".P02"></tt>, <tt><ref id=".PSC02"
  name=".PSC02"></tt>, <tt><ref id=".P816" name=".P816"></tt> and
  <tt><ref id=".P4510" name=".P4510"></tt>


<sect1><tt>.POPCPU</tt><label id=".POPCPU"><p>

  Pop the last CPU setting from the stack, and activate it.

  This command will switch back to the CPU that was last pushed onto the CPU
  stack using the <tt><ref id=".PUSHCPU" name=".PUSHCPU"></tt> command, and
  remove this entry from the stack.

  The assembler will print an error message if the CPU stack is empty when
  this command is issued.

  See: <tt><ref id=".CPU" name=".CPU"></tt>, <tt><ref id=".PUSHCPU"
  name=".PUSHCPU"></tt>, <tt><ref id=".SETCPU" name=".SETCPU"></tt>


<sect1><tt>.POPSEG</tt><label id=".POPSEG"><p>

  Pop the last pushed segment from the stack, and set it.

  This command will switch back to the segment that was last pushed onto the
  segment stack using the <tt><ref id=".PUSHSEG" name=".PUSHSEG"></tt>
  command, and remove this entry from the stack.

  The assembler will print an error message if the segment stack is empty
  when this command is issued.

  See: <tt><ref id=".PUSHSEG" name=".PUSHSEG"></tt>


<sect1><tt>.PROC</tt><label id=".PROC"><p>

  Start a nested lexical level with the given name and adds a symbol with this
  name to the enclosing scope. All new symbols from now on are in the local
  lexical level and are accessible from outside only via <ref id="scopesyntax"
  name="explicit scope specification">. Symbols defined outside this local
  level may be accessed as long as their names are not used for new symbols
  inside the level. Symbols names in other lexical levels do not clash, so you
  may use the same names for identifiers. The lexical level ends when the
  <tt><ref id=".ENDPROC" name=".ENDPROC"></tt> command is read. Lexical levels
  may be nested up to a depth of 16 (this is an artificial limit to protect
  against errors in the source).

  Note: Macro names are always in the global level and in a separate name
  space. There is no special reason for this, it's just that I've never
  had any need for local macro definitions.

  Example:

  <tscreen><verb>
        .proc   Clear           ; Define Clear subroutine, start new level
                lda     #$00
        L1:     sta     Mem,y   ; L1 is local and does not cause a
                                ; duplicate symbol error if used in other
                                ; places
                dey
                bne     L1      ; Reference local symbol
                rts
        .endproc                ; Leave lexical level
  </verb></tscreen>

  See: <tt/<ref id=".ENDPROC" name=".ENDPROC">/ and <tt/<ref id=".SCOPE"
  name=".SCOPE">/


<sect1><tt>.PSC02</tt><label id=".PSC02"><p>

  Enable the 65SC02 instructions set. This instruction set includes all
  6502 instructions.

  See: <tt><ref id=".P02" name=".P02"></tt>, <tt><ref id=".PC02"
  name=".PC02"></tt>, <tt><ref id=".P816" name=".P816"></tt> and
  <tt><ref id=".P4510" name=".P4510"></tt>


<sect1><tt>.PUSHCPU</tt><label id=".PUSHCPU"><p>

  Push the currently active CPU onto a stack. The stack has a size of 8
  entries.

  <tt/.PUSHCPU/ allows together with <tt><ref id=".POPCPU"
  name=".POPCPU"></tt> to switch to another CPU and to restore the old CPU
  later, without knowledge of the current CPU setting.

  The assembler will print an error message if the CPU stack is already full,
  when this command is issued.

  See: <tt><ref id=".CPU" name=".CPU"></tt>, <tt><ref id=".POPCPU"
  name=".POPCPU"></tt>, <tt><ref id=".SETCPU" name=".SETCPU"></tt>


<sect1><tt>.PUSHSEG</tt><label id=".PUSHSEG"><p>

  Push the currently active segment onto a stack. The entries on the stack
  include the name of the segment and the segment type. The stack has a size
  of 16 entries.

  <tt/.PUSHSEG/ allows together with <tt><ref id=".POPSEG" name=".POPSEG"></tt>
  to switch to another segment and to restore the old segment later, without
  even knowing the name and type of the current segment.

  The assembler will print an error message if the segment stack is already
  full, when this command is issued.

  See: <tt><ref id=".POPSEG" name=".POPSEG"></tt>


<sect1><tt>.RELOC</tt><label id=".RELOC"><p>

  Switch back to relocatable mode. See the <tt><ref id=".ORG"
  name=".ORG"></tt> command.


<sect1><tt>.REPEAT</tt><label id=".REPEAT"><p>

  Repeat all commands between <tt/.REPEAT/ and <tt><ref id=".ENDREPEAT"
  name=".ENDREPEAT"></tt> constant number of times. The command is followed by
  a constant expression that tells how many times the commands in the body
  should get repeated. Optionally, a comma and an identifier may be specified.
  If this identifier is found in the body of the repeat statement, it is
  replaced by the current repeat count (starting with zero for the first time
  the body is repeated).

  <tt/.REPEAT/ statements may be nested. If you use the same repeat count
  identifier for a nested <tt/.REPEAT/ statement, the one from the inner
  level will be used, not the one from the outer level.

  Example:

  The following macro will emit a string that is "encrypted" in that all
  characters of the string are XORed by the value $55.

  <tscreen><verb>
        .macro  Crypt   Arg
                .repeat .strlen(Arg), I
                .byte   .strat(Arg, I) ^ $55
                .endrep
        .endmacro
  </verb></tscreen>

  See: <tt><ref id=".ENDREPEAT" name=".ENDREPEAT"></tt>


<sect1><tt>.RES</tt><label id=".RES"><p>

  Reserve storage. The command is followed by one or two constant
  expressions. The first one is mandatory and defines, how many bytes of
  storage should be defined. The second, optional expression must by a
  constant byte value that will be used as value of the data. If there
  is no fill value given, the linker will use the value defined in the
  linker configuration file (default: zero).

  Example:

  <tscreen><verb>
        ; Reserve 12 bytes of memory with value $AA
        .res    12, $AA
  </verb></tscreen>


<sect1><tt>.RODATA</tt><label id=".RODATA"><p>

  Switch to the RODATA segment. The name of the RODATA segment is always
  "RODATA", so this is a shortcut for

  <tscreen><verb>
        .segment  "RODATA"
  </verb></tscreen>

  The RODATA segment is a segment that is used by the compiler for
  readonly data like string constants.

  See also the <tt><ref id=".SEGMENT" name=".SEGMENT"></tt> command.


<sect1><tt>.SCOPE</tt><label id=".SCOPE"><p>

  Start a nested lexical level with the given name. All new symbols from now
  on are in the local lexical level and are accessible from outside only via
  <ref id="scopesyntax" name="explicit scope specification">. Symbols defined
  outside this local level may be accessed as long as their names are not used
  for new symbols inside the level. Symbols names in other lexical levels do
  not clash, so you may use the same names for identifiers. The lexical level
  ends when the <tt><ref id=".ENDSCOPE" name=".ENDSCOPE"></tt> command is
  read. Lexical levels may be nested up to a depth of 16 (this is an
  artificial limit to protect against errors in the source).

  Note: Macro names are always in the global level and in a separate name
  space. There is no special reason for this, it's just that I've never
  had any need for local macro definitions.

  Example:

  <tscreen><verb>
        .scope  Error                   ; Start new scope named Error
                None = 0                ; No error
                File = 1                ; File error
                Parse = 2               ; Parse error
        .endscope                       ; Close lexical level

                ...
                lda #Error::File        ; Use symbol from scope Error
  </verb></tscreen>

  See: <tt/<ref id=".ENDSCOPE" name=".ENDSCOPE">/ and <tt/<ref id=".PROC"
  name=".PROC">/


<sect1><tt>.SEGMENT</tt><label id=".SEGMENT"><p>

  Switch to another segment. Code and data is always emitted into a
  segment, that is, a named section of data. The default segment is
  "CODE". There may be up to 254 different segments per object file
  (and up to 65534 per executable). There are shortcut commands for
  the most common segments ("ZEROPAGE", "CODE", "RODATA", "DATA", and "BSS").

  The command is followed by a string containing the segment name (there are
  some constraints for the name - as a rule of thumb use only those segment
  names that would also be valid identifiers). There may also be an optional
  address size separated by a colon. See the section covering <tt/<ref
  id="address-sizes" name="address sizes">/ for more information.

  The default address size for a segment depends on the memory model specified
  on the command line. The default is "absolute", which means that you don't
  have to use an address size modifier in most cases.

  "absolute" means that the is a segment with 16 bit (absolute) addressing.
  That is, the segment will reside somewhere in core memory outside the zero
  page. "zeropage" (8 bit) means that the segment will be placed in the zero
  page and direct (short) addressing is possible for data in this segment.

  Beware: Only labels in a segment with the zeropage attribute are marked
  as reachable by short addressing. The '*' (PC counter) operator will
  work as in other segments and will create absolute variable values.

  Please note that a segment cannot have two different address sizes. A
  segment specified as zeropage cannot be declared as being absolute later.

  Examples:

  <tscreen><verb>
        .segment "ROM2"                 ; Switch to ROM2 segment
        .segment "ZP2": zeropage        ; New direct segment
        .segment "ZP2"                  ; Ok, will use last attribute
        .segment "ZP2": absolute        ; Error, redecl mismatch
  </verb></tscreen>

  See: <tt><ref id=".BSS" name=".BSS"></tt>, <tt><ref id=".CODE"
  name=".CODE"></tt>, <tt><ref id=".DATA" name=".DATA"></tt>, <tt><ref
  id=".RODATA" name=".RODATA"></tt>, and <tt><ref id=".ZEROPAGE"
  name=".ZEROPAGE"></tt>


<sect1><tt>.SET</tt><label id=".SET"><p>

  <tt/.SET/ is used to assign a value to a variable. See <ref id="variables"
  name="Numeric variables"> for a full description.


<sect1><tt>.SETCPU</tt><label id=".SETCPU"><p>

  Switch the CPU instruction set. The command is followed by a string that
  specifies the CPU. Possible values are those that can also be supplied to
  the <tt><ref id="option--cpu" name="--cpu"></tt> command line option,
  namely: 6502, 6502X, 65SC02, 65C02, 65816, 4510 and HuC6280.

  See: <tt><ref id=".CPU" name=".CPU"></tt>,
       <tt><ref id=".IFP02" name=".IFP02"></tt>,
       <tt><ref id=".IFP816" name=".IFP816"></tt>,
       <tt><ref id=".IFPC02" name=".IFPC02"></tt>,
       <tt><ref id=".IFPSC02" name=".IFPSC02"></tt>,
       <tt><ref id=".P02" name=".P02"></tt>,
       <tt><ref id=".P816" name=".P816"></tt>,
       <tt><ref id=".P4510" name=".P4510"></tt>,
       <tt><ref id=".PC02" name=".PC02"></tt>,
       <tt><ref id=".PSC02" name=".PSC02"></tt>


<sect1><tt>.SMART</tt><label id=".SMART"><p>

  Switch on or off smart mode. The command must be followed by a '+' or '-'
  character to switch the option on or off respectively. The default is off
  (that is, the assembler doesn't try to be smart), but this default may be
  changed by the -s switch on the command line.

  In smart mode the assembler will do the following:

  <itemize>
  <item>Track usage of the <tt/REP/ and <tt/SEP/ instructions in 65816 mode
        and update the operand sizes accordingly. If the operand of such an
        instruction cannot be evaluated by the assembler (for example, because
        the operand is an imported symbol), a warning is issued. Beware: Since
        the assembler cannot trace the execution flow this may lead to false
        results in some cases. If in doubt, use the <tt/.Inn/ and <tt/.Ann/
        instructions to tell the assembler about the current settings.
  <item>In 65816 mode, replace a <tt/RTS/ instruction by <tt/RTL/ if it is
        used within a procedure declared as <tt/far/, or if the procedure has
        no explicit address specification, but it is <tt/far/ because of the
        memory model used.
  </itemize>

  Example:

  <tscreen><verb>
        .smart                          ; Be smart
        .smart  -                       ; Stop being smart
  </verb></tscreen>

  See: <tt><ref id=".A16" name=".A16"></tt>,
       <tt><ref id=".A8" name=".A8"></tt>,
       <tt><ref id=".I16" name=".I16"></tt>,
       <tt><ref id=".I8" name=".I8"></tt>


<sect1><tt>.STRUCT</tt><label id=".STRUCT"><p>

  Starts a struct definition. Structs are covered in a separate section named
  <ref id="structs" name="&quot;Structs and unions&quot;">.

  See also: <tt><ref id=".ENDSTRUCT" name=".ENDSTRUCT"></tt>,
            <tt><ref id=".ENDUNION" name=".ENDUNION"></tt>,
            <tt><ref id=".UNION" name=".UNION"></tt>


<sect1><tt>.TAG</tt><label id=".TAG"><p>

  Allocate space for a struct or union.

  Example:

  <tscreen><verb>
        .struct Point
                xcoord  .word
                ycoord  .word
        .endstruct

        .bss
                .tag    Point           ; Allocate 4 bytes
  </verb></tscreen>


<sect1><tt>.UNDEF, .UNDEFINE</tt><label id=".UNDEFINE"><p>

  Delete a define style macro definition. The command is followed by an
  identifier which specifies the name of the macro to delete. Macro
  replacement is switched of when reading the token following the command
  (otherwise the macro name would be replaced by its replacement list).

  See also the <tt><ref id=".DEFINE" name=".DEFINE"></tt> command and
  section <ref id="macros" name="Macros">.


<sect1><tt>.UNION</tt><label id=".UNION"><p>

  Starts a union definition. Unions are covered in a separate section named
  <ref id="structs" name="&quot;Structs and unions&quot;">.

  See also: <tt><ref id=".ENDSTRUCT" name=".ENDSTRUCT"></tt>,
            <tt><ref id=".ENDUNION" name=".ENDUNION"></tt>,
            <tt><ref id=".STRUCT" name=".STRUCT"></tt>


<sect1><tt>.WARNING</tt><label id=".WARNING"><p>

  Force an assembly warning. The assembler will output a warning message
  preceded by "User warning". This warning will always be output, even if
  other warnings are disabled with the <tt><ref id="option-W" name="-W0"></tt>
  command line option.

  This command may be used to output possible problems when assembling
  the source file.

  Example:

  <tscreen><verb>
        .macro  jne     target
                .local L1
                .ifndef target
                .warning "Forward jump in jne, cannot optimize!"
                beq     L1
                jmp     target
        L1:
                .else
                ...
                .endif
        .endmacro
  </verb></tscreen>

  See also: <tt><ref id=".ERROR" name=".ERROR"></tt>,
            <tt><ref id=".FATAL" name=".FATAL"></tt>,
            <tt><ref id=".OUT" name=".OUT"></tt>


<sect1><tt>.WORD</tt><label id=".WORD"><p>

  Define word sized data. Must be followed by a sequence of (word ranged,
  but not necessarily constant) expressions.

  Example:

  <tscreen><verb>
        .word   $0D00, $AF13, _Clear
  </verb></tscreen>


<sect1><tt>.ZEROPAGE</tt><label id=".ZEROPAGE"><p>

  Switch to the ZEROPAGE segment and mark it as direct (zeropage) segment.
  The name of the ZEROPAGE segment is always "ZEROPAGE", so this is a
  shortcut for

  <tscreen><verb>
        .segment  "ZEROPAGE": zeropage
  </verb></tscreen>

  Because of the "zeropage" attribute, labels declared in this segment are
  addressed using direct addressing mode if possible. You <em/must/ instruct
  the linker to place this segment somewhere in the address range 0..$FF
  otherwise you will get errors.

  See: <tt><ref id=".SEGMENT" name=".SEGMENT"></tt>



<sect>Macros<label id="macros"><p>


<sect1>Introduction<p>

Macros may be thought of as "parametrized super instructions". Macros are
sequences of tokens that have a name. If that name is used in the source
file, the macro is "expanded", that is, it is replaced by the tokens that
were specified when the macro was defined.


<sect1>Macros without parameters<p>

In its simplest form, a macro does not have parameters. Here's an
example:

<tscreen><verb>
.macro  asr             ; Arithmetic shift right
        cmp     #$80    ; Put bit 7 into carry
        ror             ; Rotate right with carry
.endmacro
</verb></tscreen>

The macro above consists of two real instructions, that are inserted into
the code, whenever the macro is expanded. Macro expansion is simply done
by using the name, like this:

<tscreen><verb>
        lda     $2010
        asr
        sta     $2010
</verb></tscreen>


<sect1>Parametrized macros<p>

When using macro parameters, macros can be even more useful:

<tscreen><verb>
.macro  inc16   addr
        clc
        lda     addr
        adc     #<$0001
        sta     addr
        lda     addr+1
        adc     #>$0001
        sta     addr+1
.endmacro
</verb></tscreen>

When calling the macro, you may give a parameter, and each occurrence of
the name "addr" in the macro definition will be replaced by the given
parameter. So

<tscreen><verb>
        inc16   $1000
</verb></tscreen>

will be expanded to

<tscreen><verb>
        clc
        lda     $1000
        adc     #<$0001
        sta     $1000
        lda     $1000+1
        adc     #>$0001
        sta     $1000+1
</verb></tscreen>

A macro may have more than one parameter, in this case, the parameters
are separated by commas. You are free to give less parameters than the
macro actually takes in the definition. You may also leave intermediate
parameters empty. Empty parameters are replaced by empty space (that is,
they are removed when the macro is expanded). If you have a look at our
macro definition above, you will see, that replacing the "addr" parameter
by nothing will lead to wrong code in most lines. To help you, writing
macros with a variable parameter list, there are some control commands:

<tt><ref id=".IFBLANK" name=".IFBLANK"></tt> tests the rest of the line and
returns true, if there are any tokens on the remainder of the line. Since
empty parameters are replaced by nothing, this may be used to test if a given
parameter is empty. <tt><ref id=".IFNBLANK" name=".IFNBLANK"></tt> tests the
opposite.

Look at this example:

<tscreen><verb>
.macro  ldaxy   a, x, y
.ifnblank       a
        lda     #a
.endif
.ifnblank       x
        ldx     #x
.endif
.ifnblank       y
        ldy     #y
.endif
.endmacro
</verb></tscreen>

That macro may be called as follows:

<tscreen><verb>
        ldaxy   1, 2, 3         ; Load all three registers

        ldaxy   1, , 3          ; Load only a and y

        ldaxy   , , 3           ; Load y only
</verb></tscreen>

There's another helper command for determining which macro parameters are
valid: <tt><ref id=".PARAMCOUNT" name=".PARAMCOUNT"></tt>. That command is
replaced by the parameter count given, <em/including/ explicitly empty
parameters:

<tscreen><verb>
        ldaxy   1       ; .PARAMCOUNT = 1
        ldaxy   1,,3    ; .PARAMCOUNT = 3
        ldaxy   1,2     ; .PARAMCOUNT = 2
        ldaxy   1,      ; .PARAMCOUNT = 2
        ldaxy   1,2,3   ; .PARAMCOUNT = 3
</verb></tscreen>

Macro parameters may optionally be enclosed into curly braces. This allows the
inclusion of tokens that would otherwise terminate the parameter (the comma in
case of a macro parameter).

<tscreen><verb>
.macro  foo     arg1, arg2
        ...
.endmacro

        foo     ($00,x)         ; Two parameters passed
        foo     {($00,x)}       ; One parameter passed
</verb></tscreen>

In the first case, the macro is called with two parameters: '<tt/(&dollar;00/'
and '<tt/x)/'. The comma is not passed to the macro, because it is part of the
calling sequence, not the parameters.

In the second case, '<tt/(&dollar;00,x)/' is passed to the macro; this time,
including the comma.


<sect1>Detecting parameter types<p>

Sometimes it is nice to write a macro that acts differently depending on the
type of the argument supplied. An example would be a macro that loads a 16 bit
value from either an immediate operand, or from memory. The <tt/<ref
id=".MATCH" name=".MATCH">/ and <tt/<ref id=".XMATCH" name=".XMATCH">/
functions will allow you to do exactly this:

<tscreen><verb>
.macro  ldax    arg
        .if (.match (.left (1, {arg}), #))
            ; immediate mode
            lda     #<(.right (.tcount ({arg})-1, {arg}))
            ldx     #>(.right (.tcount ({arg})-1, {arg}))
        .else
            ; assume absolute or zero page
            lda     arg
            ldx     1+(arg)
        .endif
.endmacro
</verb></tscreen>

Using the <tt/<ref id=".MATCH" name=".MATCH">/ function, the macro is able to
check if its argument begins with a hash mark. If so, two immediate loads are
emitted, Otherwise a load from an absolute zero page memory location is
assumed. Please note how the curly braces are used to enclose parameters to
pseudo functions handling token lists. This is necessary, because the token
lists may include commas or parens, which would be treated by the assembler
as end-of-list.

The macro can be used as

<tscreen><verb>
foo:    .word   $5678
...
        ldax    #$1234          ; X=$12, A=$34
...
        ldax    foo             ; X=$56, A=$78
</verb></tscreen>


<sect1>Recursive macros<p>

Macros may be used recursively:

<tscreen><verb>
.macro  push    r1, r2, r3
        lda     r1
        pha
.ifnblank       r2
        push    r2, r3
.endif
.endmacro
</verb></tscreen>

There's also a special macro command to help with writing recursive macros:
<tt><ref id=".EXITMACRO" name=".EXITMACRO"></tt>. That command will stop macro
expansion immediately:

<tscreen><verb>
.macro  push    r1, r2, r3, r4, r5, r6, r7
.ifblank        r1
        ; First parameter is empty
        .exitmacro
.else
        lda     r1
        pha
.endif
        push    r2, r3, r4, r5, r6, r7
.endmacro
</verb></tscreen>

When expanding that macro, the expansion will push all given parameters
until an empty one is encountered. The macro may be called like this:

<tscreen><verb>
        push    $20, $21, $32   ; Push 3 ZP locations
        push    $21             ; Push one ZP location
</verb></tscreen>


<sect1>Local symbols inside macros<p>

Now, with recursive macros, <tt><ref id=".IFBLANK" name=".IFBLANK"></tt> and
<tt><ref id=".PARAMCOUNT" name=".PARAMCOUNT"></tt>, what else do you need?
Have a look at the inc16 macro above. Here is it again:

<tscreen><verb>
.macro  inc16   addr
        clc
        lda     addr
        adc     #<$0001
        sta     addr
        lda     addr+1
        adc     #>$0001
        sta     addr+1
.endmacro
</verb></tscreen>

If you have a closer look at the code, you will notice, that it could be
written more efficiently, like this:

<tscreen><verb>
.macro  inc16   addr
        inc     addr
        bne     Skip
        inc     addr+1
Skip:
.endmacro
</verb></tscreen>

But imagine what happens, if you use this macro twice? Since the label "Skip"
has the same name both times, you get a "duplicate symbol" error. Without a
way to circumvent this problem, macros are not as useful, as they could be.
One possible solution is the command <tt><ref id=".LOCAL" name=".LOCAL"></tt>.
It declares one or more symbols as local to the macro expansion. The names of
local variables are replaced by a unique name in each separate macro
expansion. So we can solve the problem above by using <tt/.LOCAL/:

<tscreen><verb>
.macro  inc16   addr
        .local  Skip            ; Make Skip a local symbol
        inc     addr
        bne     Skip
        inc     addr+1
Skip:                           ; Not visible outside
.endmacro
</verb></tscreen>

Another solution is of course to start a new lexical block inside the macro
that hides any labels:

<tscreen><verb>
.macro  inc16   addr
.proc
        inc     addr
        bne     Skip
        inc     addr+1
Skip:
.endproc
.endmacro
</verb></tscreen>


<sect1>C style macros<p>

Starting with version 2.5 of the assembler, there is a second macro type
available: C style macros using the <tt/.DEFINE/ directive. These macros are
similar to the classic macro type described above, but behaviour is sometimes
different:

<itemize>

<item>  Macros defined with <tt><ref id=".DEFINE" name=".DEFINE"></tt> may not
        span more than a line. You may use line continuation (see <tt><ref
        id=".LINECONT" name=".LINECONT"></tt>) to spread the definition over
        more than one line for increased readability, but the macro itself
        may not contain an end-of-line token.

<item>  Macros defined with <tt><ref id=".DEFINE" name=".DEFINE"></tt> share
        the name space with classic macros, but they are detected and replaced
        at the scanner level. While classic macros may be used in every place,
        where a mnemonic or other directive is allowed, <tt><ref id=".DEFINE"
        name=".DEFINE"></tt> style macros are allowed anywhere in a line. So
        they are more versatile in some situations.

<item>  <tt><ref id=".DEFINE" name=".DEFINE"></tt> style macros may take
        parameters. While classic macros may have empty parameters, this is
        not true for <tt><ref id=".DEFINE" name=".DEFINE"></tt> style macros.
        For this macro type, the number of actual parameters must match
        exactly the number of formal parameters.

        To make this possible, formal parameters are enclosed in braces when
        defining the macro. If there are no parameters, the empty braces may
        be omitted.

<item>  Since <tt><ref id=".DEFINE" name=".DEFINE"></tt> style macros may not
        contain end-of-line tokens, there are things that cannot be done. They
        may not contain several processor instructions for example. So, while
        some things may be done with both macro types, each type has special
        usages. The types complement each other.

<item>  Parentheses work differently from C macros.
        The common practice of wrapping C macros in parentheses may cause
        unintended problems here, such as accidentally implying an
        indirect addressing mode. While the definition of a macro requires
        parentheses around its argument list, when invoked they should not be
        included.

</itemize>

Let's look at a few examples to make the advantages and disadvantages
clear.

To emulate assemblers that use "<tt/EQU/" instead of "<tt/=/" you may use the
following <tt/.DEFINE/:

<tscreen><verb>
.define EQU     =

foo     EQU     $1234           ; This is accepted now
</verb></tscreen>

You may use the directive to define string constants used elsewhere:

<tscreen><verb>
; Define the version number
.define VERSION "12.3a"

        ; ... and use it
        .asciiz VERSION
</verb></tscreen>

Macros with parameters may also be useful:

<tscreen><verb>
.define DEBUG(message)  .out    message

        DEBUG   "Assembling include file #3"
</verb></tscreen>

Note that, while formal parameters have to be placed in parentheses,
the actual argument used when invoking the macro should not be.
The invoked arguments are separated by commas only, if parentheses are
used by accident they will become part of the replaced token.

If you wish to have an expression follow the macro invocation, the
last parameter can be enclosed in curly braces {} to indicate the end of that
argument.

Examples:

<tscreen><verb>
.define COMBINE(ta,tb,tc) ta+tb*10+tc*100

.word COMBINE 5,6,7      ; 5+6*10+7*100 = 765
.word COMBINE(5,6,7)     ; (5+6*10+7)*100 = 7200 ; incorrect use of parentheses
.word COMBINE 5,6,7+1    ; 5+6*10+7+1*100 = 172
.word COMBINE 5,6,{7}+1  ; 5+6*10+7*100+1 = 766 ; {} encloses the argument
.word COMBINE 5,6-2,7    ; 5+6-2*10+7*100 = 691
.word COMBINE 5,(6-2),7  ; 5+(6-2)*10+7*100 = 745
.word COMBINE 5,6,7+COMBINE 0,1,2    ; 5+6*10+7+0+1*10+2*100*100 = 20082
.word COMBINE 5,6,{7}+COMBINE 0,1,2  ; 5+6*10+7*100+0+1*10+2*100 = 975
</verb></tscreen>

With C macros it is common to enclose the results in parentheses to
prevent unintended interactions with the text of the arguments, but
additional care must be taken in this assembly context where parentheses
may alter the meaning of a statement. In particular, indirect addressing modes
may be accidentally implied:

<tscreen><verb>
.define DUO(ta,tb) (ta+(tb*10))

        lda DUO(5,4), Y         ; LDA (indirect), Y
        lda 0+DUO(5,4), Y       ; LDA absolute indexed, Y
</verb></tscreen>


<sect1>Characters in macros<p>

When using the <ref id="option-t" name="-t"> option, characters are translated
into the target character set of the specific machine. However, this happens
as late as possible. This means that strings are translated if they are part
of a <tt><ref id=".BYTE" name=".BYTE"></tt> or <tt><ref id=".ASCIIZ"
name=".ASCIIZ"></tt> command. Characters are translated as soon as they are
used as part of an expression.

This behaviour is very intuitive outside of macros but may be confusing when
doing more complex macros. If you compare characters against numeric values,
be sure to take the translation into account.


<sect1>Deleting macros<p>

Macros can be deleted. This will not work if the macro that should be deleted
is currently expanded as in the following non-working example:

<tscreen><verb>
.macro  notworking
        .delmacro       notworking
.endmacro

        notworking              ; Will not work
</verb></tscreen>

The commands to delete classic and define style macros differ. Classic macros
can be deleted by use of <tt><ref id=".DELMACRO" name=".DELMACRO"></tt>, while
for <tt><ref id=".DEFINE" name=".DEFINE"></tt> style macros, <tt><ref
id=".UNDEFINE" name=".UNDEFINE"></tt> must be used. Example:

<tscreen><verb>
.define value   1
.macro  mac
        .byte   2
.endmacro

        .byte   value           ; Emit one byte with value 1
        mac                     ; Emit another byte with value 2

.undefine value
.delmacro mac

        .byte   value           ; Error: Unknown identifier
        mac                     ; Error: Missing ":"
</verb></tscreen>

A separate command for <tt>.DEFINE</tt> style macros was necessary, because
the name of such a macro is replaced by its replacement list on a very low
level. To get the actual name, macro replacement has to be switched off when
reading the argument to <tt>.UNDEFINE</tt>. This does also mean that the
argument to <tt>.UNDEFINE</tt> is not allowed to come from another
<tt>.DEFINE</tt>. All this is not necessary for classic macros, so having two
different commands increases flexibility.



<sect>Macro packages<label id="macropackages"><p>

Using the <tt><ref id=".MACPACK" name=".MACPACK"></tt> directive, predefined
macro packages may be included with just one command. Available macro packages
are:


<sect1><tt>.MACPACK generic</tt><p>

This macro package defines macros that are useful in almost any program.
Currently defined macros are:

<tscreen><verb>
        .macro  add     Arg     ; add without carry
                clc
                adc     Arg
        .endmacro

        .macro  sub     Arg     ; subtract without borrow
                sec
                sbc     Arg
        .endmacro

        .macro  bge     Arg     ; branch on greater-than or equal
                bcs     Arg
        .endmacro

        .macro  blt     Arg     ; branch on less-than
                bcc     Arg
        .endmacro

        .macro  bgt     Arg     ; branch on greater-than
                .local  L
                beq     L
                bcs     Arg
        L:
        .endmacro

        .macro  ble     Arg     ; branch on less-than or equal
                beq     Arg
                bcc     Arg
        .endmacro

        .macro  bnz     Arg     ; branch on not zero
                bne     Arg
        .endmacro

        .macro  bze     Arg     ; branch on zero
                beq     Arg
        .endmacro
</verb></tscreen>


<sect1><tt>.MACPACK longbranch</tt><p>

This macro package defines long conditional jumps. They are named like the
short counterpart but with the 'b' replaced by a 'j'. Here is a sample
definition for the "<tt/jeq/" macro, the other macros are built using the same
scheme:

<tscreen><verb>
        .macro  jeq     Target
                .if     .def(Target) .and ((*+2)-(Target) <= 127)
                beq     Target
                .else
                bne     *+5
                jmp     Target
                .endif
        .endmacro
</verb></tscreen>

All macros expand to a short branch, if the label is already defined (back
jump) and is reachable with a short jump. Otherwise the macro expands to a
conditional branch with the branch condition inverted, followed by an absolute
jump to the actual branch target.

The package defines the following macros:

<tscreen><verb>
        jeq, jne, jmi, jpl, jcs, jcc, jvs, jvc
</verb></tscreen>



<sect1><tt>.MACPACK apple2</tt><p>

This macro package defines a macro named <tt/scrcode/. It takes a string
as argument and places this string into memory translated into screen codes.


<sect1><tt>.MACPACK atari</tt><p>

This macro package defines a macro named <tt/scrcode/. It takes a string
as argument and places this string into memory translated into screen codes.


<sect1><tt>.MACPACK cbm</tt><p>

This macro package defines a macro named <tt/scrcode/. It takes a string
as argument and places this string into memory translated into screen codes.


<sect1><tt>.MACPACK cpu</tt><p>

This macro package does not define any macros but constants used to examine
the value read from the <tt/<ref id=".CPU" name=".CPU">/ pseudo variable. For
each supported CPU a constant similar to

<tscreen><verb>
    CPU_6502
    CPU_65SC02
    CPU_65C02
    CPU_65816
    CPU_SWEET16
    CPU_HUC6280
    CPU_4510
</verb></tscreen>

is defined. These constants may be used to determine the exact type of the
currently enabled CPU. In addition to that, for each CPU instruction set,
another constant is defined:

<tscreen><verb>
    CPU_ISET_6502
    CPU_ISET_65SC02
    CPU_ISET_65C02
    CPU_ISET_65816
    CPU_ISET_SWEET16
    CPU_ISET_HUC6280
    CPU_ISET_4510
</verb></tscreen>

The value read from the <tt/<ref id=".CPU" name=".CPU">/ pseudo variable may
be checked with <tt/<ref id="operators" name=".BITAND">/ to determine if the
currently enabled CPU supports a specific instruction set. For example the
65C02 supports all instructions of the 65SC02 CPU, so it has the
<tt/CPU_ISET_65SC02/ bit set in addition to its native <tt/CPU_ISET_65C02/
bit. Using

<tscreen><verb>
        .if (.cpu .bitand CPU_ISET_65SC02)
                lda     (sp)
        .else
                ldy     #$00
                lda     (sp),y
        .endif
</verb></tscreen>

it is possible to determine if the

<tscreen><verb>
                lda     (sp)
</verb></tscreen>

instruction is supported, which is the case for the 65SC02, 65C02 and 65816
CPUs (the latter two are upwards compatible to the 65SC02).


<sect1><tt>.MACPACK module</tt><p>

This macro package defines a macro named <tt/module_header/. It takes an
identifier as argument and is used to define the header of a module both
in the dynamic and static variant.



<sect>Predefined constants<label id="predefined-constants"><p>

For better orthogonality, the assembler defines similar symbols as the
compiler, depending on the target system selected:

<itemize>
<item><tt/__APPLE2__/ - Target system is <tt/apple2/ or <tt/apple2enh/
<item><tt/__APPLE2ENH__/ - Target system is <tt/apple2enh/
<item><tt/__ATARI2600__/ - Target system is <tt/atari2600/
<item><tt/__ATARI5200__/ - Target system is <tt/atari5200/
<item><tt/__ATARI__/ - Target system is <tt/atari/ or <tt/atarixl/
<item><tt/__ATARIXL__/ - Target system is <tt/atarixl/
<item><tt/__ATMOS__/ - Target system is <tt/atmos/
<item><tt/__BBC__/ - Target system is <tt/bbc/
<item><tt/__C128__/ - Target system is <tt/c128/
<item><tt/__C16__/ - Target system is <tt/c16/ or <tt/plus4/
<item><tt/__C64__/ - Target system is <tt/c64/
<item><tt/__CBM__/ - Target is a Commodore or Commodore-alike system
<item><tt/__CBM510__/ - Target system is <tt/cbm510/
<item><tt/__CBM610__/ - Target system is <tt/cbm610/
<item><tt/__CX16__/ - Target system is <tt/cx16/
<item><tt/__GEOS__/ - Target is a GEOS system
<item><tt/__GEOS_APPLE__/ - Target system is <tt/geos-apple/
<item><tt/__GEOS_CBM__/ - Target system is <tt/geos-cbm/
<item><tt/__LUNIX__/ - Target system is <tt/lunix/
<item><tt/__LYNX__/ - Target system is <tt/lynx/
<item><tt/__NES__/ - Target system is <tt/nes/
<item><tt/__OSIC1P__/ - Target system is <tt/osic1p/
<item><tt/__PET__/ - Target system is <tt/pet/
<item><tt/__PLUS4__/ - Target system is <tt/plus4/
<item><tt/__SIM6502__/ - Target system is <tt/sim6502/
<item><tt/__SIM65C02__/ - Target system is <tt/sim65c02/
<item><tt/__SUPERVISION__/ - Target system is <tt/supervision/
<item><tt/__VIC20__/ - Target system is <tt/vic20/
</itemize>



<sect>Structs and unions<label id="structs"><p>

<sect1>Structs and unions Overview<p>

Structs and unions are special forms of <ref id="scopes" name="scopes">.  They
are, to some degree, comparable to their C counterparts. Both have a list of
members. Each member allocates storage, and optionally may have a name whose
value, in the case of a struct, usually is the storage offset from the
beginning, and in the case of a union, doesn't change, and usually is zero.


<sect1>Declaration<p>

Here is an example for a very simple struct with two members and a total size
of 4 bytes:
<tscreen><verb>
      .struct Point
              xcoord  .word
              ycoord  .word
      .endstruct
</verb></tscreen>

A union shares the total space between all its members; its size is the same
as that of the largest member. The offset of all members relative to the union
is zero.
<tscreen><verb>
      .union  Entry
              index   .word
              ptr     .addr
      .endunion
</verb></tscreen>

A struct or union may not necessarily have a name. If it is anonymous, no
local scope is opened; the identifiers used to name the members are placed
into the current scope instead.

A struct may contain unnamed members and definitions of local structs/unions.
The storage allocators may contain a multiplier, as in the example below:
<tscreen><verb>
      .struct Circle
              .struct Point
                      .word   2         ; Allocate two words
              .endstruct
              Radius  .word
      .endstruct
</verb></tscreen>
The size of the Circle struct is 6 (three words).


<sect1>The storage allocator keywords<p>

  <descrip>

  <tag/.BYTE, .RES/
    Allocates multiples of 1 byte.  <tt/.RES/ requires an operand.

  <tag/.DBYTE, .WORD, .ADDR/
    Allocates multiples of 2 bytes.

  <tag/.FARADDR/
    Allocates multiples of 3 bytes.

  <tag/.DWORD/
    Allocates multiples of 4 bytes.

  </descrip>


<sect1>The <tt/.ORG/ keyword<p>

The <tt/.ORG/ keyword changes the offset value that is assigned to subsequent
member names.  It's useful when using a struct to define the names of the
registers in an I/O chip.  Example:
<tscreen><verb>
; 6551
.struct ACIA            ; Asynchronous Communications Interface Adapter
        .org    $031C
DATA    .byte
STATUS  .byte
CMD     .byte           ; Command register
CTRL    .byte           ; Control register
.endstruct

        lda     ACIA::DATA      ; Get an RS-232 character
</verb></tscreen>


<sect1>The <tt/.TAG/ keyword<p>

By using the <ref id=".TAG" name=".TAG"> keyword, it is possible to reserve
space for an already defined struct or union within another struct:
<tscreen><verb>
      .struct Point
              xcoord  .word
              ycoord  .word
      .endstruct

      .struct Circle
              Origin  .tag    Point
              Radius  .byte
      .endstruct
</verb></tscreen>

Actual space for a struct or union may be allocated by using the <ref id=".TAG"
name=".TAG"> directive.
<tscreen><verb>
C:      .tag    Circle
</verb></tscreen>

Currently, members are just offsets from the start of the struct or union. To
access a field of a struct, the member offset must be added to the address of
the struct variable itself:
<tscreen><verb>
        lda     C+Circle::Radius        ; Load circle radius into A
</verb></tscreen>
That may change in a future version of the assembler.


<sect1>Limitations<p>

Structs and unions currently are implemented as nested symbol tables (in fact,
they were a by-product of the improved scoping rules). Currently, the
assembler has no idea of types. That means that the <ref id=".TAG"
name=".TAG"> keyword only will allocate space. You won't be able to initialize
variables declared with <ref id=".TAG" name=".TAG">; and, adding an embedded
structure to another structure with <ref id=".TAG" name=".TAG"> will not make
that added structure accessible by using the '::' operator.



<sect>Module constructors/destructors<label id="condes"><p>

<em>Note:</em> This section applies mostly to C programs, so the explanation
below uses examples from the C libraries. However, the feature may also be
useful for assembler programs.


<sect1>Module constructors/destructors Overview<p>

Using the <tt><ref id=".CONSTRUCTOR" name=".CONSTRUCTOR"></tt>, <tt><ref
id=".DESTRUCTOR" name=".DESTRUCTOR"></tt> and <tt><ref id=".INTERRUPTOR"
name=".INTERRUPTOR"></tt> keywords it is possible to export functions in a
special way. The linker is able to generate tables with all functions of a
specific type. Such a table will <em>only</em> include symbols from object
files that are linked into a specific executable. This may be used to add
initialization and cleanup code for library modules, or a table of interrupt
handler functions.

The C heap functions are an example where module initialization code is used.
All heap functions (<tt>malloc</tt>, <tt>free</tt>, ...) work with a few
variables that contain the start and the end of the heap, pointers to the free
list and so on. Since the end of the heap depends on the size and start of the
stack, it must be initialized at runtime. However, initializing these
variables for programs that do not use the heap are a waste of time and
memory.

So the central module defines a function that contains initialization code and
exports this function using the <tt/.CONSTRUCTOR/ statement. If (and only if)
this module is added to an executable by the linker, the initialization
function will be placed into the table of constructors by the linker. The C
startup code will call all constructors before <tt/main/ and all destructors
after <tt/main/, so without any further work, the heap initialization code is
called once the module is linked in.

While it would be possible to add explicit calls to initialization functions
in the startup code, the new approach has several advantages:

<enum>
<item>
If a module is not included, the initialization code is not linked in and not
called. So you don't pay for things you don't need.

<item>
Adding another library that needs initialization does not mean that the
startup code has to be changed. Before we had module constructors and
destructors, the startup code for all systems had to be adjusted to call the
new initialization code.

<item>
The feature saves memory: Each additional initialization function needs just
two bytes in the table (a pointer to the function).

</enum>


<sect1>Calling order<p>

The symbols are sorted in increasing priority order by the linker when using
one of the builtin linker configurations, so the functions with lower
priorities come first and are followed by those with higher priorities. The C
library runtime subroutine that walks over the function tables calls the
functions starting from the top of the table - which means that functions with
a high priority are called first.

So when using the C runtime, functions are called with high priority functions
first, followed by low priority functions.


<sect1>Pitfalls<p>

When using these special symbols, please take care of the following:

<itemize>

<item>
The linker will only generate function tables, it will not generate code to
call these functions. If you're using the feature in some other than the
existing C environments, you have to write code to call all functions in a
linker generated table yourself. See the <tt/condes/ and <tt/callirq/ modules
in the C runtime for an example on how to do this.

<item>
The linker will only add addresses of functions that are in modules linked to
the executable. This means that you have to be careful where to place the
condes functions. If initialization or an irq handler is needed for a group of
functions, be sure to place the function into a module that is linked in
regardless of which function is called by the user.

<item>
The linker will generate the tables only when requested to do so by the
<tt/FEATURE CONDES/ statement in the linker config file. Each table has to
be requested separately.

<item>
Constructors and destructors may have priorities. These priorities determine
the order of the functions in the table. If your initialization or cleanup code
does depend on other initialization or cleanup code, you have to choose the
priority for the functions accordingly.

<item>
Besides the <tt><ref id=".CONSTRUCTOR" name=".CONSTRUCTOR"></tt>, <tt><ref
id=".DESTRUCTOR" name=".DESTRUCTOR"></tt> and <tt><ref id=".INTERRUPTOR"
name=".INTERRUPTOR"></tt> statements, there is also a more generic command:
<tt><ref id=".CONDES" name=".CONDES"></tt>. This allows to specify an
additional type. Predefined types are 0 (constructor), 1 (destructor) and 2
(interruptor). The linker generates a separate table for each type on request.

</itemize>


<sect>Porting sources from other assemblers<p>

Sometimes it is necessary to port code written for older assemblers to ca65.
In some cases, this can be done without any changes to the source code by
using the emulation features of ca65 (see <tt><ref id=".FEATURE"
name=".FEATURE"></tt>). In other cases, it is necessary to make changes to the
source code.

Probably the biggest difference is the handling of the <tt><ref id=".ORG"
name=".ORG"></tt> directive. ca65 generates relocatable code, and placement is
done by the linker. Most other assemblers generate absolute code, placement is
done within the assembler and there is no external linker.

In general it is not a good idea to write new code using the emulation
features of the assembler, but there may be situations where even this rule is
not valid.

<sect1>TASS<p>

You need to use some of the ca65 emulation features to simulate the behaviour
of such simple assemblers.

<enum>
<item>Prepare your sourcecode like this:

<tscreen><verb>
        ; if you want TASS style labels without colons
        .feature labels_without_colons

        ; if you want TASS style character constants
        ; ("a" instead of the default 'a')
        .feature loose_char_term

                .word *+2       ; the cbm load address

                [yourcode here]
</verb></tscreen>

notice that the two emulation features are mostly useful for porting
sources originally written in/for TASS, they are not needed for the
actual "simple assembler operation" and are not recommended if you are
writing new code from scratch.

<item>Replace all program counter assignments (which are not possible in ca65
by default, and the respective emulation feature works different from what
you'd expect) by another way to skip to memory locations, for example the
<tt><ref id=".RES" name=".RES"></tt> directive.

<tscreen><verb>
        ; *=$2000
        .res $2000-*    ; reserve memory up to $2000
</verb></tscreen>

Please note that other than the original TASS, ca65 can never move the program
counter backwards - think of it as if you are assembling to disk with TASS.

<item>Conditional assembly (<tt/.ifeq//<tt/.endif//<tt/.goto/ etc.) must be
rewritten to match ca65 syntax. Most importantly notice that due to the lack
of <tt/.goto/, everything involving loops must be replaced by
<tt><ref id=".REPEAT" name=".REPEAT"></tt>.

<item>To assemble code to a different address than it is executed at, use the
<tt><ref id=".ORG" name=".ORG"></tt> directive instead of
<tt/.offs/-constructs.

<tscreen><verb>
        .org $1800

        [floppy code here]

        .reloc  ; back to normal
</verb></tscreen>

<item>Then assemble like this:

<tscreen><verb>
        cl65 --start-addr 0x0ffe -t none myprog.s -o myprog.prg
</verb></tscreen>

Note that you need to use the actual start address minus two, since two bytes
are used for the cbm load address.

</enum>


<sect>Copyright<p>

ca65 (and all cc65 binutils) are (C) Copyright 1998-2003 Ullrich von
Bassewitz. For usage of the binaries and/or sources the following
conditions do apply:

This software is provided 'as-is', without any expressed or implied
warranty.  In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

<enum>
<item>  The origin of this software must not be misrepresented; you must not
        claim that you wrote the original software. If you use this software
        in a product, an acknowledgment in the product documentation would be
        appreciated but is not required.
<item>  Altered source versions must be plainly marked as such, and must not
        be misrepresented as being the original software.
<item>  This notice may not be removed or altered from any source
        distribution.
</enum>



</article>