1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
|
## -*- coding: utf-8 -*-
#
# Copyright (c) 2018, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.
"""Parser for ADF output files"""
from __future__ import print_function
import itertools
import re
import numpy
from cclib.parser import logfileparser
from cclib.parser import utils
class ADF(logfileparser.Logfile):
"""An ADF log file"""
def __init__(self, *args, **kwargs):
# Call the __init__ method of the superclass
super(ADF, self).__init__(logname="ADF", *args, **kwargs)
def __str__(self):
"""Return a string representation of the object."""
return "ADF log file %s" % (self.filename)
def __repr__(self):
"""Return a representation of the object."""
return 'ADF("%s")' % (self.filename)
def normalisesym(self, label):
"""Use standard symmetry labels instead of ADF labels.
To normalise:
(1) any periods are removed (except in the case of greek letters)
(2) XXX is replaced by X, and a " added.
(3) XX is replaced by X, and a ' added.
(4) The greek letters Sigma, Pi, Delta and Phi are replaced by
their lowercase equivalent.
"""
greeks = ['Sigma', 'Pi', 'Delta', 'Phi']
for greek in greeks:
if label.startswith(greek):
return label.lower()
ans = label.replace(".", "")
if ans[1:3] == "''":
temp = ans[0] + '"'
ans = temp
l = len(ans)
if l > 1 and ans[0] == ans[1]: # Python only tests the second condition if the first is true
if l > 2 and ans[1] == ans[2]:
ans = ans.replace(ans[0]*3, ans[0]) + '"'
else:
ans = ans.replace(ans[0]*2, ans[0]) + "'"
return ans
def normalisedegenerates(self, label, num, ndict=None):
"""Generate a string used for matching degenerate orbital labels
To normalise:
(1) if label is E or T, return label:num
(2) if label is P or D, look up in dict, and return answer
"""
if not ndict:
ndict = {
'P': {0: "P:x", 1: "P:y", 2: "P:z"},
'D': {0: "D:z2", 1: "D:x2-y2", 2: "D:xy", 3: "D:xz", 4: "D:yz"}
}
if label in ndict:
if num in ndict[label]:
return ndict[label][num]
else:
return "%s:%i" % (label, num+1)
else:
return "%s:%i" % (label, num+1)
def before_parsing(self):
# Used to avoid extracting the final geometry twice in a GeoOpt
self.NOTFOUND, self.GETLAST, self.NOMORE = list(range(3))
self.finalgeometry = self.NOTFOUND
# Used for calculating the scftarget (variables names taken from the ADF manual)
self.accint = self.SCFconv = self.sconv2 = None
# keep track of nosym and unrestricted case to parse Energies since it doens't have an all Irreps section
self.nosymflag = False
self.unrestrictedflag = False
SCFCNV, SCFCNV2 = list(range(2)) # used to index self.scftargets[]
maxelem, norm = list(range(2)) # used to index scf.values
def extract(self, inputfile, line):
"""Extract information from the file object inputfile."""
# If a file contains multiple calculations, currently we want to print a warning
# and skip to the end of the file, since cclib parses only the main system, which
# is usually the largest. Here we test this by checking if scftargets has already
# been parsed when another INPUT FILE segment is found, although this might
# not always be the best indicator.
if line.strip() == "(INPUT FILE)" and hasattr(self, "scftargets"):
self.logger.warning("Skipping remaining calculations")
inputfile.seek(0, 2)
return
# We also want to check to make sure we aren't parsing "Create" jobs,
# which normally come before the calculation we actually want to parse.
if line.strip() == "(INPUT FILE)":
while True:
self.updateprogress(inputfile, "Unsupported Information", self.fupdate)
line = next(inputfile) if line.strip() == "(INPUT FILE)" else None
if line and not line[:6] in ("Create", "create"):
break
line = next(inputfile)
version_searchstr = "Amsterdam Density Functional (ADF)"
if version_searchstr in line:
startidx = line.index(version_searchstr) + len(version_searchstr)
trimmed_line = line[startidx:].strip()[:-1]
# The package version is normally a year with revision
# number (such as 2013.01), but it may also be a random
# string (such as a version control branch name).
match = re.search(r"([\d\.]{4,7})", trimmed_line)
if match:
package_version = match.groups()[0]
self.metadata["package_version"] = package_version
else:
# This isn't as well-defined, but the field shouldn't
# be left empty.
self.metadata["package_version"] = trimmed_line.strip()
# In ADF 2014.01, there are (INPUT FILE) messages, so we need to use just
# the lines that start with 'Create' and run until the title or something
# else we are sure is is the calculation proper. It would be good to combine
# this with the previous block, if possible.
if line[:6] == "Create":
while line[:5] != "title" and "NO TITLE" not in line:
line = inputfile.next()
if line[1:10] == "Symmetry:":
info = line.split()
if info[1] == "NOSYM":
self.nosymflag = True
# Use this to read the subspecies of irreducible representations.
# It will be a list, with each element representing one irrep.
if line.strip() == "Irreducible Representations, including subspecies":
self.skip_line(inputfile, 'dashes')
self.irreps = []
line = next(inputfile)
while line.strip() != "":
self.irreps.append(line.split())
line = next(inputfile)
if line[4:13] == 'Molecule:':
info = line.split()
if info[1] == 'UNrestricted':
self.unrestrictedflag = True
if line[1:6] == "ATOMS":
# Find the number of atoms and their atomic numbers
# Also extract the starting coordinates (for a GeoOpt anyway)
# and the atommasses (previously called vibmasses)
self.updateprogress(inputfile, "Attributes", self.cupdate)
self.atomcoords = []
self.skip_lines(inputfile, ['header1', 'header2', 'header3'])
atomnos = []
atommasses = []
atomcoords = []
coreelectrons = []
line = next(inputfile)
while len(line) > 2: # ensure that we are reading no blank lines
info = line.split()
element = info[1].split('.')[0]
atomnos.append(self.table.number[element])
atomcoords.append(list(map(float, info[2:5])))
coreelectrons.append(int(float(info[5]) - float(info[6])))
atommasses.append(float(info[7]))
line = next(inputfile)
self.atomcoords.append(atomcoords)
self.set_attribute('natom', len(atomnos))
self.set_attribute('atomnos', atomnos)
self.set_attribute('atommasses', atommasses)
self.set_attribute('coreelectrons', coreelectrons)
if line[1:10] == "FRAGMENTS":
header = next(inputfile)
self.frags = []
self.fragnames = []
line = next(inputfile)
while len(line) > 2: # ensure that we are reading no blank lines
info = line.split()
if len(info) == 7: # fragment name is listed here
self.fragnames.append("%s_%s" % (info[1], info[0]))
self.frags.append([])
self.frags[-1].append(int(info[2]) - 1)
elif len(info) == 5: # add atoms into last fragment
self.frags[-1].append(int(info[0]) - 1)
line = next(inputfile)
# Extract charge
if line[1:11] == "Net Charge":
charge = int(line.split()[2])
self.set_attribute('charge', charge)
line = next(inputfile)
if len(line.strip()):
# Spin polar: 1 (Spin_A minus Spin_B electrons)
# (Not sure about this for higher multiplicities)
mult = int(line.split()[2]) + 1
else:
mult = 1
self.set_attribute('mult', mult)
if line[1:22] == "S C F U P D A T E S":
# find targets for SCF convergence
if not hasattr(self, "scftargets"):
self.scftargets = []
self.skip_lines(inputfile, ['e', 'b', 'numbers'])
line = next(inputfile)
self.SCFconv = float(line.split()[-1])
line = next(inputfile)
self.sconv2 = float(line.split()[-1])
# In ADF 2013, the default numerical integration method is fuzzy cells,
# although it used to be Voronoi polyhedra. Both methods apparently set
# the accint parameter, although the latter does so indirectly, based on
# a 'grid quality' setting. This is translated into accint using a
# dictionary with values taken from the documentation.
if "Numerical Integration : Voronoi Polyhedra (Te Velde)" in line:
self.integration_method = "voronoi_polyhedra"
if line[1:27] == 'General Accuracy Parameter':
# Need to know the accuracy of the integration grid to
# calculate the scftarget...note that it changes with time
self.accint = float(line.split()[-1])
if "Numerical Integration : Fuzzy Cells (Becke)" in line:
self.integration_method = 'fuzzy_cells'
if line[1:19] == "Becke grid quality":
self.grid_quality = line.split()[-1]
quality2accint = {
'BASIC': 2.0,
'NORMAL': 4.0,
'GOOD': 6.0,
'VERYGOOD': 8.0,
'EXCELLENT': 10.0,
}
self.accint = quality2accint[self.grid_quality]
# Half of the atomic orbital overlap matrix is printed since it is symmetric,
# but this requires "PRINT Smat" to be in the input. There are extra blank lines
# at the end of the block, which are used to terminate the parsing.
#
# ====== smat
#
# column 1 2 3 4
# row
# 1 1.00000000000000E+00
# 2 2.43370854175315E-01 1.00000000000000E+00
# 3 0.00000000000000E+00 0.00000000000000E+00 1.00000000000000E+00
# ...
#
if "====== smat" in line:
# Initialize the matrix with Nones so we can easily check all has been parsed.
overlaps = [[None] * self.nbasis for i in range(self.nbasis)]
self.skip_line(inputfile, 'blank')
line = inputfile.next()
while line.strip():
colline = line
assert colline.split()[0] == "column"
columns = [int(i) for i in colline.split()[1:]]
rowline = inputfile.next()
assert rowline.strip() == "row"
line = inputfile.next()
while line.strip():
i = int(line.split()[0])
vals = [float(col) for col in line.split()[1:]]
for j, o in enumerate(vals):
k = columns[j]
overlaps[k-1][i-1] = o
overlaps[i-1][k-1] = o
line = inputfile.next()
line = inputfile.next()
# Now all values should be parsed, and so no Nones remaining.
assert all([all([x is not None for x in ao]) for ao in overlaps])
self.set_attribute('aooverlaps', overlaps)
if line[1:11] == "CYCLE 1":
self.updateprogress(inputfile, "QM convergence", self.fupdate)
newlist = []
line = next(inputfile)
if not hasattr(self, "geovalues"):
# This is the first SCF cycle
self.scftargets.append([self.sconv2*10, self.sconv2])
elif self.finalgeometry in [self.GETLAST, self.NOMORE]:
# This is the final SCF cycle
self.scftargets.append([self.SCFconv*10, self.SCFconv])
else:
# This is an intermediate SCF cycle in a geometry optimization,
# in which case the SCF convergence target needs to be derived
# from the accint parameter. For Voronoi polyhedra integration,
# accint is printed and parsed. For fuzzy cells, it can be inferred
# from the grid quality setting, as is done somewhere above.
if self.accint:
oldscftst = self.scftargets[-1][1]
grdmax = self.geovalues[-1][1]
scftst = max(self.SCFconv, min(oldscftst, grdmax/30, 10**(-self.accint)))
self.scftargets.append([scftst*10, scftst])
while line.find("SCF CONVERGED") == -1 and line.find("SCF not fully converged, result acceptable") == -1 and line.find("SCF NOT CONVERGED") == -1:
if line[4:12] == "SCF test":
if not hasattr(self, "scfvalues"):
self.scfvalues = []
info = line.split()
newlist.append([float(info[4]), abs(float(info[6]))])
try:
line = next(inputfile)
except StopIteration: # EOF reached?
self.logger.warning("SCF did not converge, so attributes may be missing")
break
if line.find("SCF not fully converged, result acceptable") > 0:
self.logger.warning("SCF not fully converged, results acceptable")
if line.find("SCF NOT CONVERGED") > 0:
self.logger.warning("SCF did not converge! moenergies and mocoeffs are unreliable")
if hasattr(self, "scfvalues"):
self.scfvalues.append(newlist)
# Parse SCF energy for SP calcs from bonding energy decomposition section.
# It seems ADF does not print it earlier for SP calculations.
# Geometry optimization runs also print this, and we want to parse it
# for them, too, even if it repeats the last "Geometry Convergence Tests"
# section (but it's usually a bit different).
if line[:21] == "Total Bonding Energy:":
if not hasattr(self, "scfenergies"):
self.scfenergies = []
energy = utils.convertor(float(line.split()[3]), "hartree", "eV")
self.scfenergies.append(energy)
if line[51:65] == "Final Geometry":
self.finalgeometry = self.GETLAST
# Get the coordinates from each step of the GeoOpt.
if line[1:24] == "Coordinates (Cartesian)" and self.finalgeometry in [self.NOTFOUND, self.GETLAST]:
self.skip_lines(inputfile, ['e', 'b', 'title', 'title', 'd'])
atomcoords = []
line = next(inputfile)
while list(set(line.strip())) != ['-']:
atomcoords.append(list(map(float, line.split()[5:8])))
line = next(inputfile)
if not hasattr(self, "atomcoords"):
self.atomcoords = []
self.atomcoords.append(atomcoords)
# Don't get any more coordinates in this case.
# KML: I think we could combine this with optdone (see below).
if self.finalgeometry == self.GETLAST:
self.finalgeometry = self.NOMORE
# There have been some changes in the format of the geometry convergence information,
# and this is how it is printed in older versions (2007.01 unit tests).
#
# ==========================
# Geometry Convergence Tests
# ==========================
#
# Energy old : -5.14170647
# new : -5.15951374
#
# Convergence tests:
# (Energies in hartree, Gradients in hartree/angstr or radian, Lengths in angstrom, Angles in degrees)
#
# Item Value Criterion Conv. Ratio
# -------------------------------------------------------------------------
# change in energy -0.01780727 0.00100000 NO 0.00346330
# gradient max 0.03219530 0.01000000 NO 0.30402650
# gradient rms 0.00858685 0.00666667 NO 0.27221261
# cart. step max 0.07674971 0.01000000 NO 0.75559435
# cart. step rms 0.02132310 0.00666667 NO 0.55335378
#
if line[1:27] == 'Geometry Convergence Tests':
if not hasattr(self, "geotargets"):
self.geovalues = []
self.geotargets = numpy.array([0.0, 0.0, 0.0, 0.0, 0.0], "d")
if not hasattr(self, "scfenergies"):
self.scfenergies = []
self.skip_lines(inputfile, ['e', 'b'])
energies_old = next(inputfile)
energies_new = next(inputfile)
self.scfenergies.append(utils.convertor(float(energies_new.split()[-1]), "hartree", "eV"))
self.skip_lines(inputfile, ['b', 'convergence', 'units', 'b', 'header', 'd'])
values = []
for i in range(5):
temp = next(inputfile).split()
self.geotargets[i] = float(temp[-3])
values.append(float(temp[-4]))
self.geovalues.append(values)
# This is to make geometry optimization always have the optdone attribute,
# even if it is to be empty for unconverged runs.
if not hasattr(self, 'optdone'):
self.optdone = []
# After the test, there is a message if the search is converged:
#
# ***************************************************************************************************
# Geometry CONVERGED
# ***************************************************************************************************
#
if line.strip() == "Geometry CONVERGED":
self.skip_line(inputfile, 'stars')
self.optdone.append(len(self.geovalues) - 1)
# Here is the corresponding geometry convergence info from the 2013.01 unit test.
# Note that the step number is given, which it will be prudent to use in an assertion.
#
#----------------------------------------------------------------------
#Geometry Convergence after Step 3 (Hartree/Angstrom,Angstrom)
#----------------------------------------------------------------------
#current energy -5.16274478 Hartree
#energy change -0.00237544 0.00100000 F
#constrained gradient max 0.00884999 0.00100000 F
#constrained gradient rms 0.00249569 0.00066667 F
#gradient max 0.00884999
#gradient rms 0.00249569
#cart. step max 0.03331296 0.01000000 F
#cart. step rms 0.00844037 0.00666667 F
if line[:31] == "Geometry Convergence after Step":
stepno = int(line.split()[4])
# This is to make geometry optimization always have the optdone attribute,
# even if it is to be empty for unconverged runs.
if not hasattr(self, 'optdone'):
self.optdone = []
# The convergence message is inline in this block, not later as it was before.
if "** CONVERGED **" in line:
if not hasattr(self, 'optdone'):
self.optdone = []
self.optdone.append(len(self.geovalues) - 1)
self.skip_line(inputfile, 'dashes')
current_energy = next(inputfile)
energy_change = next(inputfile)
constrained_gradient_max = next(inputfile)
constrained_gradient_rms = next(inputfile)
gradient_max = next(inputfile)
gradient_rms = next(inputfile)
cart_step_max = next(inputfile)
cart_step_rms = next(inputfile)
if not hasattr(self, "scfenergies"):
self.scfenergies = []
energy = utils.convertor(float(current_energy.split()[-2]), "hartree", "eV")
self.scfenergies.append(energy)
if not hasattr(self, "geotargets"):
self.geotargets = numpy.array([0.0, 0.0, 0.0, 0.0, 0.0], "d")
self.geotargets[0] = float(energy_change.split()[-2])
self.geotargets[1] = float(constrained_gradient_max.split()[-2])
self.geotargets[2] = float(constrained_gradient_rms.split()[-2])
self.geotargets[3] = float(cart_step_max.split()[-2])
self.geotargets[4] = float(cart_step_rms.split()[-2])
if not hasattr(self, "geovalues"):
self.geovalues = []
self.geovalues.append([])
self.geovalues[-1].append(float(energy_change.split()[-3]))
self.geovalues[-1].append(float(constrained_gradient_max.split()[-3]))
self.geovalues[-1].append(float(constrained_gradient_rms.split()[-3]))
self.geovalues[-1].append(float(cart_step_max.split()[-3]))
self.geovalues[-1].append(float(cart_step_rms.split()[-3]))
if line.find('Orbital Energies, per Irrep and Spin') > 0 and not hasattr(self, "mosyms") and self.nosymflag and not self.unrestrictedflag:
#Extracting orbital symmetries and energies, homos for nosym case
#Should only be for restricted case because there is a better text block for unrestricted and nosym
self.mosyms = [[]]
self.moenergies = [[]]
self.skip_lines(inputfile, ['e', 'header', 'd', 'label'])
line = next(inputfile)
info = line.split()
if not info[0] == '1':
self.logger.warning("MO info up to #%s is missing" % info[0])
#handle case where MO information up to a certain orbital are missing
while int(info[0]) - 1 != len(self.moenergies[0]):
self.moenergies[0].append(99999)
self.mosyms[0].append('A')
homoA = None
while len(line) > 10:
info = line.split()
self.mosyms[0].append('A')
self.moenergies[0].append(utils.convertor(float(info[2]), 'hartree', 'eV'))
if info[1] == '0.000' and not hasattr(self, 'homos'):
self.set_attribute('homos', [len(self.moenergies[0]) - 2])
line = next(inputfile)
self.moenergies = [numpy.array(self.moenergies[0], "d")]
if line[1:29] == 'Orbital Energies, both Spins' and not hasattr(self, "mosyms") and self.nosymflag and self.unrestrictedflag:
#Extracting orbital symmetries and energies, homos for nosym case
#should only be here if unrestricted and nosym
self.mosyms = [[], []]
moenergies = [[], []]
self.skip_lines(inputfile, ['d', 'b', 'header', 'd'])
homoa = 0
homob = None
line = next(inputfile)
while len(line) > 5:
info = line.split()
if info[2] == 'A':
self.mosyms[0].append('A')
moenergies[0].append(utils.convertor(float(info[4]), 'hartree', 'eV'))
if info[3] != '0.00':
homoa = len(moenergies[0]) - 1
elif info[2] == 'B':
self.mosyms[1].append('A')
moenergies[1].append(utils.convertor(float(info[4]), 'hartree', 'eV'))
if info[3] != '0.00':
homob = len(moenergies[1]) - 1
else:
print(("Error reading line: %s" % line))
line = next(inputfile)
self.moenergies = [numpy.array(x, "d") for x in moenergies]
self.set_attribute('homos', [homoa, homob])
# Extracting orbital symmetries and energies, homos.
if line[1:29] == 'Orbital Energies, all Irreps' and not hasattr(self, "mosyms"):
self.symlist = {}
self.mosyms = [[]]
self.moenergies = [[]]
self.skip_lines(inputfile, ['e', 'b', 'header', 'd'])
homoa = None
homob = None
#multiple = {'E':2, 'T':3, 'P':3, 'D':5}
# The above is set if there are no special irreps
names = [irrep[0].split(':')[0] for irrep in self.irreps]
counts = [len(irrep) for irrep in self.irreps]
multiple = dict(list(zip(names, counts)))
irrepspecies = {}
for n in range(len(names)):
indices = list(range(counts[n]))
subspecies = self.irreps[n]
irrepspecies[names[n]] = dict(list(zip(indices, subspecies)))
line = next(inputfile)
while line.strip():
info = line.split()
if len(info) == 5: # this is restricted
#count = multiple.get(info[0][0],1)
count = multiple.get(info[0], 1)
for repeat in range(count): # i.e. add E's twice, T's thrice
self.mosyms[0].append(self.normalisesym(info[0]))
self.moenergies[0].append(utils.convertor(float(info[3]), 'hartree', 'eV'))
sym = info[0]
if count > 1: # add additional sym label
sym = self.normalisedegenerates(info[0], repeat, ndict=irrepspecies)
try:
self.symlist[sym][0].append(len(self.moenergies[0])-1)
except KeyError:
self.symlist[sym] = [[]]
self.symlist[sym][0].append(len(self.moenergies[0])-1)
if info[2] == '0.00' and not hasattr(self, 'homos'):
self.homos = [len(self.moenergies[0]) - (count + 1)] # count, because need to handle degenerate cases
line = next(inputfile)
elif len(info) == 6: # this is unrestricted
if len(self.moenergies) < 2: # if we don't have space, create it
self.moenergies.append([])
self.mosyms.append([])
# count = multiple.get(info[0][0], 1)
count = multiple.get(info[0], 1)
if info[2] == 'A':
for repeat in range(count): # i.e. add E's twice, T's thrice
self.mosyms[0].append(self.normalisesym(info[0]))
self.moenergies[0].append(utils.convertor(float(info[4]), 'hartree', 'eV'))
sym = info[0]
if count > 1: # add additional sym label
sym = self.normalisedegenerates(info[0], repeat)
try:
self.symlist[sym][0].append(len(self.moenergies[0])-1)
except KeyError:
self.symlist[sym] = [[], []]
self.symlist[sym][0].append(len(self.moenergies[0])-1)
if info[3] == '0.00' and homoa is None:
homoa = len(self.moenergies[0]) - (count + 1) # count because degenerate cases need to be handled
if info[2] == 'B':
for repeat in range(count): # i.e. add E's twice, T's thrice
self.mosyms[1].append(self.normalisesym(info[0]))
self.moenergies[1].append(utils.convertor(float(info[4]), 'hartree', 'eV'))
sym = info[0]
if count > 1: # add additional sym label
sym = self.normalisedegenerates(info[0], repeat)
try:
self.symlist[sym][1].append(len(self.moenergies[1])-1)
except KeyError:
self.symlist[sym] = [[], []]
self.symlist[sym][1].append(len(self.moenergies[1])-1)
if info[3] == '0.00' and homob is None:
homob = len(self.moenergies[1]) - (count + 1)
line = next(inputfile)
else: # different number of lines
print(("Error", info))
if len(info) == 6: # still unrestricted, despite being out of loop
self.set_attribute('homos', [homoa, homob])
self.moenergies = [numpy.array(x, "d") for x in self.moenergies]
# Section on extracting vibdisps
# Also contains vibfreqs, but these are extracted in the
# following section (see below)
if line[1:28] == "Vibrations and Normal Modes":
self.vibdisps = []
self.skip_lines(inputfile, ['e', 'b', 'header', 'header', 'b', 'b'])
freqs = next(inputfile)
while freqs.strip() != "":
minus = next(inputfile)
p = [[], [], []]
for i in range(len(self.atomnos)):
broken = list(map(float, next(inputfile).split()[1:]))
for j in range(0, len(broken), 3):
p[j//3].append(broken[j:j+3])
self.vibdisps.extend(p[:(len(broken)//3)])
self.skip_lines(inputfile, ['b', 'b'])
freqs = next(inputfile)
self.vibdisps = numpy.array(self.vibdisps, "d")
if line[1:24] == "List of All Frequencies":
# Start of the IR/Raman frequency section
self.updateprogress(inputfile, "Frequency information", self.fupdate)
# self.vibsyms = [] # Need to look into this a bit more
self.vibirs = []
self.vibfreqs = []
for i in range(8):
line = next(inputfile)
line = next(inputfile).strip()
while line:
temp = line.split()
self.vibfreqs.append(float(temp[0]))
self.vibirs.append(float(temp[2])) # or is it temp[1]?
line = next(inputfile).strip()
self.vibfreqs = numpy.array(self.vibfreqs, "d")
self.vibirs = numpy.array(self.vibirs, "d")
if hasattr(self, "vibramans"):
self.vibramans = numpy.array(self.vibramans, "d")
#******************************************************************************************************************8
#delete this after new implementation using smat, eigvec print,eprint?
# Extract the number of basis sets
if line[1:49] == "Total nr. of (C)SFOs (summation over all irreps)":
nbasis = int(line.split(":")[1].split()[0])
self.set_attribute('nbasis', nbasis)
# now that we're here, let's extract aonames
self.fonames = []
self.start_indeces = {}
self.atombasis = [[] for frag in self.frags] # parse atombasis in the case of trivial SFOs
self.skip_line(inputfile, 'blank')
note = next(inputfile)
symoffset = 0
self.skip_line(inputfile, 'blank')
line = next(inputfile)
if len(line) > 2: # fix for ADF2006.01 as it has another note
self.skip_line(inputfile, 'blank')
line = next(inputfile)
self.skip_line(inputfile, 'blank')
self.nosymreps = []
while len(self.fonames) < self.nbasis:
symline = next(inputfile)
sym = symline.split()[1]
line = next(inputfile)
num = int(line.split(':')[1].split()[0])
self.nosymreps.append(num)
#read until line "--------..." is found
while line.find('-----') < 0:
line = next(inputfile)
line = next(inputfile) # the start of the first SFO
while len(self.fonames) < symoffset + num:
info = line.split()
#index0 index1 occ2 energy3/4 fragname5 coeff6 orbnum7 orbname8 fragname9
if not sym in list(self.start_indeces.keys()):
#have we already set the start index for this symmetry?
self.start_indeces[sym] = int(info[1])
orbname = info[8]
orbital = info[7] + orbname.replace(":", "")
fragname = info[5]
frag = fragname + info[9]
coeff = float(info[6])
# parse atombasis only in the case that all coefficients are 1
# and delete it otherwise
if hasattr(self, 'atombasis'):
if coeff == 1.:
ibas = int(info[0]) - 1
ifrag = int(info[9]) - 1
iat = self.frags[ifrag][0]
self.atombasis[iat].append(ibas)
else:
del self.atombasis
line = next(inputfile)
while line.strip() and not line[:7].strip(): # while it's the same SFO
# i.e. while not completely blank, but blank at the start
info = line[43:].split()
if len(info) > 0: # len(info)==0 for the second line of dvb_ir.adfout
frag += "+" + fragname + info[-1]
coeff = float(info[-4])
if coeff < 0:
orbital += '-' + info[-3] + info[-2].replace(":", "")
else:
orbital += '+' + info[-3] + info[-2].replace(":", "")
line = next(inputfile)
# At this point, we are either at the start of the next SFO or at
# a blank line...the end
self.fonames.append("%s_%s" % (frag, orbital))
symoffset += num
# blankline blankline
next(inputfile)
next(inputfile)
if line[1:32] == "S F O P O P U L A T I O N S ,":
#Extract overlap matrix
# self.fooverlaps = numpy.zeros((self.nbasis, self.nbasis), "d")
symoffset = 0
for nosymrep in self.nosymreps:
line = next(inputfile)
while line.find('===') < 10: # look for the symmetry labels
line = next(inputfile)
self.skip_lines(inputfile, ['b', 'b'])
text = next(inputfile)
if text[13:20] != "Overlap": # verify this has overlap info
break
self.skip_lines(inputfile, ['b', 'col', 'row'])
if not hasattr(self, "fooverlaps"): # make sure there is a matrix to store this
self.fooverlaps = numpy.zeros((self.nbasis, self.nbasis), "d")
base = 0
while base < nosymrep: # have we read all the columns?
for i in range(nosymrep - base):
self.updateprogress(inputfile, "Overlap", self.fupdate)
line = next(inputfile)
parts = line.split()[1:]
for j in range(len(parts)):
k = float(parts[j])
self.fooverlaps[base + symoffset + j, base + symoffset + i] = k
self.fooverlaps[base + symoffset + i, base + symoffset + j] = k
#blank, blank, column
for i in range(3):
next(inputfile)
base += 4
symoffset += nosymrep
base = 0
# The commented code below makes the atombasis attribute based on the BAS function in ADF,
# but this is probably not so useful, since SFOs are used to build MOs in ADF.
# if line[1:54] == "BAS: List of all Elementary Cartesian Basis Functions":
#
# self.atombasis = []
#
# # There will be some text, followed by a line:
# # (power of) X Y Z R Alpha on Atom
# while not line[1:11] == "(power of)":
# line = inputfile.next()
# dashes = inputfile.next()
# blank = inputfile.next()
# line = inputfile.next()
# # There will be two blank lines when there are no more atom types.
# while line.strip() != "":
# atoms = [int(i)-1 for i in line.split()[1:]]
# for n in range(len(atoms)):
# self.atombasis.append([])
# dashes = inputfile.next()
# line = inputfile.next()
# while line.strip() != "":
# indices = [int(i)-1 for i in line.split()[5:]]
# for i in range(len(indices)):
# self.atombasis[atoms[i]].append(indices[i])
# line = inputfile.next()
# line = inputfile.next()
if line[48:67] == "SFO MO coefficients":
self.mocoeffs = [numpy.zeros((self.nbasis, self.nbasis), "d")]
spin = 0
symoffset = 0
lastrow = 0
# Section ends with "1" at beggining of a line.
while line[0] != "1":
line = next(inputfile)
# If spin is specified, then there will be two coefficient matrices.
if line.strip() == "***** SPIN 1 *****":
self.mocoeffs = [numpy.zeros((self.nbasis, self.nbasis), "d"),
numpy.zeros((self.nbasis, self.nbasis), "d")]
# Bump up the spin.
if line.strip() == "***** SPIN 2 *****":
spin = 1
symoffset = 0
lastrow = 0
# Next symmetry.
if line.strip()[:4] == "=== ":
sym = line.split()[1]
if self.nosymflag:
aolist = list(range(self.nbasis))
else:
aolist = self.symlist[sym][spin]
# Add to the symmetry offset of AO ordering.
symoffset += lastrow
# Blocks with coefficient always start with "MOs :".
if line[1:6] == "MOs :":
# Next line has the MO index contributed to.
monumbers = [int(n) for n in line[6:].split()]
self.skip_lines(inputfile, ['occup', 'label'])
# The table can end with a blank line or "1".
row = 0
line = next(inputfile)
while not line.strip() in ["", "1"]:
info = line.split()
if int(info[0]) < self.start_indeces[sym]:
#check to make sure we aren't parsing CFs
line = next(inputfile)
continue
self.updateprogress(inputfile, "Coefficients", self.fupdate)
row += 1
coeffs = [float(x) for x in info[1:]]
moindices = [aolist[n-1] for n in monumbers]
# The AO index is 1 less than the row.
aoindex = symoffset + row - 1
for i in range(len(monumbers)):
self.mocoeffs[spin][moindices[i], aoindex] = coeffs[i]
line = next(inputfile)
lastrow = row
# **************************************************************************
# * *
# * Final excitation energies from Davidson algorithm *
# * *
# **************************************************************************
#
# Number of loops in Davidson routine = 20
# Number of matrix-vector multiplications = 24
# Type of excitations = SINGLET-SINGLET
#
# Symmetry B.u
#
# ... several blocks ...
#
# Normal termination of EXCITATION program part
if line[4:53] == "Final excitation energies from Davidson algorithm":
while line[1:9] != "Symmetry" and "Normal termination" not in line:
line = next(inputfile)
symm = self.normalisesym(line.split()[1])
# Excitation energies E in a.u. and eV, dE wrt prev. cycle,
# oscillator strengths f in a.u.
#
# no. E/a.u. E/eV f dE/a.u.
# -----------------------------------------------------
# 1 0.17084 4.6488 0.16526E-01 0.28E-08
# ...
while line.split() != ['no.', 'E/a.u.', 'E/eV', 'f', 'dE/a.u.'] and "Normal termination" not in line:
line = next(inputfile)
self.skip_line(inputfile, 'dashes')
etenergies = []
etoscs = []
etsyms = []
line = next(inputfile)
while len(line) > 2:
info = line.split()
etenergies.append(utils.convertor(float(info[2]), "eV", "wavenumber"))
etoscs.append(float(info[3]))
etsyms.append(symm)
line = next(inputfile)
# There is another section before this, with transition dipole moments,
# but this should just skip past it.
while line[1:53] != "Major MO -> MO transitions for the above excitations":
line = next(inputfile)
# Note that here, and later, the number of blank lines can vary between
# version of ADF (extra lines are seen in 2013.01 unit tests, for example).
self.skip_line(inputfile, 'blank')
excitation_occupied = next(inputfile)
header = next(inputfile)
while not header.strip():
header = next(inputfile)
header2 = next(inputfile)
x_y_z = next(inputfile)
line = next(inputfile)
while not line.strip():
line = next(inputfile)
# Before we start handeling transitions, we need to create mosyms
# with indices; only restricted calcs are possible in ADF.
counts = {}
syms = []
for mosym in self.mosyms[0]:
if list(counts.keys()).count(mosym) == 0:
counts[mosym] = 1
else:
counts[mosym] += 1
syms.append(str(counts[mosym]) + mosym)
etsecs = []
printed_warning = False
for i in range(len(etenergies)):
etsec = []
info = line.split()
while len(info) > 0:
match = re.search('[^0-9]', info[1])
index1 = int(info[1][:match.start(0)])
text = info[1][match.start(0):]
symtext = text[0].upper() + text[1:]
sym1 = str(index1) + self.normalisesym(symtext)
match = re.search('[^0-9]', info[3])
index2 = int(info[3][:match.start(0)])
text = info[3][match.start(0):]
symtext = text[0].upper() + text[1:]
sym2 = str(index2) + self.normalisesym(symtext)
try:
index1 = syms.index(sym1)
except ValueError:
if not printed_warning:
self.logger.warning("Etsecs are not accurate!")
printed_warning = True
try:
index2 = syms.index(sym2)
except ValueError:
if not printed_warning:
self.logger.warning("Etsecs are not accurate!")
printed_warning = True
etsec.append([(index1, 0), (index2, 0), float(info[4])])
line = next(inputfile)
info = line.split()
etsecs.append(etsec)
# Again, the number of blank lines between transition can vary.
line = next(inputfile)
while not line.strip():
line = next(inputfile)
if not hasattr(self, "etenergies"):
self.etenergies = etenergies
else:
self.etenergies += etenergies
if not hasattr(self, "etoscs"):
self.etoscs = etoscs
else:
self.etoscs += etoscs
if not hasattr(self, "etsyms"):
self.etsyms = etsyms
else:
self.etsyms += etsyms
if not hasattr(self, "etsecs"):
self.etsecs = etsecs
else:
self.etsecs += etsecs
if "M U L L I K E N P O P U L A T I O N S" in line:
if not hasattr(self, "atomcharges"):
self.atomcharges = {}
while line[1:5] != "Atom":
line = next(inputfile)
self.skip_line(inputfile, 'dashes')
mulliken = []
line = next(inputfile)
while line.strip():
mulliken.append(float(line.split()[2]))
line = next(inputfile)
self.atomcharges["mulliken"] = mulliken
# Dipole moment is always printed after a point calculation,
# and the reference point for this is always the origin (0,0,0)
# and not necessarily the center of mass, as explained on the
# ADF user mailing list (see cclib/cclib#113 for details).
#
# =============
# Dipole Moment *** (Debye) ***
# =============
#
# Vector : 0.00000000 0.00000000 0.00000000
# Magnitude: 0.00000000
#
if line.strip()[:13] == "Dipole Moment":
self.skip_line(inputfile, 'equals')
# There is not always a blank line here, for example when the dipole and quadrupole
# moments are printed after the multipole derived atomic charges. Still, to the best
# of my knowledge (KML) the values are still in Debye.
line = next(inputfile)
if not line.strip():
line = next(inputfile)
assert line.split()[0] == "Vector"
dipole = [float(d) for d in line.split()[-3:]]
reference = [0.0, 0.0, 0.0]
if not hasattr(self, 'moments'):
self.moments = [reference, dipole]
else:
try:
assert self.moments[1] == dipole
except AssertionError:
self.logger.warning('Overwriting previous multipole moments with new values')
self.moments = [reference, dipole]
# Molecular response properties.
if line.strip()[1:-1].strip() == "RESPONSE program part":
while line.strip() != "Normal termination of RESPONSE program part":
if "THE DIPOLE-DIPOLE POLARIZABILITY TENSOR:" in line:
if not hasattr(self, 'polarizabilities'):
self.polarizabilities = []
polarizability = numpy.empty(shape=(3, 3))
self.skip_lines(inputfile, ['b', 'FREQUENCY', 'coordinates'])
# Ordering of rows/columns is Y, Z, X.
ordering = [1, 2, 0]
indices = list(itertools.product(ordering, ordering))
for i in range(3):
tokens = next(inputfile).split()
for j in range(3):
polarizability[indices[(i*3)+j]] = tokens[j]
self.polarizabilities.append(polarizability)
line = next(inputfile)
if line[:24] == ' Buffered I/O statistics':
self.metadata['success'] = True
|