1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
|
#!/usr/bin/env python3
import os
import re
import json
import cccl
import math
import argparse
import itertools
import functools
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import mannwhitneyu
from scipy.stats.mstats import hdquantiles
pd.options.display.max_colwidth = 100
default_colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
color_cycle = itertools.cycle(default_colors)
color_map = {}
precision = 0.01
sensitivity = 0.5
def get_bench_columns():
return ['variant', 'elapsed', 'center', 'samples', 'bw']
def get_extended_bench_columns():
return get_bench_columns() + ['speedup', 'base_samples']
def compute_speedup(df):
bench_columns = get_bench_columns()
workload_columns = [col for col in df.columns if col not in bench_columns]
base_df = df[df['variant'] == 'base'].drop(columns=['variant']).rename(
columns={'center': 'base_center', 'samples': 'base_samples'})
base_df.drop(columns=['elapsed', 'bw'], inplace=True)
merged_df = df.merge(
base_df, on=[col for col in df.columns if col in workload_columns])
merged_df['speedup'] = merged_df['base_center'] / merged_df['center']
merged_df = merged_df.drop(columns=['base_center'])
return merged_df
def get_ct_axes(df):
ct_axes = []
for col in df.columns:
if '{ct}' in col:
ct_axes.append(col)
return ct_axes
def get_rt_axes(df):
rt_axes = []
excluded_columns = get_ct_axes(df) + get_extended_bench_columns()
for col in df.columns:
if col not in excluded_columns:
rt_axes.append(col)
return rt_axes
def ct_space(df):
ct_axes = get_ct_axes(df)
unique_ct_combinations = []
for _, row in df[ct_axes].drop_duplicates().iterrows():
unique_ct_combinations.append({})
for col in ct_axes:
unique_ct_combinations[-1][col] = row[col]
return unique_ct_combinations
def extract_case(df, ct_point):
tuning_df_loc = None
for ct_axis in ct_point:
if tuning_df_loc is None:
tuning_df_loc = (df[ct_axis] == ct_point[ct_axis])
else:
tuning_df_loc = tuning_df_loc & (df[ct_axis] == ct_point[ct_axis])
tuning_df = df.loc[tuning_df_loc].copy()
for ct_axis in ct_point:
tuning_df.drop(columns=[ct_axis], inplace=True)
return tuning_df
def extract_rt_axes_values(df):
rt_axes = get_rt_axes(df)
rt_axes_values = {}
for rt_axis in rt_axes:
rt_axes_values[rt_axis] = list(df[rt_axis].unique())
return rt_axes_values
def extract_rt_space(df):
rt_axes = get_rt_axes(df)
rt_axes_values = []
for rt_axis in rt_axes:
values = df[rt_axis].unique()
rt_axes_values.append(["{}={}".format(rt_axis, v) for v in values])
return list(itertools.product(*rt_axes_values))
def filter_variants(df, group):
rt_axes = get_rt_axes(df)
unique_combinations = set(
df[rt_axes].drop_duplicates().itertuples(index=False))
group_combinations = set(
group[rt_axes].drop_duplicates().itertuples(index=False))
has_all_combinations = group_combinations == unique_combinations
return has_all_combinations
def extract_complete_variants(df):
return df.groupby('variant').filter(functools.partial(filter_variants, df))
def compute_workload_score(rt_axes_values, rt_axes_ids, weights, row):
rt_workload = []
for rt_axis in rt_axes_values:
rt_workload.append("{}={}".format(rt_axis, row[rt_axis]))
weight = cccl.bench.get_workload_weight(rt_workload, rt_axes_values, rt_axes_ids, weights)
return row['speedup'] * weight
def compute_variant_score(rt_axes_values, rt_axes_ids, weight_matrix, group):
workload_score_closure = functools.partial(compute_workload_score, rt_axes_values, rt_axes_ids, weight_matrix)
score_sum = group.apply(workload_score_closure, axis=1).sum()
return score_sum
def extract_scores(dfs):
rt_axes_values = {}
for subbench in dfs:
rt_axes_values[subbench] = extract_rt_axes_values(dfs[subbench])
rt_axes_ids = cccl.bench.compute_axes_ids(rt_axes_values)
weights = cccl.bench.compute_weight_matrices(rt_axes_values, rt_axes_ids)
score_dfs = []
for subbench in dfs:
score_closure = functools.partial(
compute_variant_score, rt_axes_values[subbench], rt_axes_ids[subbench], weights[subbench])
grouped = dfs[subbench].groupby('variant')
scores = grouped.apply(score_closure).reset_index()
scores.columns = ['variant', 'score']
stat = grouped.agg(mins=('speedup', 'min'),
means=('speedup', 'mean'),
maxs=('speedup', 'max'))
scores = pd.merge(scores, stat, on='variant')
score_dfs.append(scores)
score_df = pd.concat(score_dfs)
result = score_df.groupby('variant').agg(
{'score': 'sum', 'mins': 'min', 'means': 'mean', 'maxs': 'max'}).reset_index()
return result.sort_values(by=['score'], ascending=False)
def distributions_are_different(alpha, row):
ref_samples = row['base_samples']
cmp_samples = row['samples']
# H0: the distributions are not different
# H1: the distribution are different
_, p = mannwhitneyu(ref_samples, cmp_samples)
# Reject H0
return p < alpha
def remove_matching_distributions(alpha, df):
closure = functools.partial(distributions_are_different, alpha)
return df[df.apply(closure, axis=1)]
def get_filenames_map(arr):
if not arr:
return []
prefix = arr[0]
for string in arr:
while not string.startswith(prefix):
prefix = prefix[:-1]
if not prefix:
break
return {string: string[len(prefix):] for string in arr}
def is_finite(x):
if isinstance(x, float):
return x != np.inf and x != -np.inf
return True
def iterate_case_dfs(args, callable):
storages = {}
algnames = set()
filenames_map = get_filenames_map(args.files)
for file in args.files:
storage = cccl.bench.StorageBase(file)
algnames.update(storage.algnames())
storages[filenames_map[file]] = storage
pattern = re.compile(args.R)
exact_values = {}
if args.args:
for value in args.args:
name, val = value.split('=')
exact_values[name] = val
for algname in algnames:
if not pattern.match(algname):
continue
case_dfs = {}
for subbench in storage.subbenches(algname):
for file in storages:
storage = storages[file]
df = storage.alg_to_df(algname, subbench)
df = df.map(lambda x: x if is_finite(x) else np.nan)
df = df.dropna(subset=['center'], how='all')
for _, row in df[['ctk', 'cccl']].drop_duplicates().iterrows():
ctk_version = row['ctk']
cccl_version = row['cccl']
ctk_cub_df = df[(df['ctk'] == ctk_version) &
(df['cccl'] == cccl_version)]
for gpu in ctk_cub_df['gpu'].unique():
target_df = ctk_cub_df[ctk_cub_df['gpu'] == gpu]
target_df = target_df.drop(columns=['ctk', 'cccl', 'gpu'])
target_df = compute_speedup(target_df)
for key in exact_values:
if key in target_df.columns:
target_df = target_df[target_df[key] == exact_values[key]]
for ct_point in ct_space(target_df):
point_str = ", ".join(["{}={}".format(k, ct_point[k]) for k in ct_point])
case_df = extract_complete_variants(extract_case(target_df, ct_point))
case_df['variant'] = case_df['variant'].astype(str) + " ({})".format(file)
if point_str not in case_dfs:
case_dfs[point_str] = {}
if subbench not in case_dfs[point_str]:
case_dfs[point_str][subbench] = case_df
else:
case_dfs[point_str][subbench] = pd.concat([case_dfs[point_str][subbench], case_df])
for point_str in case_dfs:
callable(algname, point_str, case_dfs[point_str])
def case_top(alpha, N, algname, ct_point_name, case_dfs):
print("{}[{}]:".format(algname, ct_point_name))
if alpha < 1.0:
case_df = remove_matching_distributions(alpha, case_df)
for subbench in case_dfs:
case_dfs[subbench] = extract_complete_variants(case_dfs[subbench])
print(extract_scores(case_dfs).head(N))
def top(args):
iterate_case_dfs(args, functools.partial(case_top, args.alpha, args.top))
def case_coverage(algname, ct_point_name, case_dfs):
num_variants = cccl.bench.Config().variant_space_size(algname)
min_coverage = 100.0
for subbench in case_dfs:
num_covered_variants = len(case_dfs[subbench]['variant'].unique())
coverage = (num_covered_variants / num_variants) * 100
min_coverage = min(min_coverage, coverage)
case_str = "{}[{}]".format(algname, ct_point_name)
print("{} coverage: {} / {} ({:.4f}%)".format(
case_str, num_covered_variants, num_variants, min_coverage))
def coverage(args):
iterate_case_dfs(args, case_coverage)
def parallel_coordinates_plot(df, title):
# Parallel coordinates plot adaptation of https://stackoverflow.com/a/69411450
import matplotlib.cm as cm
from matplotlib.path import Path
import matplotlib.patches as patches
# Variables (the first variable must be categoric):
my_vars = df.columns.tolist()
df_plot = df[my_vars]
df_plot = df_plot.dropna()
df_plot = df_plot.reset_index(drop=True)
# Convert to numeric matrix:
ym = []
dics_vars = []
for v, var in enumerate(my_vars):
if df_plot[var].dtype.kind not in ["i", "u", "f"]:
dic_var = dict([(val, c)
for c, val in enumerate(df_plot[var].unique())])
dics_vars += [dic_var]
ym += [[dic_var[i] for i in df_plot[var].tolist()]]
else:
ym += [df_plot[var].tolist()]
ym = np.array(ym).T
# Padding:
ymins = ym.min(axis=0)
ymaxs = ym.max(axis=0)
dys = ymaxs - ymins
ymins -= dys*0.05
ymaxs += dys*0.05
dys = ymaxs - ymins
# Adjust to the main axis:
zs = np.zeros_like(ym)
zs[:, 0] = ym[:, 0]
zs[:, 1:] = (ym[:, 1:] - ymins[1:])/dys[1:]*dys[0] + ymins[0]
# Plot:
fig, host_ax = plt.subplots(figsize=(20, 10), tight_layout=True)
# Make the axes:
axes = [host_ax] + [host_ax.twinx() for i in range(ym.shape[1] - 1)]
dic_count = 0
for i, ax in enumerate(axes):
ax.set_ylim(
bottom=ymins[i],
top=ymaxs[i]
)
ax.spines.top.set_visible(False)
ax.spines.bottom.set_visible(False)
ax.ticklabel_format(style='plain')
if ax != host_ax:
ax.spines.left.set_visible(False)
ax.yaxis.set_ticks_position("right")
ax.spines.right.set_position(("axes", i/(ym.shape[1] - 1)))
if df_plot.iloc[:, i].dtype.kind not in ["i", "u", "f"]:
dic_var_i = dics_vars[dic_count]
ax.set_yticks(range(len(dic_var_i)))
if i == 0:
ax.set_yticklabels([])
else:
ax.set_yticklabels([key_val for key_val in dics_vars[dic_count].keys()])
dic_count += 1
host_ax.set_xlim(left=0, right=ym.shape[1] - 1)
host_ax.set_xticks(range(ym.shape[1]))
host_ax.set_xticklabels(my_vars, fontsize=14)
host_ax.tick_params(axis="x", which="major", pad=7)
# Color map:
colormap = cm.get_cmap('turbo')
# Normalize speedups:
df["speedup_normalized"] = (
df["speedup"] - df["speedup"].min()) / (df["speedup"].max() - df["speedup"].min())
# Make the curves:
host_ax.spines.right.set_visible(False)
host_ax.xaxis.tick_top()
for j in range(ym.shape[0]):
verts = list(zip([x for x in np.linspace(0, len(ym) - 1, len(ym)*3 - 2,
endpoint=True)],
np.repeat(zs[j, :], 3)[1: -1]))
codes = [Path.MOVETO] + [Path.CURVE4 for _ in range(len(verts) - 1)]
path = Path(verts, codes)
color_first_cat_var = colormap(df.loc[j, "speedup_normalized"])
patch = patches.PathPatch(
path, facecolor="none", lw=2, alpha=0.05, edgecolor=color_first_cat_var)
host_ax.add_patch(patch)
host_ax.set_title(title)
plt.show()
def case_coverage_plot(algname, ct_point_name, case_dfs):
data_list = []
for subbench in case_dfs:
for _, row_description in case_dfs[subbench].iterrows():
variant = row_description['variant']
speedup = row_description['speedup']
if variant.startswith('base'):
continue
varname, _ = variant.split(' ')
params = varname.split('.')
data_dict = {'variant': variant}
for param in params:
print(variant)
name, val = param.split('_')
data_dict[name] = int(val)
data_dict['speedup'] = speedup
# data_dict['variant'] = variant
data_list.append(data_dict)
df = pd.DataFrame(data_list)
parallel_coordinates_plot(df, "{} ({})".format(algname, ct_point_name))
def coverage_plot(args):
iterate_case_dfs(args, case_coverage_plot)
def case_pair_plot(algname, ct_point_name, case_dfs):
import seaborn as sns
data_list = []
for subbench in case_dfs:
for _, row_description in case_dfs[subbench].iterrows():
variant = row_description['variant']
speedup = row_description['speedup']
if variant.startswith('base'):
continue
varname, _ = variant.split(' ')
params = varname.split('.')
data_dict = {}
for param in params:
print(variant)
name, val = param.split('_')
data_dict[name] = int(val)
data_dict['speedup'] = speedup
data_list.append(data_dict)
df = pd.DataFrame(data_list)
sns.pairplot(df, hue='speedup')
plt.title("{} ({})".format(algname, ct_point_name))
plt.show()
def pair_plot(args):
iterate_case_dfs(args, case_pair_plot)
def qrde_hd(samples):
"""
Computes quantile-respectful density estimation based on the Harrell-Davis
quantile estimator. The implementation is based on the following post:
https://aakinshin.net/posts/qrde-hd by Andrey Akinshin
"""
min_sample, max_sample = min(samples), max(samples)
num_quantiles = math.ceil(1.0 / precision)
quantiles = np.linspace(precision, 1 - precision, num_quantiles - 1)
hd_quantiles = [min_sample] + list(hdquantiles(samples, quantiles)) + [max_sample]
width = [hd_quantiles[idx + 1] - hd_quantiles[idx] for idx in range(num_quantiles)]
p = 1.0 / precision
height = [1.0 / (p * w) for w in width]
return width, height
def extract_peaks(pdf):
peaks = []
for i in range(1, len(pdf) - 1):
if pdf[i - 1] < pdf[i] > pdf[i + 1]:
peaks.append(i)
return peaks
def extract_modes(samples):
"""
Extract modes from the given samples based on the lowland algorithm:
https://aakinshin.net/posts/lowland-multimodality-detection/ by Andrey Akinshin
Implementation is based on the https://github.com/AndreyAkinshin/perfolizer
LowlandModalityDetector class.
"""
mode_ids = []
widths, heights = qrde_hd(samples)
peak_ids = extract_peaks(heights)
bin_area = 1.0 / len(heights)
x = min(samples)
peak_xs = []
peak_ys = []
bin_lower = [x]
for idx in range(len(heights)):
if idx in peak_ids:
peak_ys.append(heights[idx])
peak_xs.append(x + widths[idx] / 2)
x += widths[idx]
bin_lower.append(x)
def lowland_between(mode_candidate, left_peak, right_peak):
left, right = left_peak, right_peak
min_height = min(heights[left_peak], heights[right_peak])
while left < right and heights[left] > min_height:
left += 1
while left < right and heights[right] > min_height:
right -= 1
width = bin_lower[right + 1] - bin_lower[left]
total_area = width * min_height
total_bin_area = (right - left + 1) * bin_area
if total_bin_area / total_area < sensitivity:
mode_ids.append(mode_candidate)
return True
return False
previousPeaks = [peak_ids[0]]
for i in range(1, len(peak_ids)):
currentPeak = peak_ids[i]
while previousPeaks and heights[previousPeaks[-1]] < heights[currentPeak]:
if lowland_between(previousPeaks[0], previousPeaks[-1], currentPeak):
previousPeaks = []
else:
previousPeaks.pop()
if previousPeaks and heights[previousPeaks[-1]] > heights[currentPeak]:
if lowland_between(previousPeaks[0], previousPeaks[-1], currentPeak):
previousPeaks = []
previousPeaks.append(currentPeak)
mode_ids.append(previousPeaks[0])
return mode_ids
def hd_displot(samples, label, ax):
if label not in color_map:
color_map[label] = next(color_cycle)
color = color_map[label]
widths, heights = qrde_hd(samples)
mode_ids = extract_modes(samples)
min_sample, max_sample = min(samples), max(samples)
xs = [min_sample]
ys = [0]
peak_xs = []
peak_ys = []
x = min(samples)
for idx in range(len(widths)):
xs.append(x + widths[idx] / 2)
ys.append(heights[idx])
if idx in mode_ids:
peak_ys.append(heights[idx])
peak_xs.append(x + widths[idx] / 2)
x += widths[idx]
xs = xs + [max_sample]
ys = ys + [0]
ax.fill_between(xs, ys, 0, alpha=0.4, color=color)
quartiles_of_interest = [0.25, 0.5, 0.75]
for quartile in quartiles_of_interest:
bin = int(quartile / precision) + 1
ax.plot([xs[bin], xs[bin]], [0, ys[bin]], color=color)
ax.plot(xs, ys, label=label, color=color)
ax.plot(peak_xs, peak_ys, 'o', color=color)
ax.legend()
def displot(data, ax):
for variant in data:
hd_displot(data[variant], variant, ax)
def variant_ratio(data, variant, ax):
if variant not in color_map:
color_map[variant] = next(color_cycle)
color = color_map[variant]
variant_samples = data[variant]
base_samples = data['base']
variant_widths, variant_heights = qrde_hd(variant_samples)
base_widths, base_heights = qrde_hd(base_samples)
quantiles = []
ratios = []
base_x = min(base_samples)
variant_x = min(variant_samples)
for i in range(1, len(variant_heights) - 1):
base_x += base_widths[i] / 2
variant_x += variant_widths[i] / 2
quantiles.append(i * precision)
ratios.append(base_x / variant_x)
ax.plot(quantiles, ratios, label=variant, color=color)
ax.axhline(1, color='red', alpha=0.7)
ax.legend()
ax.tick_params(axis='both', direction='in', pad=-22)
def ratio(data, ax):
for variant in data:
if variant != 'base':
variant_ratio(data, variant, ax)
def case_variants(pattern, mode, algname, ct_point_name, case_dfs):
for subbench in case_dfs:
case_df = case_dfs[subbench]
title = "{}[{}]:".format(algname + '/' + subbench, ct_point_name)
df = case_df[case_df['variant'].str.contains(pattern, regex=True)].reset_index(drop=True)
rt_axes = get_rt_axes(df)
rt_axes_values = extract_rt_axes_values(df)
vertical_axis_name = rt_axes[0]
if 'Elements{io}[pow2]' in rt_axes:
vertical_axis_name = 'Elements{io}[pow2]'
horizontal_axes = rt_axes
horizontal_axes.remove(vertical_axis_name)
vertical_axis_values = rt_axes_values[vertical_axis_name]
vertical_axis_ids = {}
for idx, val in enumerate(vertical_axis_values):
vertical_axis_ids[val] = idx
def extract_horizontal_space(df):
values = []
for rt_axis in horizontal_axes:
values.append(["{}={}".format(rt_axis, v) for v in df[rt_axis].unique()])
return list(itertools.product(*values))
if len(horizontal_axes) > 0:
idx = 0
horizontal_axis_ids = {}
for point in extract_horizontal_space(df):
horizontal_axis_ids[" / ".join(point)] = idx
idx = idx + 1
num_rows = len(vertical_axis_ids)
num_cols = max(1, len(extract_horizontal_space(df)))
if num_rows == 0:
return
fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, gridspec_kw = {'wspace': 0, 'hspace': 0})
for _, vertical_row_description in df[[vertical_axis_name]].drop_duplicates().iterrows():
vertical_val = vertical_row_description[vertical_axis_name]
vertical_id = vertical_axis_ids[vertical_val]
vertical_name = "{}={}".format(vertical_axis_name, vertical_val)
vertical_df = df[df[vertical_axis_name] == vertical_val]
for _, horizontal_row_description in vertical_df[horizontal_axes].drop_duplicates().iterrows():
horizontal_df = vertical_df
for axis in horizontal_axes:
horizontal_df = horizontal_df[horizontal_df[axis] == horizontal_row_description[axis]]
horizontal_id = 0
if len(horizontal_axes) > 0:
horizontal_point = []
for rt_axis in horizontal_axes:
horizontal_point.append("{}={}".format(rt_axis, horizontal_row_description[rt_axis]))
horizontal_name = " / ".join(horizontal_point)
horizontal_id = horizontal_axis_ids[horizontal_name]
ax=axes[vertical_id, horizontal_id]
else:
ax=axes[vertical_id]
ax.set_ylabel(vertical_name)
data = {}
for _, variant in horizontal_df[['variant']].drop_duplicates().iterrows():
variant_name = variant['variant']
if 'base' not in data:
data['base'] = horizontal_df[horizontal_df['variant'] == variant_name].iloc[0]['base_samples']
data[variant_name] = horizontal_df[horizontal_df['variant'] == variant_name].iloc[0]['samples']
if mode == 'pdf':
# sns.histplot(data=data, ax=ax, kde=True)
displot(data, ax)
else:
ratio(data, ax)
if len(horizontal_axes) > 0:
ax=axes[vertical_id, horizontal_id]
if vertical_id == (num_rows - 1):
ax.set_xlabel(horizontal_name)
if horizontal_id == 0:
ax.set_ylabel(vertical_name)
else:
ax.set_ylabel('')
for ax in axes.flat:
ax.set_xticklabels([])
fig.suptitle(title)
plt.tight_layout()
plt.show()
def variants(args, mode):
pattern = re.compile(args.variants_pdf) if mode == 'pdf' else re.compile(args.variants_ratio)
iterate_case_dfs(args, functools.partial(case_variants, pattern, mode))
def file_exists(value):
if not os.path.isfile(value):
raise argparse.ArgumentTypeError(f"The file '{value}' does not exist.")
return value
def case_offload(algname, ct_point_name, case_dfs):
for subbench in case_dfs:
df = case_dfs[subbench]
for rt_point in extract_rt_space(df):
point_df = df
for rt_kv in rt_point:
key, value = rt_kv.split('=')
point_df = point_df[point_df[key] == value]
point_name = ct_point_name + " " + " ".join(rt_point)
point_name = point_name.replace(',', '')
bench_name = "{}.{}-{}".format(algname, subbench, point_name)
bench_name = bench_name.replace(' ', '___')
bench_name = "".join(c if c.isalnum() else "_" for c in bench_name)
with open(bench_name + '.json', 'w') as f:
obj = json.loads(point_df.to_json(orient='records'))
json.dump(obj, f, indent=2)
def offload(args):
iterate_case_dfs(args, case_offload)
def parse_arguments():
parser = argparse.ArgumentParser(description="Analyze benchmark results.")
parser.add_argument(
'-R', type=str, default='.*', help="Regex for benchmarks selection.")
parser.add_argument(
'--list-benches', action=argparse.BooleanOptionalAction, help="Show available benchmarks.")
parser.add_argument(
'--coverage', action=argparse.BooleanOptionalAction, help="Show variant space coverage.")
parser.add_argument(
'--coverage-plot', action=argparse.BooleanOptionalAction, help="Plot variant space coverage.")
parser.add_argument(
'--pair-plot', action=argparse.BooleanOptionalAction, help="Pair plot.")
parser.add_argument(
'--top', default=7, type=int, action='store', nargs='?', help="Show top N variants with highest score.")
parser.add_argument(
'files', type=file_exists, nargs='+', help='At least one file is required.')
parser.add_argument(
'--alpha', default=1.0, type=float)
parser.add_argument(
'--variants-pdf', type=str, help="Show matching variants data.")
parser.add_argument(
'--variants-ratio', type=str, help="Show matching variants data.")
parser.add_argument('-a', '--args', action='append',
type=str, help="Parameter in the format `Param=Value`.")
parser.add_argument(
'-o', '--offload', action=argparse.BooleanOptionalAction, help="Offload samples")
return parser.parse_args()
def main():
args = parse_arguments()
if args.list_benches:
cccl.bench.list_benches()
return
if args.coverage:
coverage(args)
return
if args.coverage_plot:
coverage_plot(args)
return
if args.pair_plot:
pair_plot(args)
return
if args.variants_pdf:
variants(args, 'pdf')
return
if args.variants_ratio:
variants(args, 'ratio')
return
if args.offload:
offload(args)
return
top(args)
if __name__ == "__main__":
main()
|