1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
# -*- coding: utf-8 -*-
#
# Copyright (c) 2017, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.
"""A writer for MOLDEN format files."""
import os.path
import math
import decimal
from cclib.parser import utils
from cclib.io import filewriter
def round_molden(num, p=6):
"""Molden style number rounding in [Atoms] section."""
# Digit at pth position after dot.
p_digit = math.floor(abs(num) * 10 ** p) % 10
# If the 6th digit after dot is greater than 5, but is not 7,
# round the number upto 6th place.
# Else truncate at 6th digit after dot.
if p_digit > 5 and p_digit != 7:
return round(num, p)
if num >= 0:
return math.floor(num * 10 ** p) / 10 ** p
else:
return math.ceil(num * 10 ** p) / 10 ** p
class MOLDEN(filewriter.Writer):
"""A writer for MOLDEN files."""
required_attrs = ('atomcoords', 'atomnos', 'natom')
def _title(self, path):
"""Return filename without extension to be used as title."""
title = os.path.basename(os.path.splitext(path)[0])
return title
def _coords_from_ccdata(self, index):
"""Create [Atoms] section using geometry at the given index."""
elements = [self.pt.element[Z] for Z in self.ccdata.atomnos]
if self.ghost is not None:
elements = [self.ghost if e is None else e for e in elements]
elif None in elements:
raise ValueError('It seems that there is at least one ghost atom ' +
'in these elements. Please use the ghost flag to'+
' specify a label for the ghost atoms.')
atomcoords = self.ccdata.atomcoords[index]
atomnos = self.ccdata.atomnos
nos = range(self.ccdata.natom)
# element_name number atomic_number x y z
atom_template = '{:2s} {:5d} {:2d} {:12.6f} {:12.6f} {:12.6f}'
lines = []
for element, no, atomno, coord in zip(elements, nos, atomnos,
atomcoords):
x, y, z = map(round_molden, coord)
lines.append(atom_template.format(element, no + 1, atomno,
x, y, z))
return lines
def _gto_from_ccdata(self):
"""Create [GTO] section using gbasis.
atom_sequence_number1 0
shell_label number_of_primitives 1.00
exponent_primitive_1 contraction_coeff_1 (contraction_coeff_1)
...
empty line
atom_sequence__number2 0
"""
gbasis = self.ccdata.gbasis
label_template = '{:s} {:5d} 1.00'
basis_template = '{:15.9e} {:15.9e}'
lines = []
for no, basis in enumerate(gbasis):
lines.append('{:3d} 0'.format(no + 1))
for prims in basis:
lines.append(label_template.format(prims[0].lower(),
len(prims[1])))
for prim in prims[1]:
lines.append(basis_template.format(prim[0], prim[1]))
lines.append('')
lines.append('')
return lines
def _scfconv_from_ccdata(self):
"""Create [SCFCONV] section using gbasis.
scf-first 1 THROUGH 12
-672.634394
...
-673.590571
-673.590571
"""
lines = ["scf-first 1 THROUGH %d" % len(self.ccdata.scfenergies)]
for scfenergy in self.ccdata.scfenergies:
lines.append('{:15.6f}'.format(scfenergy))
return lines
def _rearrange_mocoeffs(self, mocoeffs):
"""Rearrange cartesian F functions in mocoeffs.
Molden's order:
xxx, yyy, zzz, xyy, xxy, xxz, xzz, yzz, yyz, xyz
cclib's order:
XXX, YYY, ZZZ, XXY, XXZ, YYX, YYZ, ZZX, ZZY, XYZ
cclib's order can be converted by:
moving YYX two indexes ahead, and
moving YYZ two indexes back.
"""
aonames = self.ccdata.aonames
mocoeffs = mocoeffs.tolist()
pos_yyx = [key for key, val in enumerate(aonames) if '_YYX' in val]
pos_yyz = [key for key, val in enumerate(aonames) if '_YYZ' in val]
if pos_yyx:
for pos in pos_yyx:
mocoeffs.insert(pos-2, mocoeffs.pop(pos))
if pos_yyz:
for pos in pos_yyz:
mocoeffs.insert(pos+2, mocoeffs.pop(pos))
return mocoeffs
def _mo_from_ccdata(self):
"""Create [MO] section.
Sym= symmetry_label_1
Ene= mo_energy_1
Spin= (Alpha|Beta)
Occup= mo_occupation_number_1
ao_number_1 mo_coefficient_1
...
ao_number_n mo_coefficient_n
...
"""
moenergies = self.ccdata.moenergies
mocoeffs = self.ccdata.mocoeffs
homos = self.ccdata.homos
mult = self.ccdata.mult
has_syms = False
lines = []
# Sym attribute is optional in [MO] section.
if hasattr(self.ccdata, 'mosyms'):
has_syms = True
syms = self.ccdata.mosyms
spin = 'Alpha'
for i in range(mult):
for j in range(len(moenergies[i])):
if has_syms:
lines.append(' Sym= %s' % syms[i][j])
moenergy = utils.convertor(moenergies[i][j], 'eV', 'hartree')
lines.append(' Ene= {:10.4f}'.format(moenergy))
lines.append(' Spin= %s' % spin)
if j <= homos[i]:
lines.append(' Occup= {:10.6f}'.format(2.0 / mult))
else:
lines.append(' Occup= {:10.6f}'.format(0.0))
# Rearrange mocoeffs according to Molden's lexicographical order.
mocoeffs[i][j] = self._rearrange_mocoeffs(mocoeffs[i][j])
for k, mocoeff in enumerate(mocoeffs[i][j]):
lines.append('{:4d} {:10.6f}'.format(k + 1, mocoeff))
spin = 'Beta'
return lines
def generate_repr(self):
"""Generate the MOLDEN representation of the logfile data."""
molden_lines = ['[Molden Format]']
# Title of file.
if self.jobfilename is not None:
molden_lines.append('[Title]')
molden_lines.append(self._title(self.jobfilename))
# Coordinates for the Electron Density/Molecular orbitals.
# [Atoms] (Angs|AU)
unit = "Angs"
molden_lines.append('[Atoms] %s' % unit)
# Last set of coordinates for geometry optimization runs.
index = -1
molden_lines.extend(self._coords_from_ccdata(index))
# Either both [GTO] and [MO] should be present or none of them.
if hasattr(self.ccdata, 'gbasis') and hasattr(self.ccdata, 'mocoeffs')\
and hasattr(self.ccdata, 'moenergies'):
molden_lines.append('[GTO]')
molden_lines.extend(self._gto_from_ccdata())
molden_lines.append('[MO]')
molden_lines.extend(self._mo_from_ccdata())
# Omitting until issue #390 is resolved.
# https://github.com/cclib/cclib/issues/390
# if hasattr(self.ccdata, 'scfenergies'):
# if len(self.ccdata.scfenergies) > 1:
# molden_lines.append('[SCFCONV]')
# molden_lines.extend(self._scfconv_from_ccdata())
# molden_lines.append('')
return '\n'.join(molden_lines)
class MoldenReformatter(object):
"""Reformat Molden output files."""
def __init__(self, filestring):
self.filestring = filestring
def scinotation(self, num):
"""Convert Molden style number formatting to scientific notation.
0.9910616900D+02 --> 9.910617e+01
"""
num = num.replace('D', 'e')
return str('%.9e' % decimal.Decimal(num))
def reformat(self):
"""Reformat Molden output file to:
- use scientific notation,
- split sp molecular orbitals to s and p, and
- replace multiple spaces with single."""
filelines = iter(self.filestring.split("\n"))
lines = []
for line in filelines:
line = line.replace('\n', '')
# Replace multiple spaces with single spaces.
line = ' '.join(line.split())
# Check for [Title] section.
if '[title]' in line.lower():
# skip the title
line = next(filelines)
line = next(filelines)
# Exclude SCFCONV section until issue #390 is resolved.
# https://github.com/cclib/cclib/issues/390
if '[scfconv]' in line.lower():
break
# Although Molden format specifies Sym in [MO] section,
# the Molden program does not print it.
if 'sym' in line.lower():
continue
# Convert D notation to scientific notation.
if 'D' in line:
vals = line.split()
vals = [self.scinotation(i) for i in vals]
lines.append(' '.join(vals))
# Convert sp to s and p orbitals.
elif 'sp' in line:
n_prim = int(line.split()[1])
new_s = ['s ' + str(n_prim) + ' 1.00']
new_p = ['p ' + str(n_prim) + ' 1.00']
while n_prim > 0:
n_prim -= 1
line = next(filelines).split()
new_s.append(self.scinotation(line[0]) + ' '
+ self.scinotation(line[1]))
new_p.append(self.scinotation(line[0]) + ' '
+ self.scinotation(line[2]))
lines.extend(new_s)
lines.extend(new_p)
else:
lines.append(line)
return '\n'.join(lines)
|