File: nuclear.py

package info (click to toggle)
cclib-data 1.6.2-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 87,912 kB
  • sloc: python: 16,440; sh: 131; makefile: 79; cpp: 31
file content (196 lines) | stat: -rw-r--r-- 6,876 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# -*- coding: utf-8 -*-
#
# Copyright (c) 2017, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.

"""Calculate properties of nuclei based on data parsed by cclib."""

import logging

import numpy as np

from cclib.method.calculationmethod import Method
from cclib.parser.utils import PeriodicTable
from cclib.parser.utils import find_package

_found_periodictable = find_package("periodictable")
if _found_periodictable:
    import periodictable as pt

_found_scipy = find_package("scipy")
if _found_scipy:
    import scipy.constants as spc


def _check_periodictable(found_periodictable):
    if not _found_periodictable:
        raise ImportError("You must install `periodictable` to use this function")


def _check_scipy(found_scipy):
    if not _found_scipy:
        raise ImportError("You must install `scipy` to use this function")


def get_most_abundant_isotope(element):
    """Given a `periodictable` element, return the most abundant
    isotope.
    """
    most_abundant_isotope = element.isotopes[0]
    abundance = 0
    for iso in element:
        if iso.abundance > abundance:
            most_abundant_isotope = iso
            abundance = iso.abundance
    return most_abundant_isotope


def get_isotopic_masses(charges):
    """Return the masses for the given nuclei, respresented by their
    nuclear charges.
    """
    _check_periodictable(_found_periodictable)
    masses = []
    for charge in charges:
        el = pt.elements[charge]
        isotope = get_most_abundant_isotope(el)
        mass = isotope.mass
        masses.append(mass)
    return np.array(masses)


class Nuclear(Method):
    """A container for methods pertaining to atomic nuclei."""

    def __init__(self, data, progress=None, loglevel=logging.INFO, logname="Log"):

        self.required_attrs = ('natom','atomcoords','atomnos','charge')

        super(Nuclear, self).__init__(data, progress, loglevel, logname)

    def __str__(self):
        """Return a string representation of the object."""
        return "Nuclear"

    def __repr__(self):
        """Return a representation of the object."""
        return "Nuclear"

    def stoichiometry(self):
        """Return the stoichemistry of the object according to the Hill system"""
        cclib_pt = PeriodicTable()
        elements = [cclib_pt.element[ano] for ano in self.data.atomnos]
        counts = {el: elements.count(el) for el in set(elements)}

        formula = ""
        elcount = lambda el, c: "%s%i" % (el, c) if c > 1 else el
        if 'C' in elements:
            formula += elcount('C', counts['C'])
            counts.pop('C')
            if 'H' in elements:
              formula += elcount('H', counts['H'])
              counts.pop('H')
        for el, c in sorted(counts.items()):
            formula += elcount(el, c)

        if getattr(self.data, 'charge', 0):
            magnitude = abs(self.data.charge)
            sign = "+" if self.data.charge > 0 else "-"
            formula += "(%s%i)" % (sign, magnitude)
        return formula

    def repulsion_energy(self, atomcoords_index=-1):
        """Return the nuclear repulsion energy."""
        nre = 0.0
        for i in range(self.data.natom):
            ri = self.data.atomcoords[atomcoords_index][i]
            zi = self.data.atomnos[i]
            for j in range(i+1, self.data.natom):
                rj = self.data.atomcoords[0][j]
                zj = self.data.atomnos[j]
                d = np.linalg.norm(ri-rj)
                nre += zi*zj/d
        return nre

    def center_of_mass(self, atomcoords_index=-1):
        """Return the center of mass."""
        charges = self.data.atomnos
        coords = self.data.atomcoords[atomcoords_index]
        masses = get_isotopic_masses(charges)

        mwc = coords * masses[:, np.newaxis]
        numerator = np.sum(mwc, axis=0)
        denominator = np.sum(masses)

        return numerator / denominator

    def moment_of_inertia_tensor(self, atomcoords_index=-1):
        """Return the moment of inertia tensor."""
        charges = self.data.atomnos
        coords = self.data.atomcoords[atomcoords_index]
        masses = get_isotopic_masses(charges)

        moi_tensor = np.empty((3, 3))

        moi_tensor[0][0] = np.sum(masses * (coords[:, 1]**2 + coords[:, 2]**2))
        moi_tensor[1][1] = np.sum(masses * (coords[:, 0]**2 + coords[:, 2]**2))
        moi_tensor[2][2] = np.sum(masses * (coords[:, 0]**2 + coords[:, 1]**2))

        moi_tensor[0][1] = np.sum(masses * coords[:, 0] * coords[:, 1])
        moi_tensor[0][2] = np.sum(masses * coords[:, 0] * coords[:, 2])
        moi_tensor[1][2] = np.sum(masses * coords[:, 1] * coords[:, 2])

        moi_tensor[1][0] = moi_tensor[0][1]
        moi_tensor[2][0] = moi_tensor[0][2]
        moi_tensor[2][1] = moi_tensor[1][2]

        return moi_tensor

    def principal_moments_of_inertia(self, units='amu_bohr_2'):
        """Return the principal moments of inertia in 3 kinds of units:
        1. [amu][bohr]^2
        2. [amu][angstrom]^2
        3. [g][cm]^2
        and the principal axes.
        """
        choices = ('amu_bohr_2', 'amu_angstrom_2', 'g_cm_2')
        units = units.lower()
        if units not in choices:
            raise ValueError("Invalid units, pick one of {}".format(choices))
        moi_tensor = self.moment_of_inertia_tensor()
        principal_moments, principal_axes = np.linalg.eigh(moi_tensor)
        if units == 'amu_bohr_2':
            conv = 1
        if units == 'amu_angstrom_2':
            _check_scipy(_found_scipy)
            bohr2ang = spc.value('atomic unit of length') / spc.angstrom
            conv = bohr2ang ** 2
        if units == 'g_cm_2':
            _check_scipy(_found_scipy)
            amu2g = spc.value('unified atomic mass unit') * spc.kilo
            conv = amu2g * (spc.value('atomic unit of length') * spc.centi) ** 2
        return conv * principal_moments, principal_axes

    def rotational_constants(self, units='ghz'):
        """Compute the rotational constants in 1/cm or GHz."""
        choices = ('invcm', 'ghz')
        units = units.lower()
        if units not in choices:
            raise ValueError("Invalid units, pick one of {}".format(choices))
        principal_moments = self.principal_moments_of_inertia()[0]
        _check_scipy(_found_scipy)
        bohr2ang = spc.value('atomic unit of length') / spc.angstrom
        xfamu = 1 / spc.value('electron mass in u')
        xthz = spc.value('hartree-hertz relationship')
        rotghz = xthz * (bohr2ang ** 2) / (2 * xfamu * spc.giga)
        if units == 'ghz':
            conv = rotghz
        if units == 'invcm':
            ghz2invcm = spc.giga * spc.centi / spc.c
            conv = rotghz * ghz2invcm
        return conv / principal_moments


del find_package