File: volume.py

package info (click to toggle)
cclib-data 1.6.2-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 87,912 kB
  • sloc: python: 16,440; sh: 131; makefile: 79; cpp: 31
file content (240 lines) | stat: -rw-r--r-- 8,789 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# -*- coding: utf-8 -*-
#
# Copyright (c) 2017, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.

"""Calculation methods related to volume based on cclib data."""

from __future__ import print_function
import copy

import numpy

from cclib.parser.utils import convertor
from cclib.parser.utils import find_package

_found_pyquante = find_package("PyQuante")
if _found_pyquante:
    from PyQuante.CGBF import CGBF
    from cclib.bridge import cclib2pyquante

_found_pyvtk = find_package("pyvtk")
if _found_pyvtk:
    from pyvtk import *
    from pyvtk.DataSetAttr import *


def _check_pyvtk(found_pyvtk):
    if not found_pyvtk:
        raise ImportError("You must install `pyvtk` to use this function")


class Volume(object):
    """Represent a volume in space.

    Required parameters:
       origin -- the bottom left hand corner of the volume
       topcorner -- the top right hand corner
       spacing -- the distance between the points in the cube

    Attributes:
       data -- a NumPy array of values for each point in the volume
               (set to zero at initialisation)
       numpts -- the numbers of points in the (x,y,z) directions
    """

    def __init__(self, origin, topcorner, spacing):

        self.origin = numpy.asarray(origin, dtype=float)
        self.topcorner = numpy.asarray(topcorner, dtype=float)
        self.spacing = numpy.asarray(spacing, dtype=float)
        self.numpts = []
        for i in range(3):
            self.numpts.append(int((self.topcorner[i] - self.origin[i]) / self.spacing[i] + 1))
        self.data = numpy.zeros(tuple(self.numpts), "d")

    def __str__(self):
        """Return a string representation."""
        return "Volume %s to %s (density: %s)" % (self.origin, self.topcorner,
                                                  self.spacing)

    def write(self, filename, fformat="Cube"):
        """Write the volume to a file."""

        fformat = fformat.lower()

        writers = {
            "vtk": self.writeasvtk,
            "cube": self.writeascube,
        }

        if fformat not in writers:
            raise RuntimeError("File format must be either VTK or Cube")

        writers[fformat](filename)

    def writeasvtk(self, filename):
        _check_pyvtk(_found_pyvtk)
        ranges = (numpy.arange(self.data.shape[2]),
                  numpy.arange(self.data.shape[1]),
                  numpy.arange(self.data.shape[0]))
        v = VtkData(RectilinearGrid(*ranges), "Test",
                    PointData(Scalars(self.data.ravel(), "from cclib", "default")))
        v.tofile(filename)

    def integrate(self):
        boxvol = (self.spacing[0] * self.spacing[1] * self.spacing[2] *
                  convertor(1, "Angstrom", "bohr") ** 3)
        return sum(self.data.ravel()) * boxvol

    def integrate_square(self):
        boxvol = (self.spacing[0] * self.spacing[1] * self.spacing[2] *
                  convertor(1, "Angstrom", "bohr") ** 3)
        return sum(self.data.ravel() ** 2) * boxvol

    def writeascube(self, filename):
        # Remember that the units are bohr, not Angstroms
        def convert(x):
            return convertor(x, "Angstrom", "bohr")
        ans = []
        ans.append("Cube file generated by cclib")
        ans.append("")
        format = "%4d%12.6f%12.6f%12.6f"
        origin = [convert(x) for x in self.origin]
        ans.append(format % (0, origin[0], origin[1], origin[2]))
        ans.append(format % (self.data.shape[0], convert(self.spacing[0]), 0.0, 0.0))
        ans.append(format % (self.data.shape[1], 0.0, convert(self.spacing[1]), 0.0))
        ans.append(format % (self.data.shape[2], 0.0, 0.0, convert(self.spacing[2])))
        line = []
        for i in range(self.data.shape[0]):
            for j in range(self.data.shape[1]):
                for k in range(self.data.shape[2]):
                    line.append(scinotation(self.data[i, j, k]))
                    if len(line) == 6:
                        ans.append(" ".join(line))
                        line = []
                if line:
                    ans.append(" ".join(line))
                    line = []
        with open(filename, "w") as outputfile:
            outputfile.write("\n".join(ans))


def scinotation(num):
    """Write in scientific notation."""
    ans = "%10.5E" % num
    broken = ans.split("E")
    exponent = int(broken[1])
    if exponent < -99:
        return "  0.000E+00"
    if exponent < 0:
        sign = "-"
    else:
        sign = "+"
    return ("%sE%s%s" % (broken[0], sign, broken[1][-2:])).rjust(12)


def getbfs(coords, gbasis):
    """Convenience function for both wavefunction and density based on PyQuante Ints.py."""
    mymol = cclib2pyquante.makepyquante(coords, [0 for _ in coords])

    sym2powerlist = {
        'S' : [(0, 0, 0)],
        'P' : [(1, 0, 0), (0, 1, 0), (0, 0, 1)],
        'D' : [(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (0, 1, 1), (1, 0, 1)],
        'F' : [(3, 0, 0), (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1), (1, 0, 2),
               (0, 3, 0), (0, 2, 1), (0, 1, 2), (0, 0, 3)]
        }

    bfs = []
    for i, atom in enumerate(mymol):
        bs = gbasis[i]
        for sym, prims in bs:
            for power in sym2powerlist[sym]:
                bf = CGBF(atom.pos(), power)
                for expnt, coef in prims:
                    bf.add_primitive(expnt, coef)
                bf.normalize()
                bfs.append(bf)

    return bfs


def wavefunction(coords, mocoeffs, gbasis, volume):
    """Calculate the magnitude of the wavefunction at every point in a volume.

    Attributes:
        coords -- the coordinates of the atoms
        mocoeffs -- mocoeffs for one eigenvalue
        gbasis -- gbasis from a parser object
        volume -- a template Volume object (will not be altered)
    """
    bfs = getbfs(coords, gbasis)

    wavefn = copy.copy(volume)
    wavefn.data = numpy.zeros(wavefn.data.shape, "d")

    conversion = convertor(1, "bohr", "Angstrom")
    x = numpy.arange(wavefn.origin[0], wavefn.topcorner[0] + wavefn.spacing[0], wavefn.spacing[0]) / conversion
    y = numpy.arange(wavefn.origin[1], wavefn.topcorner[1] + wavefn.spacing[1], wavefn.spacing[1]) / conversion
    z = numpy.arange(wavefn.origin[2], wavefn.topcorner[2] + wavefn.spacing[2], wavefn.spacing[2]) / conversion

    for bs in range(len(bfs)):
        data = numpy.zeros(wavefn.data.shape, "d")
        for i, xval in enumerate(x):
            for j, yval in enumerate(y):
                for k, zval in enumerate(z):
                    data[i, j, k] = bfs[bs].amp(xval, yval, zval)
        data *= mocoeffs[bs]
        wavefn.data += data

    return wavefn


def electrondensity(coords, mocoeffslist, gbasis, volume):
    """Calculate the magnitude of the electron density at every point in a volume.

    Attributes:
        coords -- the coordinates of the atoms
        mocoeffs -- mocoeffs for all of the occupied eigenvalues
        gbasis -- gbasis from a parser object
        volume -- a template Volume object (will not be altered)

    Note: mocoeffs is a list of NumPy arrays. The list will be of length 1
          for restricted calculations, and length 2 for unrestricted.
    """
    bfs = getbfs(coords, gbasis)

    density = copy.copy(volume)
    density.data = numpy.zeros(density.data.shape, "d")

    conversion = convertor(1, "bohr", "Angstrom")
    x = numpy.arange(density.origin[0], density.topcorner[0] + density.spacing[0], density.spacing[0]) / conversion
    y = numpy.arange(density.origin[1], density.topcorner[1] + density.spacing[1], density.spacing[1]) / conversion
    z = numpy.arange(density.origin[2], density.topcorner[2] + density.spacing[2], density.spacing[2]) / conversion

    for mocoeffs in mocoeffslist:
        for mocoeff in mocoeffs:
            wavefn = numpy.zeros(density.data.shape, "d")
            for bs in range(len(bfs)):
                data = numpy.zeros(density.data.shape, "d")
                for i, xval in enumerate(x):
                    for j, yval in enumerate(y):
                        tmp = []
                        for zval in z:
                            tmp.append(bfs[bs].amp(xval, yval, zval))
                        data[i, j, :] = tmp
                data *= mocoeff[bs]
                wavefn += data
            density.data += wavefn ** 2

    # TODO ROHF
    if len(mocoeffslist) == 1:
        density.data *= 2.0

    return density


del find_package