File: malloc.s

package info (click to toggle)
cc65 2.19-2
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 20,268 kB
  • sloc: ansic: 117,151; asm: 66,339; pascal: 4,248; makefile: 1,009; perl: 607
file content (339 lines) | stat: -rw-r--r-- 10,586 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
;
; Ullrich von Bassewitz, 17.7.2000
;
; Allocate a block from the heap.
;
; void* __fastcall__ malloc (size_t size);
;
;
; C implementation was:
;
; void* malloc (size_t size)
; /* Allocate memory from the given heap. The function returns a pointer to the
; ** allocated memory block or a NULL pointer if not enough memory is available.
; ** Allocating a zero size block is not allowed.
; */
; {
;     struct freeblock* f;
;     unsigned* p;
;
;
;     /* Check for a size of zero, then add the administration space and round
;     ** up the size if needed.
;     */
;     if (size == 0) {
;       return 0;
;     }
;     size += HEAP_ADMIN_SPACE;
;     if (size < sizeof (struct freeblock)) {
;         size = sizeof (struct freeblock);
;     }
;
;     /* Search the freelist for a block that is big enough */
;     f = _hfirst;
;     while (f && f->size < size) {
;         f = f->next;
;     }
;
;     /* Did we find one? */
;     if (f) {
;
;         /* We found a block big enough. If the block can hold just the
;         ** requested size, use the block in full. Beware: When slicing blocks,
;         ** there must be space enough to create a new one! If this is not the
;         ** case, then use the complete block.
;         */
;         if (f->size - size < sizeof (struct freeblock)) {
;
;             /* Use the actual size */
;             size = f->size;
;
;             /* Remove the block from the free list */
;             if (f->prev) {
;                 /* We have a previous block */
;                 f->prev->next = f->next;
;             } else {
;                 /* This is the first block, correct the freelist pointer */
;                 _hfirst = f->next;
;             }
;             if (f->next) {
;                 /* We have a next block */
;                 f->next->prev = f->prev;
;             } else {
;                 /* This is the last block, correct the freelist pointer */
;                 _hlast = f->prev;
;             }
;
;         } else {
;
;           /* We must slice the block found. Cut off space from the upper
;           ** end, so we can leave the actual free block chain intact.
;           */
;
;           /* Decrement the size of the block */
;           f->size -= size;
;
;           /* Set f to the now unused space above the current block */
;           f = (struct freeblock*) (((unsigned) f) + f->size);
;
;         }
;
;         /* Setup the pointer for the block */
;         p = (unsigned*) f;
;
;     } else {
;
;         /* We did not find a block big enough. Try to use new space from the
;         ** heap top.
;         */
;       if (((unsigned) _hend) - ((unsigned) _hptr) < size) {
;             /* Out of heap space */
;             return 0;
;       }
;
;
;       /* There is enough space left, take it from the heap top */
;       p = _hptr;
;               _hptr = (unsigned*) (((unsigned) _hptr) + size);
;
;     }
;
;     /* New block is now in p. Fill in the size and return the user pointer */
;     *p++ = size;
;     return p;
; }
;


        .importzp       ptr1, ptr2, ptr3
        .export         _malloc

        .include        "_heap.inc"

        .macpack        generic

;-----------------------------------------------------------------------------
; Code

_malloc:
        sta     ptr1                    ; Store size in ptr1
        stx     ptr1+1

; Check for a size of zero, if so, return NULL

        ora     ptr1+1
        beq     Done                    ; a/x already contains zero

; Add the administration space and round up the size if needed

        lda     ptr1
        add     #HEAP_ADMIN_SPACE
        sta     ptr1
        bcc     @L1
        inc     ptr1+1
@L1:    ldx     ptr1+1
        bne     @L2
        cmp     #HEAP_MIN_BLOCKSIZE+1
        bcs     @L2
        lda     #HEAP_MIN_BLOCKSIZE
        sta     ptr1                    ; High byte is already zero

; Load a pointer to the freelist into ptr2

@L2:    lda     __heapfirst
        sta     ptr2
        lda     __heapfirst+1
        sta     ptr2+1

; Search the freelist for a block that is big enough. We will calculate
; (f->size - size) here and keep it, since we need the value later.

        jmp     @L4

@L3:    ldy     #freeblock::size
        lda     (ptr2),y
        sub     ptr1
        tax                             ; Remember low byte for later
        iny                             ; Y points to freeblock::size+1
        lda     (ptr2),y
        sbc     ptr1+1
        bcs     BlockFound              ; Beware: Contents of a/x/y are known!

; Next block in list

        iny                             ; Points to freeblock::next
        lda     (ptr2),y
        tax
        iny                             ; Points to freeblock::next+1
        lda     (ptr2),y
        stx     ptr2
        sta     ptr2+1
@L4:    ora     ptr2
        bne     @L3

; We did not find a block big enough. Try to use new space from the heap top.

        lda     __heapptr
        add     ptr1                    ; _heapptr + size
        tay
        lda     __heapptr+1
        adc     ptr1+1
        bcs     OutOfHeapSpace          ; On overflow, we're surely out of space

        cmp     __heapend+1
        bne     @L5
        cpy     __heapend
@L5:    bcc     TakeFromTop
        beq     TakeFromTop

; Out of heap space

OutOfHeapSpace:
        lda     #0
        tax
Done:   rts

; There is enough space left, take it from the heap top

TakeFromTop:
        ldx     __heapptr               ; p = _heapptr;
        stx     ptr2
        ldx     __heapptr+1
        stx     ptr2+1

        sty     __heapptr               ; _heapptr += size;
        sta     __heapptr+1
        jmp     FillSizeAndRet          ; Done

; We found a block big enough. If the block can hold just the
; requested size, use the block in full. Beware: When slicing blocks,
; there must be space enough to create a new one! If this is not the
; case, then use the complete block.
; On input, x/a do contain the remaining size of the block. The zero
; flag is set if the high byte of this remaining size is zero.

BlockFound:
        bne     SliceBlock              ; Block is large enough to slice
        cpx     #HEAP_MIN_BLOCKSIZE     ; Check low byte
        bcs     SliceBlock              ; Jump if block is large enough to slice

; The block is too small to slice it. Use the block in full. The block
; does already contain the correct size word, all we have to do is to
; remove it from the free list.

        ldy     #freeblock::prev+1      ; Load f->prev
        lda     (ptr2),y
        sta     ptr3+1
        dey
        lda     (ptr2),y
        sta     ptr3
        dey                             ; Points to freeblock::next+1
        ora     ptr3+1
        beq     @L1                     ; Jump if f->prev zero

; We have a previous block, ptr3 contains its address.
; Do f->prev->next = f->next

        lda     (ptr2),y                ; Load high byte of f->next
        sta     (ptr3),y                ; Store high byte of f->prev->next
        dey                             ; Points to next
        lda     (ptr2),y                ; Load low byte of f->next
        sta     (ptr3),y                ; Store low byte of f->prev->next
        jmp     @L2

; This is the first block, correct the freelist pointer
; Do _hfirst = f->next

@L1:    lda     (ptr2),y                ; Load high byte of f->next
        sta     __heapfirst+1
        dey                             ; Points to next
        lda     (ptr2),y                ; Load low byte of f->next
        sta     __heapfirst

; Check f->next. Y points always to next if we come here

@L2:    lda     (ptr2),y                ; Load low byte of f->next
        sta     ptr3
        iny                             ; Points to next+1
        lda     (ptr2),y                ; Load high byte of f->next
        sta     ptr3+1
        iny                             ; Points to prev
        ora     ptr3
        beq     @L3                     ; Jump if f->next zero

; We have a next block, ptr3 contains its address.
; Do f->next->prev = f->prev

        lda     (ptr2),y                ; Load low byte of f->prev
        sta     (ptr3),y                ; Store low byte of f->next->prev
        iny                             ; Points to prev+1
        lda     (ptr2),y                ; Load high byte of f->prev
        sta     (ptr3),y                ; Store high byte of f->prev->next
        jmp     RetUserPtr              ; Done

; This is the last block, correct the freelist pointer.
; Do _hlast = f->prev

@L3:    lda     (ptr2),y                ; Load low byte of f->prev
        sta     __heaplast
        iny                             ; Points to prev+1
        lda     (ptr2),y                ; Load high byte of f->prev
        sta     __heaplast+1
        jmp     RetUserPtr              ; Done

; We must slice the block found. Cut off space from the upper end, so we
; can leave the actual free block chain intact.

SliceBlock:

; Decrement the size of the block. Y points to size+1.

        dey                             ; Points to size
        lda     (ptr2),y                ; Low byte of f->size
        sub     ptr1
        sta     (ptr2),y
        tax                             ; Save low byte of f->size in X
        iny                             ; Points to size+1
        lda     (ptr2),y                ; High byte of f->size
        sbc     ptr1+1
        sta     (ptr2),y

; Set f to the space above the current block, which is the new block returned
; to the caller.

        txa                             ; Get low byte of f->size
        add     ptr2
        tax
        lda     (ptr2),y                ; Get high byte of f->size
        adc     ptr2+1
        stx     ptr2
        sta     ptr2+1

; Fill the size and start address into the admin space of the block
; (struct usedblock) and return the user pointer

FillSizeAndRet:
        ldy     #usedblock::size        ; p->size = size;
        lda     ptr1                    ; Low byte of block size
        sta     (ptr2),y
        iny                             ; Points to freeblock::size+1
        lda     ptr1+1
        sta     (ptr2),y

RetUserPtr:
        ldy     #usedblock::start       ; p->start = p
        lda     ptr2
        sta     (ptr2),y
        iny
        lda     ptr2+1
        sta     (ptr2),y

; Return the user pointer, which points behind the struct usedblock

        lda     ptr2                    ; return ++p;
        ldx     ptr2+1
        add     #HEAP_ADMIN_SPACE
        bcc     @L9
        inx
@L9:    rts