File: analyze.py

package info (click to toggle)
cccl 2.5.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 39,248 kB
  • sloc: cpp: 264,457; python: 6,421; sh: 2,762; perl: 460; makefile: 114; xml: 13
file content (820 lines) | stat: -rwxr-xr-x 26,959 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
#!/usr/bin/env python3

import os
import re
import json
import cccl
import math
import argparse
import itertools
import functools
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import mannwhitneyu
from scipy.stats.mstats import hdquantiles

pd.options.display.max_colwidth = 100

default_colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
color_cycle = itertools.cycle(default_colors)
color_map = {}

precision = 0.01
sensitivity = 0.5


def get_bench_columns():
    return ['variant', 'elapsed', 'center', 'samples', 'bw']


def get_extended_bench_columns():
    return get_bench_columns() + ['speedup', 'base_samples']


def compute_speedup(df):
    bench_columns = get_bench_columns()
    workload_columns = [col for col in df.columns if col not in bench_columns]
    base_df = df[df['variant'] == 'base'].drop(columns=['variant']).rename(
        columns={'center': 'base_center', 'samples': 'base_samples'})
    base_df.drop(columns=['elapsed', 'bw'], inplace=True)

    merged_df = df.merge(
        base_df, on=[col for col in df.columns if col in workload_columns])
    merged_df['speedup'] = merged_df['base_center'] / merged_df['center']
    merged_df = merged_df.drop(columns=['base_center'])
    return merged_df


def get_ct_axes(df):
    ct_axes = []
    for col in df.columns:
        if '{ct}' in col:
            ct_axes.append(col)

    return ct_axes


def get_rt_axes(df):
    rt_axes = []
    excluded_columns = get_ct_axes(df) + get_extended_bench_columns()

    for col in df.columns:
        if col not in excluded_columns:
            rt_axes.append(col)

    return rt_axes


def ct_space(df):
    ct_axes = get_ct_axes(df)

    unique_ct_combinations = []
    for _, row in df[ct_axes].drop_duplicates().iterrows():
        unique_ct_combinations.append({})
        for col in ct_axes:
            unique_ct_combinations[-1][col] = row[col]

    return unique_ct_combinations


def extract_case(df, ct_point):
    tuning_df_loc = None

    for ct_axis in ct_point:
        if tuning_df_loc is None:
            tuning_df_loc = (df[ct_axis] == ct_point[ct_axis])
        else:
            tuning_df_loc = tuning_df_loc & (df[ct_axis] == ct_point[ct_axis])

    tuning_df = df.loc[tuning_df_loc].copy()
    for ct_axis in ct_point:
        tuning_df.drop(columns=[ct_axis], inplace=True)

    return tuning_df


def extract_rt_axes_values(df):
    rt_axes = get_rt_axes(df)
    rt_axes_values = {}

    for rt_axis in rt_axes:
        rt_axes_values[rt_axis] = list(df[rt_axis].unique())

    return rt_axes_values


def extract_rt_space(df):
    rt_axes = get_rt_axes(df)
    rt_axes_values = []
    for rt_axis in rt_axes:
        values = df[rt_axis].unique()
        rt_axes_values.append(["{}={}".format(rt_axis, v) for v in values])
    return list(itertools.product(*rt_axes_values))


def filter_variants(df, group):
    rt_axes = get_rt_axes(df)
    unique_combinations = set(
        df[rt_axes].drop_duplicates().itertuples(index=False))
    group_combinations = set(
        group[rt_axes].drop_duplicates().itertuples(index=False))
    has_all_combinations = group_combinations == unique_combinations
    return has_all_combinations


def extract_complete_variants(df):
    return df.groupby('variant').filter(functools.partial(filter_variants, df))


def compute_workload_score(rt_axes_values, rt_axes_ids, weights, row):
    rt_workload = []
    for rt_axis in rt_axes_values:
        rt_workload.append("{}={}".format(rt_axis, row[rt_axis]))

    weight = cccl.bench.get_workload_weight(rt_workload, rt_axes_values, rt_axes_ids, weights)
    return row['speedup'] * weight


def compute_variant_score(rt_axes_values, rt_axes_ids, weight_matrix, group):
    workload_score_closure = functools.partial(compute_workload_score, rt_axes_values, rt_axes_ids, weight_matrix)
    score_sum = group.apply(workload_score_closure, axis=1).sum()
    return score_sum


def extract_scores(dfs):
    rt_axes_values = {}
    for subbench in dfs:
        rt_axes_values[subbench] = extract_rt_axes_values(dfs[subbench])

    rt_axes_ids = cccl.bench.compute_axes_ids(rt_axes_values)
    weights = cccl.bench.compute_weight_matrices(rt_axes_values, rt_axes_ids)

    score_dfs = []
    for subbench in dfs:
        score_closure = functools.partial(
            compute_variant_score, rt_axes_values[subbench], rt_axes_ids[subbench], weights[subbench])
        grouped = dfs[subbench].groupby('variant')
        scores = grouped.apply(score_closure).reset_index()
        scores.columns = ['variant', 'score']
        stat = grouped.agg(mins=('speedup', 'min'),
                           means=('speedup', 'mean'),
                           maxs=('speedup', 'max'))
        scores = pd.merge(scores, stat, on='variant')
        score_dfs.append(scores)
    score_df = pd.concat(score_dfs)
    result = score_df.groupby('variant').agg(
        {'score': 'sum', 'mins': 'min', 'means': 'mean', 'maxs': 'max'}).reset_index()
    return result.sort_values(by=['score'], ascending=False)


def distributions_are_different(alpha, row):
    ref_samples = row['base_samples']
    cmp_samples = row['samples']

    # H0: the distributions are not different
    # H1: the distribution are different
    _, p = mannwhitneyu(ref_samples, cmp_samples)

    # Reject H0
    return p < alpha


def remove_matching_distributions(alpha, df):
    closure = functools.partial(distributions_are_different, alpha)
    return df[df.apply(closure, axis=1)]


def get_filenames_map(arr):
    if not arr:
        return []

    prefix = arr[0]
    for string in arr:
        while not string.startswith(prefix):
            prefix = prefix[:-1]
        if not prefix:
            break

    return {string: string[len(prefix):] for string in arr}


def is_finite(x):
    if isinstance(x, float):
        return x != np.inf and x != -np.inf
    return True


def iterate_case_dfs(args, callable):
    storages = {}
    algnames = set()
    filenames_map = get_filenames_map(args.files)
    for file in args.files:
        storage = cccl.bench.StorageBase(file)
        algnames.update(storage.algnames())
        storages[filenames_map[file]] = storage

    pattern = re.compile(args.R)

    exact_values = {}
    if args.args:
        for value in args.args:
            name, val = value.split('=')
            exact_values[name] = val

    for algname in algnames:
        if not pattern.match(algname):
            continue

        case_dfs = {}
        for subbench in storage.subbenches(algname):
            for file in storages:
                storage = storages[file]
                df = storage.alg_to_df(algname, subbench)

                df = df.map(lambda x: x if is_finite(x) else np.nan)
                df = df.dropna(subset=['center'], how='all')

                for _, row in df[['ctk', 'cccl']].drop_duplicates().iterrows():
                    ctk_version = row['ctk']
                    cccl_version = row['cccl']
                    ctk_cub_df = df[(df['ctk'] == ctk_version) &
                                    (df['cccl'] == cccl_version)]

                    for gpu in ctk_cub_df['gpu'].unique():
                        target_df = ctk_cub_df[ctk_cub_df['gpu'] == gpu]
                        target_df = target_df.drop(columns=['ctk', 'cccl', 'gpu'])
                        target_df = compute_speedup(target_df)

                        for key in exact_values:
                            if key in target_df.columns:
                                target_df = target_df[target_df[key] == exact_values[key]]

                        for ct_point in ct_space(target_df):
                            point_str = ", ".join(["{}={}".format(k, ct_point[k]) for k in ct_point])
                            case_df = extract_complete_variants(extract_case(target_df, ct_point))
                            case_df['variant'] = case_df['variant'].astype(str) + " ({})".format(file)
                            if point_str not in case_dfs:
                                case_dfs[point_str] = {}
                            if subbench not in case_dfs[point_str]:
                                case_dfs[point_str][subbench] = case_df
                            else:
                                case_dfs[point_str][subbench] = pd.concat([case_dfs[point_str][subbench], case_df])

        for point_str in case_dfs:
            callable(algname, point_str, case_dfs[point_str])


def case_top(alpha, N, algname, ct_point_name, case_dfs):
    print("{}[{}]:".format(algname, ct_point_name))

    if alpha < 1.0:
        case_df = remove_matching_distributions(alpha, case_df)

    for subbench in case_dfs:
        case_dfs[subbench] = extract_complete_variants(case_dfs[subbench])
    print(extract_scores(case_dfs).head(N))


def top(args):
    iterate_case_dfs(args, functools.partial(case_top, args.alpha, args.top))


def case_coverage(algname, ct_point_name, case_dfs):
    num_variants = cccl.bench.Config().variant_space_size(algname)
    min_coverage = 100.0
    for subbench in case_dfs:
        num_covered_variants = len(case_dfs[subbench]['variant'].unique())
        coverage = (num_covered_variants / num_variants) * 100
        min_coverage = min(min_coverage, coverage)
    case_str = "{}[{}]".format(algname, ct_point_name)
    print("{} coverage: {} / {} ({:.4f}%)".format(
          case_str, num_covered_variants, num_variants, min_coverage))


def coverage(args):
    iterate_case_dfs(args, case_coverage)


def parallel_coordinates_plot(df, title):
    # Parallel coordinates plot adaptation of https://stackoverflow.com/a/69411450
    import matplotlib.cm as cm
    from matplotlib.path import Path
    import matplotlib.patches as patches

    # Variables (the first variable must be categoric):
    my_vars = df.columns.tolist()
    df_plot = df[my_vars]
    df_plot = df_plot.dropna()
    df_plot = df_plot.reset_index(drop=True)

    # Convert to numeric matrix:
    ym = []
    dics_vars = []
    for v, var in enumerate(my_vars):
        if df_plot[var].dtype.kind not in ["i", "u", "f"]:
            dic_var = dict([(val, c)
                           for c, val in enumerate(df_plot[var].unique())])
            dics_vars += [dic_var]
            ym += [[dic_var[i] for i in df_plot[var].tolist()]]
        else:
            ym += [df_plot[var].tolist()]
    ym = np.array(ym).T

    # Padding:
    ymins = ym.min(axis=0)
    ymaxs = ym.max(axis=0)
    dys = ymaxs - ymins
    ymins -= dys*0.05
    ymaxs += dys*0.05

    dys = ymaxs - ymins

    # Adjust to the main axis:
    zs = np.zeros_like(ym)
    zs[:, 0] = ym[:, 0]
    zs[:, 1:] = (ym[:, 1:] - ymins[1:])/dys[1:]*dys[0] + ymins[0]

    # Plot:
    fig, host_ax = plt.subplots(figsize=(20, 10), tight_layout=True)

    # Make the axes:
    axes = [host_ax] + [host_ax.twinx() for i in range(ym.shape[1] - 1)]
    dic_count = 0
    for i, ax in enumerate(axes):
        ax.set_ylim(
            bottom=ymins[i],
            top=ymaxs[i]
        )
        ax.spines.top.set_visible(False)
        ax.spines.bottom.set_visible(False)
        ax.ticklabel_format(style='plain')
        if ax != host_ax:
            ax.spines.left.set_visible(False)
            ax.yaxis.set_ticks_position("right")
            ax.spines.right.set_position(("axes", i/(ym.shape[1] - 1)))
        if df_plot.iloc[:, i].dtype.kind not in ["i", "u", "f"]:
            dic_var_i = dics_vars[dic_count]
            ax.set_yticks(range(len(dic_var_i)))
            if i == 0:
                ax.set_yticklabels([])
            else:
                ax.set_yticklabels([key_val for key_val in dics_vars[dic_count].keys()])
            dic_count += 1
    host_ax.set_xlim(left=0, right=ym.shape[1] - 1)
    host_ax.set_xticks(range(ym.shape[1]))
    host_ax.set_xticklabels(my_vars, fontsize=14)
    host_ax.tick_params(axis="x", which="major", pad=7)

    # Color map:
    colormap = cm.get_cmap('turbo')

    # Normalize speedups:
    df["speedup_normalized"] = (
        df["speedup"] - df["speedup"].min()) / (df["speedup"].max() - df["speedup"].min())

    # Make the curves:
    host_ax.spines.right.set_visible(False)
    host_ax.xaxis.tick_top()
    for j in range(ym.shape[0]):
        verts = list(zip([x for x in np.linspace(0, len(ym) - 1, len(ym)*3 - 2,
                                                 endpoint=True)],
                     np.repeat(zs[j, :], 3)[1: -1]))
        codes = [Path.MOVETO] + [Path.CURVE4 for _ in range(len(verts) - 1)]
        path = Path(verts, codes)
        color_first_cat_var = colormap(df.loc[j, "speedup_normalized"])
        patch = patches.PathPatch(
            path, facecolor="none", lw=2, alpha=0.05, edgecolor=color_first_cat_var)
        host_ax.add_patch(patch)

    host_ax.set_title(title)
    plt.show()



def case_coverage_plot(algname, ct_point_name, case_dfs):
    data_list = []

    for subbench in case_dfs:
        for _, row_description in case_dfs[subbench].iterrows():
            variant = row_description['variant']
            speedup = row_description['speedup']

            if variant.startswith('base'):
                continue

            varname, _ = variant.split(' ')
            params = varname.split('.')
            data_dict = {'variant': variant}

            for param in params:
                print(variant)
                name, val = param.split('_')
                data_dict[name] = int(val)

            data_dict['speedup'] = speedup
            # data_dict['variant'] = variant
            data_list.append(data_dict)

    df = pd.DataFrame(data_list)
    parallel_coordinates_plot(df, "{} ({})".format(algname, ct_point_name))


def coverage_plot(args):
    iterate_case_dfs(args, case_coverage_plot)


def case_pair_plot(algname, ct_point_name, case_dfs):
    import seaborn as sns
    data_list = []

    for subbench in case_dfs:
        for _, row_description in case_dfs[subbench].iterrows():
            variant = row_description['variant']
            speedup = row_description['speedup']

            if variant.startswith('base'):
                continue

            varname, _ = variant.split(' ')
            params = varname.split('.')
            data_dict = {}

            for param in params:
                print(variant)
                name, val = param.split('_')
                data_dict[name] = int(val)

            data_dict['speedup'] = speedup
            data_list.append(data_dict)

    df = pd.DataFrame(data_list)
    sns.pairplot(df, hue='speedup')
    plt.title("{} ({})".format(algname, ct_point_name))
    plt.show()


def pair_plot(args):
    iterate_case_dfs(args, case_pair_plot)


def qrde_hd(samples):
    """
    Computes quantile-respectful density estimation based on the Harrell-Davis
    quantile estimator. The implementation is based on the following post:
    https://aakinshin.net/posts/qrde-hd by Andrey Akinshin
    """
    min_sample, max_sample = min(samples), max(samples)
    num_quantiles = math.ceil(1.0 / precision)
    quantiles = np.linspace(precision, 1 - precision, num_quantiles - 1)
    hd_quantiles = [min_sample] + list(hdquantiles(samples, quantiles)) + [max_sample]
    width = [hd_quantiles[idx + 1] - hd_quantiles[idx] for idx in range(num_quantiles)]
    p = 1.0 / precision
    height = [1.0 / (p * w) for w in width]
    return width, height


def extract_peaks(pdf):
    peaks = []
    for i in range(1, len(pdf) - 1):
        if pdf[i - 1] < pdf[i] > pdf[i + 1]:
            peaks.append(i)
    return peaks


def extract_modes(samples):
    """
    Extract modes from the given samples based on the lowland algorithm:
    https://aakinshin.net/posts/lowland-multimodality-detection/ by Andrey Akinshin
    Implementation is based on the https://github.com/AndreyAkinshin/perfolizer
    LowlandModalityDetector class.
    """
    mode_ids = []

    widths, heights = qrde_hd(samples)
    peak_ids = extract_peaks(heights)
    bin_area = 1.0 / len(heights)

    x = min(samples)
    peak_xs = []
    peak_ys = []
    bin_lower = [x]
    for idx in range(len(heights)):
        if idx in peak_ids:
            peak_ys.append(heights[idx])
            peak_xs.append(x + widths[idx] / 2)
        x += widths[idx]
        bin_lower.append(x)

    def lowland_between(mode_candidate, left_peak, right_peak):
        left, right = left_peak, right_peak
        min_height = min(heights[left_peak], heights[right_peak])
        while left < right and heights[left] > min_height:
            left += 1
        while left < right and heights[right] > min_height:
            right -= 1

        width = bin_lower[right + 1] - bin_lower[left]
        total_area = width * min_height
        total_bin_area = (right - left + 1) * bin_area

        if total_bin_area / total_area < sensitivity:
            mode_ids.append(mode_candidate)
            return True
        return False

    previousPeaks = [peak_ids[0]]
    for i in range(1, len(peak_ids)):
        currentPeak = peak_ids[i]
        while previousPeaks and heights[previousPeaks[-1]] < heights[currentPeak]:
            if lowland_between(previousPeaks[0], previousPeaks[-1], currentPeak):
                previousPeaks = []
            else:
                previousPeaks.pop()

        if previousPeaks and heights[previousPeaks[-1]] > heights[currentPeak]:
            if lowland_between(previousPeaks[0], previousPeaks[-1], currentPeak):
                previousPeaks = []

        previousPeaks.append(currentPeak)

    mode_ids.append(previousPeaks[0])
    return mode_ids


def hd_displot(samples, label, ax):
    if label not in color_map:
        color_map[label] = next(color_cycle)
    color = color_map[label]
    widths, heights = qrde_hd(samples)
    mode_ids = extract_modes(samples)

    min_sample, max_sample = min(samples), max(samples)

    xs = [min_sample]
    ys = [0]

    peak_xs = []
    peak_ys = []

    x = min(samples)
    for idx in range(len(widths)):
        xs.append(x + widths[idx] / 2)
        ys.append(heights[idx])
        if idx in mode_ids:
            peak_ys.append(heights[idx])
            peak_xs.append(x + widths[idx] / 2)
        x += widths[idx]

    xs = xs + [max_sample]
    ys = ys + [0]

    ax.fill_between(xs, ys, 0, alpha=0.4, color=color)

    quartiles_of_interest = [0.25, 0.5, 0.75]

    for quartile in quartiles_of_interest:
        bin = int(quartile / precision) + 1
        ax.plot([xs[bin], xs[bin]], [0, ys[bin]], color=color)

    ax.plot(xs, ys, label=label, color=color)
    ax.plot(peak_xs, peak_ys, 'o', color=color)
    ax.legend()


def displot(data, ax):
    for variant in data:
        hd_displot(data[variant], variant, ax)


def variant_ratio(data, variant, ax):
    if variant not in color_map:
        color_map[variant] = next(color_cycle)
    color = color_map[variant]

    variant_samples = data[variant]
    base_samples = data['base']

    variant_widths, variant_heights = qrde_hd(variant_samples)
    base_widths, base_heights = qrde_hd(base_samples)

    quantiles = []
    ratios = []

    base_x = min(base_samples)
    variant_x = min(variant_samples)

    for i in range(1, len(variant_heights) - 1):
        base_x += base_widths[i] / 2
        variant_x += variant_widths[i] / 2
        quantiles.append(i * precision)
        ratios.append(base_x / variant_x)

    ax.plot(quantiles, ratios, label=variant, color=color)
    ax.axhline(1, color='red', alpha=0.7)
    ax.legend()
    ax.tick_params(axis='both', direction='in', pad=-22)


def ratio(data, ax):
    for variant in data:
        if variant != 'base':
            variant_ratio(data, variant, ax)


def case_variants(pattern, mode, algname, ct_point_name, case_dfs):
    for subbench in case_dfs:
        case_df = case_dfs[subbench]
        title = "{}[{}]:".format(algname + '/' + subbench, ct_point_name)
        df = case_df[case_df['variant'].str.contains(pattern, regex=True)].reset_index(drop=True)
        rt_axes = get_rt_axes(df)
        rt_axes_values = extract_rt_axes_values(df)

        vertical_axis_name = rt_axes[0]
        if 'Elements{io}[pow2]' in rt_axes:
            vertical_axis_name = 'Elements{io}[pow2]'
        horizontal_axes = rt_axes
        horizontal_axes.remove(vertical_axis_name)
        vertical_axis_values = rt_axes_values[vertical_axis_name]

        vertical_axis_ids = {}
        for idx, val in enumerate(vertical_axis_values):
            vertical_axis_ids[val] = idx

        def extract_horizontal_space(df):
            values = []
            for rt_axis in horizontal_axes:
                values.append(["{}={}".format(rt_axis, v) for v in df[rt_axis].unique()])
            return list(itertools.product(*values))

        if len(horizontal_axes) > 0:
            idx = 0
            horizontal_axis_ids = {}
            for point in extract_horizontal_space(df):
                horizontal_axis_ids[" / ".join(point)] = idx
                idx = idx + 1

        num_rows = len(vertical_axis_ids)
        num_cols = max(1, len(extract_horizontal_space(df)))

        if num_rows == 0:
            return

        fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, gridspec_kw = {'wspace': 0, 'hspace': 0})


        for _, vertical_row_description in df[[vertical_axis_name]].drop_duplicates().iterrows():
            vertical_val = vertical_row_description[vertical_axis_name]
            vertical_id = vertical_axis_ids[vertical_val]
            vertical_name = "{}={}".format(vertical_axis_name, vertical_val)

            vertical_df = df[df[vertical_axis_name] == vertical_val]

            for _, horizontal_row_description in vertical_df[horizontal_axes].drop_duplicates().iterrows():
                horizontal_df = vertical_df

                for axis in horizontal_axes:
                    horizontal_df = horizontal_df[horizontal_df[axis] == horizontal_row_description[axis]]

                horizontal_id = 0

                if len(horizontal_axes) > 0:
                    horizontal_point = []
                    for rt_axis in horizontal_axes:
                        horizontal_point.append("{}={}".format(rt_axis, horizontal_row_description[rt_axis]))
                    horizontal_name = " / ".join(horizontal_point)
                    horizontal_id = horizontal_axis_ids[horizontal_name]
                    ax=axes[vertical_id, horizontal_id]
                else:
                    ax=axes[vertical_id]
                    ax.set_ylabel(vertical_name)

                data = {}
                for _, variant in horizontal_df[['variant']].drop_duplicates().iterrows():
                    variant_name = variant['variant']
                    if 'base' not in data:
                        data['base'] = horizontal_df[horizontal_df['variant'] == variant_name].iloc[0]['base_samples']
                    data[variant_name] = horizontal_df[horizontal_df['variant'] == variant_name].iloc[0]['samples']

                if mode == 'pdf':
                    # sns.histplot(data=data, ax=ax, kde=True)
                    displot(data, ax)
                else:
                    ratio(data, ax)

                if len(horizontal_axes) > 0:
                    ax=axes[vertical_id, horizontal_id]
                    if vertical_id == (num_rows - 1):
                        ax.set_xlabel(horizontal_name)
                    if horizontal_id == 0:
                        ax.set_ylabel(vertical_name)
                    else:
                        ax.set_ylabel('')

        for ax in axes.flat:
            ax.set_xticklabels([])

        fig.suptitle(title)
        plt.tight_layout()
        plt.show()



def variants(args, mode):
    pattern = re.compile(args.variants_pdf) if mode == 'pdf' else re.compile(args.variants_ratio)
    iterate_case_dfs(args, functools.partial(case_variants, pattern, mode))


def file_exists(value):
    if not os.path.isfile(value):
        raise argparse.ArgumentTypeError(f"The file '{value}' does not exist.")
    return value


def case_offload(algname, ct_point_name, case_dfs):
    for subbench in case_dfs:
        df = case_dfs[subbench]
        for rt_point in extract_rt_space(df):
            point_df = df
            for rt_kv in rt_point:
                key, value = rt_kv.split('=')
                point_df = point_df[point_df[key] == value]
            point_name = ct_point_name + " " + " ".join(rt_point)
            point_name = point_name.replace(',', '')
            bench_name = "{}.{}-{}".format(algname, subbench, point_name)
            bench_name = bench_name.replace(' ', '___')
            bench_name = "".join(c if c.isalnum() else "_" for c in bench_name)
            with open(bench_name + '.json', 'w') as f:
                obj = json.loads(point_df.to_json(orient='records'))
                json.dump(obj, f, indent=2)


def offload(args):
    iterate_case_dfs(args, case_offload)


def parse_arguments():
    parser = argparse.ArgumentParser(description="Analyze benchmark results.")
    parser.add_argument(
        '-R', type=str, default='.*', help="Regex for benchmarks selection.")
    parser.add_argument(
        '--list-benches', action=argparse.BooleanOptionalAction, help="Show available benchmarks.")
    parser.add_argument(
        '--coverage', action=argparse.BooleanOptionalAction, help="Show variant space coverage.")
    parser.add_argument(
        '--coverage-plot', action=argparse.BooleanOptionalAction, help="Plot variant space coverage.")
    parser.add_argument(
        '--pair-plot', action=argparse.BooleanOptionalAction, help="Pair plot.")
    parser.add_argument(
        '--top', default=7, type=int, action='store', nargs='?', help="Show top N variants with highest score.")
    parser.add_argument(
        'files', type=file_exists, nargs='+', help='At least one file is required.')
    parser.add_argument(
        '--alpha', default=1.0, type=float)
    parser.add_argument(
        '--variants-pdf', type=str, help="Show matching variants data.")
    parser.add_argument(
        '--variants-ratio', type=str, help="Show matching variants data.")
    parser.add_argument('-a', '--args', action='append',
                        type=str, help="Parameter in the format `Param=Value`.")
    parser.add_argument(
        '-o', '--offload', action=argparse.BooleanOptionalAction, help="Offload samples")
    return parser.parse_args()


def main():
    args = parse_arguments()

    if args.list_benches:
        cccl.bench.list_benches()
        return

    if args.coverage:
        coverage(args)
        return

    if args.coverage_plot:
        coverage_plot(args)
        return

    if args.pair_plot:
        pair_plot(args)
        return

    if args.variants_pdf:
        variants(args, 'pdf')
        return

    if args.variants_ratio:
        variants(args, 'ratio')
        return

    if args.offload:
        offload(args)
        return

    top(args)


if __name__ == "__main__":
    main()