1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
/******************************************************************************
* Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
#include "insert_nested_NVTX_range_guard.h"
// above header needs to be included first
#include <cub/device/device_reduce.cuh>
#include <cstdint>
#include "c2h/custom_type.cuh"
#include "c2h/extended_types.cuh"
#include "catch2_test_device_reduce.cuh"
#include "catch2_test_helper.h"
#include "catch2_test_launch_helper.h"
DECLARE_LAUNCH_WRAPPER(cub::DeviceReduce::TransformReduce, device_transform_reduce);
// %PARAM% TEST_LAUNCH lid 0:1:2
using types = c2h::type_list<std::uint32_t, std::uint64_t>;
template <class T>
struct square_t
{
__host__ __device__ T operator()(const T& x) const
{
return x * x;
}
};
CUB_TEST("Device transform reduce works with pointers", "[reduce][device]", types)
{
using item_t = c2h::get<0, TestType>;
using init_t = item_t;
using offset_t = std::int32_t;
using reduction_op_t = cub::Sum;
using transform_op_t = square_t<item_t>;
constexpr int max_items = 5000000;
constexpr int min_items = 1;
const int num_items = GENERATE_COPY(take(3, random(min_items, max_items)));
item_t init{42};
c2h::device_vector<item_t> out(1);
c2h::device_vector<item_t> in(num_items + 1);
c2h::gen(CUB_SEED(2), in);
item_t* d_in = thrust::raw_pointer_cast(in.data());
item_t* d_out = thrust::raw_pointer_cast(out.data());
const c2h::host_vector<item_t> h_in = in;
c2h::host_vector<item_t> h_transformed_in(h_in.size() - 1);
SECTION("when aligned")
{
device_transform_reduce(d_in, d_out, num_items, reduction_op_t{}, transform_op_t{}, init);
std::transform(h_in.begin(), h_in.end() - 1, h_transformed_in.begin(), transform_op_t{});
const item_t expected = std::accumulate(h_transformed_in.begin(), h_transformed_in.end(), init);
INFO("num_items: " << num_items);
REQUIRE(expected == out[0]);
}
SECTION("when unaligned")
{
device_transform_reduce(d_in + 1, d_out, num_items, reduction_op_t{}, transform_op_t{}, init);
std::transform(h_in.begin() + 1, h_in.end(), h_transformed_in.begin(), transform_op_t{});
const item_t expected = std::accumulate(h_transformed_in.begin(), h_transformed_in.end(), init);
INFO("num_items: " << num_items);
REQUIRE(expected == out[0]);
}
}
CUB_TEST("Device transform reduce works with iterators", "[reduce][device]", types)
{
using item_t = c2h::get<0, TestType>;
using init_t = item_t;
using offset_t = std::int32_t;
using reduction_op_t = cub::Sum;
using transform_op_t = square_t<item_t>;
constexpr int max_items = 5000000;
constexpr int min_items = 1;
const int num_items = GENERATE_COPY(take(3, random(min_items, max_items)));
const item_t magic_val{2};
c2h::device_vector<item_t> in(num_items, magic_val);
c2h::device_vector<item_t> out(1);
device_transform_reduce(in.begin(), out.begin(), num_items, reduction_op_t{}, transform_op_t{}, init_t{});
const item_t expected = num_items * magic_val * magic_val;
const item_t actual = out[0];
INFO("num_items: " << num_items);
REQUIRE(expected == actual);
}
struct input_t
{
std::uint32_t a;
std::uint32_t b;
};
struct transformed_input_t
{
std::uint64_t a;
std::uint64_t b;
};
struct init_t
{
char a;
char b;
};
struct accum_t
{
std::uint64_t a;
std::uint64_t b;
__host__ __device__ accum_t()
: a{42}
, b{42}
{}
__host__ __device__ accum_t(const transformed_input_t& other)
: a{other.a}
, b{other.b}
{}
__host__ __device__ accum_t(const init_t& other)
: a{static_cast<std::uint64_t>(other.a)}
, b{static_cast<std::uint64_t>(other.b)}
{}
__host__ __device__ accum_t& operator=(const transformed_input_t& other)
{
a = other.a;
b = other.b;
return *this;
}
};
struct output_t
{
std::uint64_t a;
std::uint64_t b;
__host__ __device__ output_t()
: a{42}
, b{42}
{}
__host__ __device__ output_t(const accum_t& other)
: a{other.a}
, b{other.b}
{}
__host__ __device__ output_t(const init_t& other)
: a{static_cast<std::uint64_t>(other.a)}
, b{static_cast<std::uint64_t>(other.b)}
{}
};
struct transform_op_t
{
__host__ __device__ transformed_input_t operator()(const input_t& x) const
{
return {static_cast<std::uint64_t>(x.a * x.a), static_cast<std::uint64_t>(x.b * x.b)};
}
};
struct reduction_op_t
{
__host__ __device__ accum_t operator()(accum_t x, accum_t y) const
{
accum_t result{};
result.a = x.a + y.a;
result.b = x.b + y.b;
return result;
}
};
CUB_TEST("Device transform reduce doesn't let input type into reduction op", "[reduce][device]")
{
constexpr int max_items = 5000000;
constexpr int min_items = 1;
const int num_items = GENERATE_COPY(take(3, random(min_items, max_items)));
const init_t init{3, 3};
const input_t magic_val{2, 2};
c2h::device_vector<input_t> in(num_items, magic_val);
c2h::device_vector<output_t> out(1);
input_t* d_in = thrust::raw_pointer_cast(in.data());
output_t* d_out = thrust::raw_pointer_cast(out.data());
device_transform_reduce(d_in, d_out, num_items, reduction_op_t{}, transform_op_t{}, init);
const std::uint64_t expected = num_items * magic_val.a * magic_val.a + init.a;
const output_t actual = out[0];
INFO("num_items: " << num_items);
REQUIRE(expected == actual.a);
REQUIRE(expected == actual.b);
}
|