1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
<!doctype linuxdoc system>
<article>
<title>ca65 Macros for Self Modifying Code
<author>Christian Krüger
<abstract>
The 'smc.inc' macro package for ca65 eases the use, increases the safeness and
self-explanation of 'self-modifying-code' (SMC).
</abstract>
<!-- Table of contents -->
<toc>
<!-- Begin the document -->
<sect>Overview<p>
When reading assembler sources, self modifying code is often hard to identify
and applying it needs a lot of discipline.
Since the cacheless 6502 is a thankful target of such kind of code, the macro
package will not only reduce this complexness, but also document the use. The
resulting source is more self-explanatory and so easier to maintain.
While for general purposes SMC is not a desired form for implementations, it
can be quite useful for a small range of scenarios. Normally SMC will be
introduced when optimizing code in respect to:
<itemize>
<item>speed and/or
<item>size.
</itemize>
Please mind that SMC can only be applied for code in RAM, which means that a
general purpose library with SMC excludes ROM targets!
The ca65 SMC macro package consists of two files:
<itemize>
<item><tt>smc.inc</tt>
<item><tt>opcodes.inc</tt>
</itemize>
The latter is only needed if you also plan to modify opcodes and not only data
within your code.
<sect>Usage<p>
The use of the macros is quite simple:
Original:
<tscreen><verb>
PHA
JSR SUBROUTINE
PLA
</verb></tscreen>
By applying SMC, the speed will now be increased by once cycle:
SMC:
<tscreen><verb>
SMC_StoreValue RestoreAccu
JSR SUBROUTINE
SMC RestoreAccu, { LDA #SMC_Value }
</verb></tscreen>
The first line stores the value of the accu into the '<tt>RestoreAccu</tt>'
labeled SMC target.
Please note:
<enum>
<item> for all SMC store or transfer operations, a second argument can be
given. This determines the register for the operation:
'<tt>SMC_StoreValue Label, y</tt>' will store the value of the
Y-register.
If the second argument is missing, the accu will be used automatically.
<item> The label targets a 'special SMC namespace'. It fits only to
destinations which are introduced with the macro '<tt>SMC</tt>'. A
normal label '<tt>RestoreAccu</tt>' wouldn't match and could even
coexist (even if you should abstain from doing so).
<item> The macro '<tt>SMC_StoreValue</tt>' takes care, that the store
operation will occur on the value-position of a SMC-instruction. As
you will see, other macros influence other instruction part positions.
There is no consistency check, if the targeted SMC instruction acually
contains a value. Storing a 'value' on an immplied SMC instruction
would corrupt the following memory cell!
</enum>
The second line needs no further explanation, this is just a placeholder for
some code in the example.
The third line is the code line which is about to be modified. It has to start
with the '<tt>SMC</tt>' macro and must be labeled, so that the modification
can be designated. Then the unmodified code is given in curly braces.
Please note the usage of the value placeholder 'SMC_Value'. Using such a
placeholder has two advantages:
<enum>
<item> The code is better documented. It is clearly visible that the given
value is about to be changed.
<item> When examining an (initial) disassembly (e.g. in a debugger), these
placegolders can be better identified: They are fixed and, you may
notice that below, quite eye catching defined.
</enum>
<sect1>Argument placeholders<p>
There are four kinds of placeholders:
<descrip>
<label id="Address placeholder">
<tag><tt>SMC_AbsAdr</tt></tag>
Used to indicate an address. The value is '<tt>$FADE</tt>'.
Example: <tt>STA SMC_AbsAdr</tt>
<label id="Zero-Page-Address placeholder">
<tag><tt>SMC_ZpAdr</tt></tag>
Used to indicate a zero-page-address. The value is '<tt>$00</tt>'.
Example: <tt>LDA SMC_ZpAdr</tt>
<label id="Opcode placeholder">
<tag><tt>SMC_Opcode</tt></tag>
Used to indicate an instruction. The value is '<tt>NOP</tt>'.
Example: <tt>SMC_Opcode</tt>
<label id="Immediate value placeholder">
<tag><tt>SMC_Value</tt></tag>
Used to indicate a value. The value is '<tt>$42</tt>'.
Example: <tt>LDX #SMC_Value</tt>
</descrip>
Attention: Often code is modified after the initial use - where using the
placeholders does not makes sense. Please mind also, that in very variable
expressions (e.g. opcode and argument is about to be changed), placeholders
can lead to unidentifyable code for a debugger/disassembler:
<tt>SMC Example, { SMC_Opcode SMC_AbsAdr } </tt>
Since the opcode is '<tt/NOP/', the value '<tt/$DE/' from '<tt/$FADE/' will
interpreted as opcode in a disassembler too. This breaks the correct
disassembly, because '<tt/$DE/' is interpreted as '<tt/DEC abx/'. Establishing
a valid placeholder instruction may be better:
<tt>SMC Example, { sta SMC_AbsAdr } ; Note: Opcode will be modified too!</tt>
<sect1>Accessing opcodes<p>
Some macros are designed to access the instruction of a code line. To increase
readability, please use the opcodes as defined in the '<tt>opcodes.inc</tt>'
file.
<descrip>
<label id="Transfer opcode">
<tag><tt>SMC_TransferOpcode label, opcode (, register)</tt></tag>
Loads and store an opcode to given SMC instruction.
Example:
<tscreen><verb>
SMC SumRegister, { LDA #10 }
JSR OUTPUT
SMC_TransferOpcode SumRegister, OPC_ADC_imm, x
</verb></tscreen>
The macro above will load the opcode '<tt>ADC #</tt>' into the x - register
and stores it at the place of the '<tt>LDA #</tt>'.
<label id="Load opcode">
<tag><tt>SMC_LoadOpcode label (, register)</tt></tag>
Loads the opcode of a SMC line to the given register.
Example:
<tscreen><verb>
SMC ShiftOrNothing, { LSL }
SMC_LoadOpcode ShiftOrNothing, y
CPY #OPC_NOP
BEQ Exit
</verb></tscreen>
<label id="Store opcode">
<tag><tt>SMC_StoreOpcode label (, register)</tt></tag>
Stores the value of the given register at the opcode place of a SMC line.
Example:
<tscreen><verb>
SetBoldMode:
LDA #OPC_INX
SMC_StoreOpcode AdaptCharWidth
SMC_StoreOpcode AdaptUnderlineWidth
RTS
...
SMC AdaptCharWidth, { NOP }
...
SMC AdaptUnderlineWidth, { NOP }
</verb></tscreen>
</descrip>
<sect1>Accessing arguments<p>
These marcos are determined to get, set and change arguments of instructions:
<descrip>
<label id="Change branch">
<tag><tt>SMC_ChangeBranch label, destination (, register)</tt></tag>
Used to modify the destination of a branch instruction. If the address offset
exceeds the supported range of 8-bit of the 6502, a error will be thrown.
Example:
<tscreen><verb>
Disable Handler:
SMC_ChangeBranch BranchToHandler, Exit
RTS
...
LDA warning
SMC BranchToHandler, { BNE Handler }
Exit:
RTS
</verb></tscreen>
<label id="Transfer value">
<tag><tt>SMC_TransferValue label, value (, register)</tt></tag>
Changes the value of a SMC line.
Example:
<tscreen><verb>
ClearDefault:
SMC_TransferValue LoadDefault, 0
RTS
...
SMC LoadDefault, { LDX #25 }
</verb></tscreen>
<label id="Load value">
<tag><tt>SMC_LoadValue label (, register)</tt></tag>
Retreives the value of a SMC line.
Example:
<tscreen><verb>
ShowDefault:
SMC_LoadValue LoadDefault
JSR PrintValue
RTS
...
SMC LoadDefault, { LDX #25 }
</verb></tscreen>
<label id="Store value">
<tag><tt>SMC_StoreValue label (, register)</tt></tag>
Stores the value in the register to given SMC line.
Example:
<tscreen><verb>
InitCounters:
LDY #0
SMC_StoreValue GetI, y
SMC_StoreValue GetJ, y
SMC_StoreValue GetK, y
...
SMC GetI, { LDX #SMC_Value }
...
SMC GetJ, { LDX #SMC_Value }
...
SMC GetK, { LDX #SMC_Value }
</verb></tscreen>
<label id="Transfer low-byte">
<tag><tt>SMC_TransferLowByte label, value (, register)</tt></tag>
Does the same as '<tt>SMC_TransferValue</tt>' but should be used for
low-bytes of addresses for better readability.
Example:
<tscreen><verb>
ActivateSecondDataSet:
SMC_TransferLowByte LoadData, $40
RTS
...
SMC LoadData, { LDA $2000 }
</verb></tscreen>
<label id="Load low-byte">
<tag><tt>SMC_LoadLowByte label (, register)</tt></tag>
Does the same as '<tt>SMC_LoadValue</tt>' but should be used for low-bytes
of addresses for better readability.
Example:
<tscreen><verb>
IsSecondDataSetActive:
SMC_LoadLowByte LoadData, y
CPY #$40
BNE NotActive
...
SMC LoadData, { LDA $2000 }
</verb></tscreen>
<label id="Store low-byte">
<tag><tt>SMC_StoreLowByte label (, register)</tt></tag>
Does the same as '<tt>SMC_StoreValue</tt>' but should be used for low-bytes
of addresses for better readability.
Example:
<tscreen><verb>
InitStructureBaseAddresses:
LDX #0
SMC_StoreLowByte GetPlayerGraphic, x
SMC_StoreLowByte GetObjectGraphic, x
SMC_StoreLowByte StoreCollisionData, x
RTS
...
SMC GetPlayerGraphic, { LDX $2000 }
...
SMC GetObjectGraphic, { LDA $2100,x }
...
SMC StoreCollisionData, { STY $2200 }
</verb></tscreen>
<label id="Transfer high-byte">
<tag><tt>SMC_TransferHighByte label, value (, register)</tt></tag>
Loads and stores the given value via the named register to the high-byte
address portion of an SMC-instruction.
Example:
<tscreen><verb>
PlaySFX:
SMC GetVolume { LDA $3200,x }
STA SoundOut
INX
BNE PlaySFX
...
PlayOtherSound:
SMC_TransferHighByte GetVolume, $34
</verb></tscreen>
<label id="Load high-byte">
<tag><tt>SMC_LoadHighByte label (, register)</tt></tag>
Loads the high-byte part of an SMC-instruction address to the given register.
Example:
<tscreen><verb>
PlaySFX:
SMC GetVolume { LDA $3200,x }
...
SMC_LoadHighByte GetVolume
cmp #$34
beq OtherSoundPlaying
...
</verb></tscreen>
<label id="Store high-byte">
<tag><tt>SMC_StoreHighByte label (, register)</tt></tag>
Stores the high-byte address part of an SMC-instruction from the given
register.
Example:
<tscreen><verb>
SetupLevel2:
LDX #(>Level2Base)
SMC_StoreHighByte GetLevelData, x
SMC_StoreHighByte GetScreenData, x
SMC_StoreHighByte GetSoundData, x
RTS
...
SMC GetLevelData, { LDA Level1Base+Data }
...
SMC GetScreenData, { LDA Level1Base+Screen, x }
...
SMC GetSoundData, { LDA Level1Base+Sound, y }
</verb></tscreen>
<label id="Transfer single address">
<tag><tt>SMC_TransferAddressSingle label, address (, register)</tt></tag>
Transfers the contents of the given address via the given register to the
designated SMC instruction.
Example:
<tscreen><verb>
PrintHello:
SMC_TransferAddressSingle GetChar, #HelloMsg
...
LDX #0
NextChar:
SMC GetChar, { LDA SMC_AbsAdr, x }
BEQ leave
JSR CharOut
INX
BNE NextChar
</verb></tscreen>
<label id="Transfer address">
<tag><tt>SMC_TransferAddress label, address</tt></tag>
Loads contents of given address to A/X and stores the result to SMC
instruction. Allows reuse of register contents by using
'<tt>SMC_StoreAddress</tt>' for multiple SMC instruction modifications.
Example:
<tscreen><verb>
SMC_TransferAddress JumpTo, #CloseChannel
...
SMC JumpTo, { JMP OpenChannel }
</verb></tscreen>
<label id="Store address">
<tag><tt>SMC_StoreAddress label</tt></tag>
Stores the address value in a/x to a SMC instruction address position.
Example:
<tscreen><verb>
SMC_StoreAddress GetData
...
SMC GetData, { LDA SMC_AbsAdr }
</verb></tscreen>
</descrip>
<sect1>Operational macros<p>
These marcos are determined to let read/modify/write opcodes work on parts of
SMC instructions.
<descrip>
<label id="Operate on value">
<tag><tt>SMC_OperateOnValue opcode, label</tt></tag>
Let given opcode work on the value part of a SMC instruction.
Example:
<tscreen><verb>
SMC_OperateOnValue ASL, LoadMask ; shift mask to left
...
SMC LoadMask, { LDA #$20 }
</verb></tscreen>
<label id="Operate on low-byte">
<tag><tt>SMC_OperateOnLowByte opcode, label</tt></tag>
Same as '<tt/SMC_OperateOnValue/' but renamed for better readability when
accessing low-bytes of address.
Example:
<tscreen><verb>
SMC_OperateOnLowByte DEC, AccessData
...
SMC AccessData, { LDX Data }
</verb></tscreen>
<label id="Operate on high-byte">
<tag><tt>SMC_OperateOnHighByte opcode, label</tt></tag>
Let the given opcode work on the high-byte part on a SMC-instruction.
Example:
<tscreen><verb>
NextPage:
SMC_OperateOnHighByte INC, GetPageData
...
SMC GetPageData, { LDA SourceData, X }
</verb></tscreen>
</descrip>
<sect1>Scope macros<p>
These marcos are determined to export and import SMC labels out of the current
file scope. Please handle with care! If you cannot abstain from leaving the
file scope, you should at least document the exported SMC lines very well. On
import side no checking is available if the SMC line is correct accessed (e.g.
invalid access to the value of an implied instruction)!
<descrip>
<label id="Export SMC line under given name">
<tag><tt>SMC_Export alias, label</tt></tag>
SMC label will be exported under given alias.
Example:
<tscreen><verb>
.proc GetValue
SMC LoadValue, { LDA #12 }
rts
.endproc
SMC_Export GetValueLoader, GetValue::LoadValue
</verb></tscreen>
<label id="Import SMC alias">
<tag><tt>SMC_Import alias</tt></tag>
SMC line is made accessible under given alias.
Example:
<tscreen><verb>
SMC_Import GetValueLoader
...
SMC_TransferValue GetValueLoader, #47
...
</verb></tscreen>
</descrip>
<sect>A complex example<p>
Let's have a look on a quite sophisticated example for the usage of SMC. It
not only modifies code, but also the modification of the code is modified -
allowing reuse of some instructions.
<descrip>
<tag/The code is from my 'memset()'implementation:/
<tscreen><verb>
1: ...
2: SMC_StoreAddress StoreAccuFirstSection
3:
4: StoreToFirstSection:
5: SMC StoreAccuFirstSection, { sta SMC_AbsAdr, Y }
6: ...
7: RestoreCodeBranchBaseAdr:
8: SMC FirstIncHighByte, { SMC_OperateOnHighByte inc, StoreAccuFirstSection } ; code will be overwritten to 'beq RestoreCode' (*)
9: ...
10: SMC_TransferOpcode FirstIncHighByte, OPC_BEQ , x ; change code marked above with (*)
11: SMC_TransferValue FirstIncHighByte, #(restoreCode - RestoreCodeBranchBaseAdr-2), x ; set relative address to 'RestoreCode'
12: ...
13: restoreCode:
14: SMC_TransferOpcode FirstIncHighByte, OPC_INC_abs , x ; restore original code...
15: SMC_TransferValue FirstIncHighByte, #(<(StoreToFirstSection+2)), x ; (second byte of inc contained low-byte of address)
16: ...
</verb></tscreen>
<tag/Some explanation:/
Line 2: The register pair A/X contains an address, which is stored on the
address location of a SMC line called 'StoreAccuFirstSection'. According to
cc65's calling convention, the low-byte is in accu while the high-byte is in
the X-register.
Line 5: The (modified) address is accessed.
Line 8: We have a line here, which is about to be modified (it begins with
SMC), but itself modifies code. Please note: Contrary to the rest of SMC-line
modifying macros, the 'OperateOn'-macros just expand their given arguments
into a single instruction line. These can be changed of course too.
Line 10,11: These lines construct a branch operation for line 8: The
X-register will be used to change it from 'inc StoreAccuFirstSection+2'
(high-byte operation) to 'beq restoreCode'. Please note: To calculate the
relaive branch offset, we introduced a second label
('RestoreCodeBranchBaseAdr') for to calculate it. Some could also use the
internal name of the SMC label, but you should abstain to do so - it may be
changed in the future...
Line 14,15: The original code from line 8 is reestablished.
</descrip>
</article>
|