1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
# -*- coding: utf-8 -*-
#
# Copyright (c) 2017, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.
"""A writer for chemical JSON (CJSON) files."""
import os.path
import json
import numpy as np
from cclib.io import filewriter
from cclib.parser.data import ccData
from cclib.parser.utils import find_package
_has_openbabel = find_package("openbabel")
class CJSON(filewriter.Writer):
"""A writer for chemical JSON (CJSON) files."""
def __init__(self, ccdata, terse=False, *args, **kwargs):
"""Initialize the chemical JSON writer object.
Inputs:
ccdata - An instance of ccData, parsed from a logfile.
"""
super(CJSON, self).__init__(ccdata, terse=terse, *args, **kwargs)
def pathname(self, path):
"""Return filename without extension to be used as name."""
name = os.path.basename(os.path.splitext(path)[0])
return name
def as_dict(self):
""" Build a Python dict with the CJSON data"""
cjson_dict = dict()
# Need to decide on a number format.
cjson_dict['chemical json'] = 0
if self.jobfilename is not None:
cjson_dict['name'] = self.pathname(self.jobfilename)
# These are properties that can be collected using Open Babel.
if _has_openbabel:
cjson_dict['smiles'] = self.pbmol.write('smiles')
cjson_dict['inchi'] = self.pbmol.write('inchi')
cjson_dict['inchikey'] = self.pbmol.write('inchikey')
cjson_dict['formula'] = self.pbmol.formula
# TODO Incorporate unit cell information.
# Iterate through the attribute list present in ccData. Depending on
# the availability of the attribute add it at the right 'level'.
for attribute_name, v in ccData._attributes.items():
if not hasattr(self.ccdata, attribute_name):
continue
attribute_path = v.attribute_path.split(":")
# Depth of the attribute in the CJSON.
levels = len(attribute_path)
# The attributes which haven't been included in the CJSON format.
if attribute_path[0] == 'N/A':
continue
if attribute_path[0] not in cjson_dict:
cjson_dict[attribute_path[0]] = dict()
l1_data_object = cjson_dict[attribute_path[0]]
# 'moments' and 'atomcoords' key will contain processed data
# obtained from the output file. TODO rewrite this
if attribute_name in ('moments', 'atomcoords'):
if attribute_name == 'moments':
dipole_moment = self._calculate_total_dipole_moment()
if dipole_moment is not None:
cjson_dict['properties'][ccData._attributes['moments'].json_key] = dipole_moment
else:
cjson_dict['atoms']['coords'] = dict()
cjson_dict['atoms']['coords']['3d'] = self.ccdata.atomcoords[-1].flatten().tolist()
continue
if levels == 1:
self.set_JSON_attribute(l1_data_object, attribute_name)
elif levels >= 2:
if attribute_path[1] not in l1_data_object:
l1_data_object[attribute_path[1]] = dict()
l2_data_object = l1_data_object[attribute_path[1]]
if levels == 2:
self.set_JSON_attribute(l2_data_object, attribute_name)
elif levels == 3:
if attribute_path[2] not in l2_data_object:
l2_data_object[attribute_path[2]] = dict()
l3_data_object = l2_data_object[attribute_path[2]]
self.set_JSON_attribute(l3_data_object, attribute_name)
# Attributes which are not directly obtained from the output files.
if hasattr(self.ccdata, 'moenergies') and hasattr(self.ccdata, 'homos'):
if 'energy' not in cjson_dict['properties']:
cjson_dict['properties']['energy'] = dict()
cjson_dict['properties']['energy']['alpha'] = dict()
cjson_dict['properties']['energy']['beta'] = dict()
homo_idx_alpha = int(self.ccdata.homos[0])
homo_idx_beta = int(self.ccdata.homos[-1])
energy_alpha_homo = self.ccdata.moenergies[0][homo_idx_alpha]
energy_alpha_lumo = self.ccdata.moenergies[0][homo_idx_alpha + 1]
energy_alpha_gap = energy_alpha_lumo - energy_alpha_homo
energy_beta_homo = self.ccdata.moenergies[-1][homo_idx_beta]
energy_beta_lumo = self.ccdata.moenergies[-1][homo_idx_beta + 1]
energy_beta_gap = energy_beta_lumo - energy_beta_homo
cjson_dict['properties']['energy']['alpha']['homo'] = energy_alpha_homo
cjson_dict['properties']['energy']['alpha']['gap'] = energy_alpha_gap
cjson_dict['properties']['energy']['beta']['homo'] = energy_beta_homo
cjson_dict['properties']['energy']['beta']['gap'] = energy_beta_gap
cjson_dict['properties']['energy']['total'] = self.ccdata.scfenergies[-1]
if hasattr(self.ccdata, 'atomnos'):
cjson_dict['atoms']['elements']['atom count'] = len(self.ccdata.atomnos)
cjson_dict['atoms']['elements']['heavy atom count'] = len([x for x in self.ccdata.atomnos if x > 1])
# Bond attributes:
if _has_openbabel and (len(self.ccdata.atomnos) > 1):
cjson_dict['bonds'] = dict()
cjson_dict['bonds']['connections'] = dict()
cjson_dict['bonds']['connections']['index'] = []
for bond in self.bond_connectivities:
cjson_dict['bonds']['connections']['index'].append(bond[0])
cjson_dict['bonds']['connections']['index'].append(bond[1])
cjson_dict['bonds']['order'] = [bond[2] for bond in self.bond_connectivities]
if _has_openbabel:
cjson_dict['properties']['molecular mass'] = self.pbmol.molwt
cjson_dict['diagram'] = self.pbmol.write(format='svg')
return cjson_dict
def generate_repr(self):
"""Generate the CJSON representation of the logfile data."""
cjson_dict = self.as_dict()
if self.terse:
return json.dumps(cjson_dict, cls=NumpyAwareJSONEncoder)
else:
return json.dumps(cjson_dict, cls=JSONIndentEncoder, sort_keys=True, indent=4)
def set_JSON_attribute(self, object, key):
"""
Args:
object: Python dictionary which is being appended with the key value.
key: cclib attribute name.
Returns:
None. The dictionary is modified to contain the attribute with the
cclib keyname as key
"""
if hasattr(self.ccdata, key):
object[ccData._attributes[key].json_key] = getattr(self.ccdata, key)
class NumpyAwareJSONEncoder(json.JSONEncoder):
"""A encoder for numpy.ndarray's obtained from the cclib attributes.
For all other types the json default encoder is called.
Do Not rename the 'default' method as it is required to be implemented
by any subclass of the json.JSONEncoder
"""
def default(self, obj):
if isinstance(obj, np.ndarray):
if obj.ndim == 1:
nan_list = obj.tolist()
return [None if np.isnan(x) else x for x in nan_list]
else:
return [self.default(obj[i]) for i in range(obj.shape[0])]
return json.JSONEncoder.default(self, obj)
class JSONIndentEncoder(json.JSONEncoder):
def __init__(self, *args, **kwargs):
super(JSONIndentEncoder, self).__init__(*args, **kwargs)
self.current_indent = 0
self.current_indent_str = ""
def encode(self, o):
# Special Processing for lists
if isinstance(o, (list, tuple)):
primitives_only = True
for item in o:
if isinstance(item, (list, tuple, dict)):
primitives_only = False
break
output = []
if primitives_only:
for item in o:
output.append(json.dumps(item, cls=NumpyAwareJSONEncoder))
return "[ " + ", ".join(output) + " ]"
else:
self.current_indent += self.indent
self.current_indent_str = "".join([" " for x in range(self.current_indent)])
for item in o:
output.append(self.current_indent_str + self.encode(item))
self.current_indent -= self.indent
self.current_indent_str = "".join([" " for x in range(self.current_indent)])
return "[\n" + ",\n".join(output) + "\n" + self.current_indent_str + "]"
elif isinstance(o, dict):
output = []
self.current_indent += self.indent
self.current_indent_str = "".join([" " for x in range(self.current_indent)])
for key, value in o.items():
output.append(self.current_indent_str + json.dumps(key, cls=NumpyAwareJSONEncoder) + ": " +
str(self.encode(value)))
self.current_indent -= self.indent
self.current_indent_str = "".join([" " for x in range(self.current_indent)])
return "{\n" + ",\n".join(output) + "\n" + self.current_indent_str + "}"
elif isinstance(o, np.generic):
return json.dumps(o.item(), cls=NumpyAwareJSONEncoder)
else:
return json.dumps(o, cls=NumpyAwareJSONEncoder)
del find_package
|