1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
|
# -*- coding: utf-8 -*-
#
# Copyright (c) 2017, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.
"""Parser for DALTON output files"""
from __future__ import print_function
import re
import numpy
from cclib.parser import logfileparser
from cclib.parser import utils
class DALTON(logfileparser.Logfile):
"""A DALTON log file."""
def __init__(self, *args, **kwargs):
# Call the __init__ method of the superclass
super(DALTON, self).__init__(logname="DALTON", *args, **kwargs)
def __str__(self):
"""Return a string representation of the object."""
return "DALTON log file %s" % (self.filename)
def __repr__(self):
"""Return a representation of the object."""
return 'DALTON("%s")' % (self.filename)
def normalisesym(self, label):
"""DALTON does not require normalizing symmetry labels."""
return label
def before_parsing(self):
# Used to decide whether to wipe the atomcoords clean.
self.firststdorient = True
# Use to track which section/program output we are parsing,
# since some programs print out the same headers, which we
# would like to use as triggers.
self.section = None
# If there is no symmetry, assume this.
self.symlabels = ['Ag']
# Is the basis set from a single library file? This is true
# when the first line is BASIS, false for INTGRL/ATOMBASIS.
self.basislibrary = True
def parse_geometry(self, lines):
"""Parse DALTON geometry lines into an atomcoords array."""
coords = []
for lin in lines:
# Without symmetry there are simply four columns, and with symmetry
# an extra label is printed after the atom type.
cols = lin.split()
if cols[1][0] == "_":
xyz = cols[2:]
else:
xyz = cols[1:]
# The assumption is that DALTON always print in atomic units.
xyz = [utils.convertor(float(x), 'bohr', 'Angstrom') for x in xyz]
coords.append(xyz)
return coords
def extract(self, inputfile, line):
"""Extract information from the file object inputfile."""
# Extract the version number and optionally the Git revision
# number.
#
# Example strings that at least the major version is parsed from:
#
# This is output from DALTON 2013.2
# 2013.4
# 2014.0
# 2014.alpha
# 2015.0
# 2016.alpha
# (Release 1.1, September 2000)
# Release 2011 (DEVELOPMENT VERSION)
# Release 2011 (Rev. 0, Dec. 2010)
# Release 2011 (Rev. 0, Mar. 2011)
# (Release 2.0 rev. 0, Mar. 2005)
# (Release Dalton2013 patch 0)
# release Dalton2017.alpha (2016)
# release Dalton2017.alpha (2017)
# release Dalton2018.0 (2018)
# release Dalton2018.0-rc (2018)
# release Dalton2018.alpha (2018)
# release Dalton2019.alpha (2018)
if line[4:30] == "This is output from DALTON":
rs = (r"from DALTON \(?(?:Release|release)?\s?(?:Dalton)?"
r"(\d+\.?[\w\d\-]*)"
r"(?:[\s,]\(?)?")
match = re.search(rs, line)
if match:
self.metadata["package_version"] = match.groups()[0]
# Don't add revision information to the main package version for now.
if "Last Git revision" in line:
revision = line.split()[4]
# Is the basis set from a single library file, or is it
# manually specified? See before_parsing().
if line[:6] == 'INTGRL'or line[:9] == 'ATOMBASIS':
self.basislibrary = False
# This section at the start of geometry optimization jobs gives us information
# about optimization targets (geotargets) and possibly other things as well.
# Notice how the number of criteria required to converge is set to 2 here,
# but this parameter can (probably) be tweaked in the input.
#
# Chosen parameters for *OPTIMI :
# -------------------------------
#
# Default 1st order method will be used: BFGS update.
# Optimization will be performed in redundant internal coordinates (by default).
# Model Hessian will be used as initial Hessian.
# The model Hessian parameters of Roland Lindh will be used.
#
#
# Trust region method will be used to control step (default).
#
# Convergence threshold for gradient set to : 1.00D-04
# Convergence threshold for energy set to : 1.00D-06
# Convergence threshold for step set to : 1.00D-04
# Number of convergence criteria set to : 2
#
if line.strip()[:25] == "Convergence threshold for":
if not hasattr(self, 'geotargets'):
self.geotargets = []
self.geotargets_names = []
target = self.float(line.split()[-1])
name = line.strip()[25:].split()[0]
self.geotargets.append(target)
self.geotargets_names.append(name)
# This is probably the first place where atomic symmetry labels are printed,
# somewhere afer the SYMGRP point group information section. We need to know
# which atom is in which symmetry, since this influences how some things are
# print later on. We can also get some generic attributes along the way.
#
# Isotopic Masses
# ---------------
#
# C _1 12.000000
# C _2 12.000000
# C _1 12.000000
# C _2 12.000000
# ...
#
# Note that when there is no symmetry there are only two columns here.
#
# It is also a good idea to keep in mind that DALTON, with symmetry on, operates
# in a specific point group, so symmetry atoms have no internal representation.
# Therefore only atoms marked as "_1" or "#1" in other places are actually
# represented in the model. The symmetry atoms (higher symmetry indices) are
# generated on the fly when writing the output. We will save the symmetry indices
# here for later use.
#
# Additional note: the symmetry labels are printed only for atoms that have
# symmetry images... so assume "_1" if a label is missing. For example, there will
# be no label for atoms on an axes, such as the oxygen in water in C2v:
#
# O 15.994915
# H _1 1.007825
# H _2 1.007825
#
if line.strip() == "Isotopic Masses":
self.skip_lines(inputfile, ['d', 'b'])
# Since some symmetry labels may be missing, read in all lines first.
lines = []
line = next(inputfile)
while line.strip():
lines.append(line)
line = next(inputfile)
# Split lines into columsn and dd any missing symmetry labels, if needed.
lines = [l.split() for l in lines]
if any([len(l) == 3 for l in lines]):
for il, l in enumerate(lines):
if len(l) == 2:
lines[il] = [l[0], "_1", l[1]]
atomnos = []
symmetry_atoms = []
atommasses = []
for cols in lines:
cols0 = ''.join([i for i in cols[0] if not i.isdigit()]) #remove numbers
atomnos.append(self.table.number[cols0])
if len(cols) == 3:
symmetry_atoms.append(int(cols[1][1]))
atommasses.append(float(cols[2]))
else:
atommasses.append(float(cols[1]))
self.set_attribute('atomnos', atomnos)
self.set_attribute('atommasses', atommasses)
self.set_attribute('natom', len(atomnos))
self.set_attribute('natom', len(atommasses))
# Save this for later if there were any labels.
self.symmetry_atoms = symmetry_atoms or None
# This section is close to the beginning of the file, and can be used
# to parse natom, nbasis and atomnos. We also construct atombasis here,
# although that is symmetry-dependent (see inline comments). Note that
# DALTON operates on the idea of atom type, which are not necessarily
# unique element-wise.
#
# Atoms and basis sets
# --------------------
#
# Number of atom types : 6
# Total number of atoms: 20
#
# Basis set used is "STO-3G" from the basis set library.
#
# label atoms charge prim cont basis
# ----------------------------------------------------------------------
# C 6 6.0000 15 5 [6s3p|2s1p]
# H 4 1.0000 3 1 [3s|1s]
# C 2 6.0000 15 5 [6s3p|2s1p]
# H 2 1.0000 3 1 [3s|1s]
# C 2 6.0000 15 5 [6s3p|2s1p]
# H 4 1.0000 3 1 [3s|1s]
# ----------------------------------------------------------------------
# total: 20 70.0000 180 60
# ----------------------------------------------------------------------
#
# Threshold for neglecting AO integrals: 1.00D-12
#
if line.strip() == "Atoms and basis sets":
self.skip_lines(inputfile, ['d', 'b'])
line = next(inputfile)
assert "Number of atom types" in line
self.ntypes = int(line.split()[-1])
line = next(inputfile)
assert "Total number of atoms:" in line
self.set_attribute("natom", int(line.split()[-1]))
# When using the INTGRL keyword and not pulling from the
# basis set library, the "Basis set used" line doesn't
# appear.
if not self.basislibrary:
self.skip_line(inputfile, 'b')
else:
#self.skip_lines(inputfile, ['b', 'basisname', 'b'])
line = next(inputfile)
line = next(inputfile)
self.metadata["basis_set"] = line.split()[4].strip('\"')
line = next(inputfile)
line = next(inputfile)
cols = line.split()
# Detecting which columns things are in will be somewhat more robust
# to formatting changes in the future.
iatoms = cols.index('atoms')
icharge = cols.index('charge')
icont = cols.index('cont')
self.skip_line(inputfile, 'dashes')
atomnos = []
atombasis = []
nbasis = 0
for itype in range(self.ntypes):
line = next(inputfile)
cols = line.split()
atoms = int(cols[iatoms])
charge = float(cols[icharge])
assert int(charge) == charge
charge = int(charge)
cont = int(cols[icont])
for at in range(atoms):
atomnos.append(charge)
# If symmetry atoms are present, these will have basis functions
# printed immediately after the one unique atom, so for all
# practical purposes cclib can assume the ordering in atombasis
# follows this out-of order scheme to match the output.
if self.symmetry_atoms:
# So we extend atombasis only for the unique atoms (with a
# symmetry index of 1), interleaving the basis functions
# for this atoms with basis functions for all symmetry atoms.
if self.symmetry_atoms[at] == 1:
nsyms = 1
while (at + nsyms < self.natom) and self.symmetry_atoms[at + nsyms] == nsyms + 1:
nsyms += 1
for isym in range(nsyms):
istart = nbasis + isym
iend = nbasis + cont*nsyms + isym
atombasis.append(list(range(istart, iend, nsyms)))
nbasis += cont*nsyms
else:
atombasis.append(list(range(nbasis, nbasis + cont)))
nbasis += cont
self.set_attribute('atomnos', atomnos)
self.set_attribute('atombasis', atombasis)
self.set_attribute('nbasis', nbasis)
self.skip_line(inputfile, 'dashes')
line = next(inputfile)
self.set_attribute('natom', int(line.split()[iatoms]))
self.set_attribute('nbasis', int(line.split()[icont]))
self.skip_line(inputfile, 'dashes')
# The Gaussian exponents and contraction coefficients are printed for each primitive
# and then the contraction information is printed separately (see below) Both segmented
# and general contractions are used, but we can parse them the same way since zeros are
# inserted for primitives that are not used. However, no atom index is printed here
# so we don't really know when a new atom is started without using information
# from other section (we should already have atombasis parsed at this point).
#
# Orbital exponents and contraction coefficients
# ----------------------------------------------
#
#
# C #1 1s 1 71.616837 0.1543 0.0000
# seg. cont. 2 13.045096 0.5353 0.0000
# 3 3.530512 0.4446 0.0000
# 4 2.941249 0.0000 -0.1000
# ...
#
# Here is a corresponding fragment for general contractions:
#
# C 1s 1 33980.000000 0.0001 -0.0000 0.0000 0.0000 0.0000
# 0.0000 0.0000 0.0000 0.0000
# gen. cont. 2 5089.000000 0.0007 -0.0002 0.0000 0.0000 0.0000
# 0.0000 0.0000 0.0000 0.0000
# 3 1157.000000 0.0037 -0.0008 0.0000 0.0000 0.0000
# 0.0000 0.0000 0.0000 0.0000
# 4 326.600000 0.0154 -0.0033 0.0000 0.0000 0.0000
# ...
#
if line.strip() == "Orbital exponents and contraction coefficients":
self.skip_lines(inputfile, ['d', 'b', 'b'])
# Here we simply want to save the numbers defining each primitive for later use,
# where the first number is the exponent, and the rest are coefficients which
# should be zero if the primitive is not used in a contraction. This list is
# symmetry agnostic, although primitives/contractions are not generally.
self.primitives = []
prims = []
line = next(inputfile)
while line.strip():
# Each contraction/section is separated by a blank line, and at the very
# end there is an extra blank line.
while line.strip():
# For generalized contraction it is typical to see the coefficients wrapped
# to new lines, so we must collect them until we are sure a primitive starts.
if line[:30].strip():
if prims:
self.primitives.append(prims)
prims = []
prims += [float(x) for x in line[20:].split()]
line = next(inputfile)
line = next(inputfile)
# At the end we have the final primitive to save.
self.primitives.append(prims)
# This is the corresponding section to the primitive definitions parsed above, so we
# assume those numbers are available in the variable 'primitives'. Here we read in the
# indicies of primitives, which we use to construct gbasis.
#
# Contracted Orbitals
# -------------------
#
# 1 C 1s 1 2 3 4 5 6 7 8 9 10 11 12
# 2 C 1s 1 2 3 4 5 6 7 8 9 10 11 12
# 3 C 1s 10
# 4 C 1s 11
# ...
#
# Here is an fragment with symmetry labels:
#
# ...
# 1 C #1 1s 1 2 3
# 2 C #2 1s 7 8 9
# 3 C #1 1s 4 5 6
# ...
#
if line.strip() == "Contracted Orbitals":
self.skip_lines(inputfile, ['d', 'b'])
# This is the reverse of atombasis, so that we can easily map from a basis functions
# to the corresponding atom for use in the loop below.
basisatoms = [None for i in range(self.nbasis)]
for iatom in range(self.natom):
for ibasis in self.atombasis[iatom]:
basisatoms[ibasis] = iatom
# Since contractions are not generally given in order (when there is symmetry),
# start with an empty list for gbasis.
gbasis = [[] for i in range(self.natom)]
# This will hold the number of contractions already printed for each orbital,
# counting symmetry orbitals separately.
orbitalcount = {}
for ibasis in range(self.nbasis):
line = next(inputfile)
cols = line.split()
# The first columns is always the basis function index, which we can assert.
assert int(cols[0]) == ibasis + 1
# The number of columns is differnet when symmetry is used. If there are further
# complications, it may be necessary to use exact slicing, since the formatting
# of this section seems to be fixed (although columns can be missing). Notice how
# We subtract one from the primitive indices here already to match cclib's
# way of counting from zero in atombasis.
if '#' in line:
sym = cols[2]
orbital = cols[3]
prims = [int(i) - 1 for i in cols[4:]]
else:
sym = None
orbital = cols[2]
prims = [int(i) - 1 for i in cols[3:]]
shell = orbital[0]
subshell = orbital[1].upper()
iatom = basisatoms[ibasis]
# We want to count the number of contractiong already parsed for each orbital,
# but need to make sure to differentiate between atoms and symmetry atoms.
orblabel = str(iatom) + '.' + orbital + (sym or "")
orbitalcount[orblabel] = orbitalcount.get(orblabel, 0) + 1
# Here construct the actual primitives for gbasis, which should be a list
# of 2-tuples containing an exponent an coefficient. Note how we are indexing
# self.primitives from zero although the printed numbering starts from one.
primitives = []
for ip in prims:
p = self.primitives[ip]
exponent = p[0]
coefficient = p[orbitalcount[orblabel]]
primitives.append((exponent, coefficient))
contraction = (subshell, primitives)
if contraction not in gbasis[iatom]:
gbasis[iatom].append(contraction)
self.skip_line(inputfile, 'blank')
self.set_attribute('gbasis', gbasis)
# Since DALTON sometimes uses symmetry labels (Ag, Au, etc.) and sometimes
# just the symmetry group index, we need to parse and keep a mapping between
# these two for later use.
#
# Symmetry Orbitals
# -----------------
#
# Number of orbitals in each symmetry: 25 5 25 5
#
#
# Symmetry Ag ( 1)
#
# 1 C 1s 1 + 2
# 2 C 1s 3 + 4
# ...
#
if line.strip() == "Symmetry Orbitals":
self.skip_lines(inputfile, ['d', 'b'])
line = inputfile.next()
self.symcounts = [int(c) for c in line.split(':')[1].split()]
self.symlabels = []
for sc in self.symcounts:
self.skip_lines(inputfile, ['b', 'b'])
# If the number of orbitals for a symmetry is zero, the printout
# is different (see MP2 unittest logfile for an example).
line = inputfile.next()
if sc == 0:
assert "No orbitals in symmetry" in line
else:
assert line.split()[0] == "Symmetry"
self.symlabels.append(line.split()[1])
self.skip_line(inputfile, 'blank')
for i in range(sc):
orbital = inputfile.next()
if "Starting in Wave Function Section (SIRIUS)" in line:
self.section = "SIRIUS"
# Orbital specifications
# ======================
# Abelian symmetry species All | 1 2 3 4
# | Ag Au Bu Bg
# --- | --- --- --- ---
# Total number of orbitals 60 | 25 5 25 5
# Number of basis functions 60 | 25 5 25 5
#
# ** Automatic occupation of RKS orbitals **
#
# -- Initial occupation of symmetries is determined from extended Huckel guess.
# -- Initial occupation of symmetries is :
# @ Occupied SCF orbitals 35 | 15 2 15 3
#
# Maximum number of Fock iterations 0
# Maximum number of DIIS iterations 60
# Maximum number of QC-SCF iterations 60
# Threshold for SCF convergence 1.00D-05
# This is a DFT calculation of type: B3LYP
# ...
#
if "Total number of orbitals" in line:
# DALTON 2015 adds a @ in front of number of orbitals
chomp = line.split()
index = 4
if "@" in chomp:
index = 5
self.set_attribute("nbasis", int(chomp[index]))
self.nmo_per_symmetry = list(map(int, chomp[index+2:]))
assert self.nbasis == sum(self.nmo_per_symmetry)
if "Threshold for SCF convergence" in line:
if not hasattr(self, "scftargets"):
self.scftargets = []
scftarget = self.float(line.split()[-1])
self.scftargets.append([scftarget])
# Wave function specification
# ============================
# @ Wave function type >>> KS-DFT <<<
# @ Number of closed shell electrons 70
# @ Number of electrons in active shells 0
# @ Total charge of the molecule 0
#
# @ Spin multiplicity and 2 M_S 1 0
# @ Total number of symmetries 4 (point group: C2h)
# @ Reference state symmetry 1 (irrep name : Ag )
#
# This is a DFT calculation of type: B3LYP
# ...
#
if line.strip() == "Wave function specification":
self.skip_line(inputfile, 'e')
line = next(inputfile)
# Must be a coupled cluster calculation.
if line.strip() == '':
self.skip_lines(inputfile, ['b', 'Coupled Cluster', 'b'])
else:
assert "wave function" in line.lower()
line = next(inputfile)
assert "Number of closed shell electrons" in line
self.paired_electrons = int(line.split()[-1])
line = next(inputfile)
assert "Number of electrons in active shells" in line
self.unpaired_electrons = int(line.split()[-1])
line = next(inputfile)
assert "Total charge of the molecule" in line
self.set_attribute("charge", int(line.split()[-1]))
self.skip_line(inputfile, 'b')
line = next(inputfile)
assert "Spin multiplicity and 2 M_S" in line
self.set_attribute("mult", int(line.split()[-2]))
# Dalton only has ROHF, no UHF
if self.mult != 1:
self.metadata["unrestricted"] = True
if not hasattr(self, 'homos'):
self.set_attribute('homos', [(self.paired_electrons // 2) - 1])
if self.unpaired_electrons > 0:
self.homos.append(self.homos[0])
self.homos[0] += self.unpaired_electrons
# *********************************************
# ***** DIIS optimization of Hartree-Fock *****
# *********************************************
#
# C1-DIIS algorithm; max error vectors = 8
#
# Automatic occupation of symmetries with 70 electrons.
#
# Iter Total energy Error norm Delta(E) SCF occupation
# -----------------------------------------------------------------------------
# K-S energy, electrons, error : -46.547567739269 69.9999799123 -2.01D-05
# @ 1 -381.645762476 4.00D+00 -3.82D+02 15 2 15 3
# Virial theorem: -V/T = 2.008993
# @ MULPOP C _1 0.15; C _2 0.15; C _1 0.12; C _2 0.12; C _1 0.11; C _2 0.11; H _1 -0.15; H _2 -0.15; H _1 -0.14; H _2 -0.14;
# @ C _1 0.23; C _2 0.23; H _1 -0.15; H _2 -0.15; C _1 0.08; C _2 0.08; H _1 -0.12; H _2 -0.12; H _1 -0.13; H _2 -0.13;
# -----------------------------------------------------------------------------
# K-S energy, electrons, error : -46.647668038900 69.9999810430 -1.90D-05
# @ 2 -381.949410128 1.05D+00 -3.04D-01 15 2 15 3
# Virial theorem: -V/T = 2.013393
# ...
#
# With and without symmetry, the "Total energy" line is shifted a little.
if self.section == "SIRIUS" and "Iter" in line and "Total energy" in line:
iteration = 0
converged = False
values = []
if not hasattr(self, "scfvalues"):
self.scfvalues = []
while not converged:
try:
line = next(inputfile)
except StopIteration:
self.logger.warning('File terminated before end of last SCF!')
break
# each iteration is bracketed by "-------------"
if "-------------------" in line:
iteration += 1
continue
# the first hit of @ n where n is the current iteration
strcompare = "@{0:>3d}".format(iteration)
if strcompare in line:
temp = line.split()
error_norm = self.float(temp[3])
values.append([error_norm])
if line[0] == "@" and "converged in" in line:
converged = True
# It seems DALTON does change the SCF convergence criteria during a
# geometry optimization, but also does not print them. So, assume they
# are unchanged and copy the initial values after the first step. However,
# it would be good to check up on this - perhaps it is possible to print.
self.scfvalues.append(values)
if len(self.scfvalues) > 1:
self.scftargets.append(self.scftargets[-1])
# DALTON organizes the energies by symmetry, so we need to parse first,
# and then sort the energies (and labels) before we store them.
#
# The formatting varies depending on RHF/DFT and/or version. Here is
# an example from a DFT job:
#
# *** SCF orbital energy analysis ***
#
# Only the five lowest virtual orbital energies printed in each symmetry.
#
# Number of electrons : 70
# Orbital occupations : 15 2 15 3
#
# Sym Kohn-Sham orbital energies
#
# 1 Ag -10.01616533 -10.00394288 -10.00288640 -10.00209612 -9.98818062
# -0.80583154 -0.71422407 -0.58487249 -0.55551093 -0.50630125
# ...
#
# Here is an example from an RHF job that only has symmetry group indices:
#
# *** SCF orbital energy analysis ***
#
# Only the five lowest virtual orbital energies printed in each symmetry.
#
# Number of electrons : 70
# Orbital occupations : 15 2 15 3
#
# Sym Hartree-Fock orbital energies
#
# 1 -11.04052518 -11.03158921 -11.02882211 -11.02858563 -11.01747921
# -1.09029777 -0.97492511 -0.79988247 -0.76282547 -0.69677619
# ...
#
if self.section == "SIRIUS" and "*** SCF orbital energy analysis ***" in line:
# to get ALL orbital energies, the .PRINTLEVELS keyword needs
# to be at least 0,10 (up from 0,5). I know, obvious, right?
# this, however, will conflict with the scfvalues output that
# changes into some weird form of DIIS debug output.
mosyms = []
moenergies = []
self.skip_line(inputfile, 'blank')
line = next(inputfile)
# There is some extra text between the section header and
# the number of electrons for open-shell calculations.
while "Number of electrons" not in line:
line = next(inputfile)
nelectrons = int(line.split()[-1])
line = next(inputfile)
occupations = [int(o) for o in line.split()[3:]]
nsym = len(occupations)
self.skip_lines(inputfile, ['b', 'header', 'b'])
# now parse nsym symmetries
for isym in range(nsym):
# For unoccupied symmetries, nothing is printed here.
if occupations[isym] == 0:
continue
# When there are exactly five energies printed (on just one line), it seems
# an extra blank line is printed after a block.
line = next(inputfile)
if not line.strip():
line = next(inputfile)
cols = line.split()
# The first line has the orbital symmetry information, but sometimes
# it's the label and sometimes it's the index. There are always five
# energies per line, though, so we can deduce if we have the labels or
# not just the index. In the latter case, we depend on the labels
# being read earlier into the list `symlabels`. Finally, if no symlabels
# were read that implies there is only one symmetry, namely Ag.
if 'A' in cols[1] or 'B' in cols[1]:
sym = self.normalisesym(cols[1])
energies = [float(t) for t in cols[2:]]
else:
if hasattr(self, 'symlabels'):
sym = self.normalisesym(self.symlabels[int(cols[0]) - 1])
else:
assert cols[0] == '1'
sym = "Ag"
energies = [float(t) for t in cols[1:]]
while len(energies) > 0:
moenergies.extend(energies)
mosyms.extend(len(energies)*[sym])
line = next(inputfile)
energies = [float(col) for col in line.split()]
# now sort the data about energies and symmetries. see the following post for the magic
# http://stackoverflow.com/questions/19339/a-transpose-unzip-function-in-python-inverse-of-zip
sdata = sorted(zip(moenergies, mosyms), key=lambda x: x[0])
moenergies, mosyms = zip(*sdata)
self.moenergies = [[]]
self.moenergies[0] = [utils.convertor(moenergy, 'hartree', 'eV') for moenergy in moenergies]
self.mosyms = [[]]
self.mosyms[0] = mosyms
if not hasattr(self, "nmo"):
self.nmo = self.nbasis
if len(self.moenergies[0]) != self.nmo:
self.set_attribute('nmo', len(self.moenergies[0]))
# .-----------------------------------.
# | >>> Final results from SIRIUS <<< |
# `-----------------------------------'
#
#
# @ Spin multiplicity: 1
# @ Spatial symmetry: 1 ( irrep Ag in C2h )
# @ Total charge of molecule: 0
#
# @ Final DFT energy: -382.050716652387
# @ Nuclear repulsion: 445.936979976608
# @ Electronic energy: -827.987696628995
#
# @ Final gradient norm: 0.000003746706
# ...
#
if "Final HF energy" in line and not (hasattr(self, "mpenergies") or hasattr(self, "ccenergies")):
self.metadata["methods"].append("HF")
if "Final DFT energy" in line:
self.metadata["methods"].append("DFT")
if "This is a DFT calculation of type" in line:
self.metadata["functional"] = line.split()[-1]
if "Final DFT energy" in line or "Final HF energy" in line:
if not hasattr(self, "scfenergies"):
self.scfenergies = []
temp = line.split()
self.scfenergies.append(utils.convertor(float(temp[-1]), "hartree", "eV"))
if "@ = MP2 second order energy" in line:
self.metadata["methods"].append("MP2")
energ = utils.convertor(float(line.split()[-1]), 'hartree', 'eV')
if not hasattr(self, "mpenergies"):
self.mpenergies = []
self.mpenergies.append([])
self.mpenergies[-1].append(energ)
if "Total CCSD energy:" in line:
self.metadata["methods"].append("CCSD")
energ = utils.convertor(float(line.split()[-1]), 'hartree', 'eV')
if not hasattr(self, "ccenergies"):
self.ccenergies = []
self.ccenergies.append(energ)
if "Total energy CCSD(T)" in line:
self.metadata["methods"].append("CCSD(T)")
energ = utils.convertor(float(line.split()[-1]), 'hartree', 'eV')
if not hasattr(self, "ccenergies"):
self.ccenergies = []
self.ccenergies.append(energ)
# The molecular geometry requires the use of .RUN PROPERTIES in the input.
# Note that the second column is not the nuclear charge, but the atom type
# index used internally by DALTON.
#
# Molecular geometry (au)
# -----------------------
#
# C _1 1.3498778652 2.3494125195 0.0000000000
# C _2 -1.3498778652 -2.3494125195 0.0000000000
# C _1 2.6543517307 0.0000000000 0.0000000000
# ...
#
if "Molecular geometry (au)" in line:
if not hasattr(self, "atomcoords"):
self.atomcoords = []
if self.firststdorient:
self.firststdorient = False
self.skip_lines(inputfile, ['d', 'b'])
lines = [next(inputfile) for i in range(self.natom)]
atomcoords = self.parse_geometry(lines)
self.atomcoords.append(atomcoords)
if "Optimization Control Center" in line:
self.section = "OPT"
assert set(next(inputfile).strip()) == set(":")
# During geometry optimizations the geometry is printed in the section
# that is titles "Optimization Control Center". Note that after an optimizations
# finishes, DALTON normally runs another "static property section (ABACUS)",
# so the final geometry will be repeated in atomcoords.
#
# Next geometry (au)
# ------------------
#
# C _1 1.3203201560 2.3174808341 0.0000000000
# C _2 -1.3203201560 -2.3174808341 0.0000000000
# ...
if self.section == "OPT" and line.strip() == "Next geometry (au)":
self.skip_lines(inputfile, ['d', 'b'])
lines = [next(inputfile) for i in range(self.natom)]
coords = self.parse_geometry(lines)
self.atomcoords.append(coords)
# This section contains data for optdone and geovalues, although we could use
# it to double check some atttributes that were parsed before.
#
# Optimization information
# ------------------------
#
# Iteration number : 4
# End of optimization : T
# Energy at this geometry is : -379.777956
# Energy change from last geom. : -0.000000
# Predicted change : -0.000000
# Ratio, actual/predicted change : 0.952994
# Norm of gradient : 0.000058
# Norm of step : 0.000643
# Updated trust radius : 0.714097
# Total Hessian index : 0
#
if self.section == "OPT" and line.strip() == "Optimization information":
self.skip_lines(inputfile, ['d', 'b'])
line = next(inputfile)
assert 'Iteration number' in line
iteration = int(line.split()[-1])
line = next(inputfile)
assert 'End of optimization' in line
if not hasattr(self, 'optdone'):
self.optdone = []
self.optdone.append(line.split()[-1] == 'T')
# We need a way to map between lines here and the targets stated at the
# beginning of the file in 'Chosen parameters for *OPTIMI (see above),
# and this dictionary facilitates that. The keys are target names parsed
# in that initial section after input processing, and the values are
# substrings that should appear in the lines in this section. Make an
# exception for the energy at iteration zero where there is no gradient,
# and take the total energy for geovalues.
targets_labels = {
'gradient': 'Norm of gradient',
'energy': 'Energy change from last',
'step': 'Norm of step',
}
values = [numpy.nan] * len(self.geotargets)
while line.strip():
if iteration == 0 and "Energy at this geometry" in line:
index = self.geotargets_names.index('energy')
values[index] = self.float(line.split()[-1])
for tgt, lbl in targets_labels.items():
if lbl in line and tgt in self.geotargets_names:
index = self.geotargets_names.index(tgt)
values[index] = self.float(line.split()[-1])
line = next(inputfile)
# If we're missing something above, throw away the partial geovalues since
# we don't want artificial NaNs getting into cclib. Instead, fix the dictionary
# to make things work.
if not numpy.nan in values:
if not hasattr(self, 'geovalues'):
self.geovalues = []
self.geovalues.append(values)
# -------------------------------------------------
# extract the center of mass line
if "Center-of-mass coordinates (a.u.):" in line:
temp = line.split()
reference = [utils.convertor(float(temp[i]), "bohr", "Angstrom") for i in [3, 4, 5]]
if not hasattr(self, 'moments'):
self.moments = [reference]
# -------------------------------------------------
# Extract the dipole moment
if "Dipole moment components" in line:
dipole = numpy.zeros(3)
line = next(inputfile)
line = next(inputfile)
line = next(inputfile)
if not "zero by symmetry" in line:
line = next(inputfile)
line = next(inputfile)
temp = line.split()
for i in range(3):
dipole[i] = float(temp[2]) # store the Debye value
if hasattr(self, 'moments'):
self.moments.append(dipole)
## 'vibfreqs', 'vibirs', and 'vibsyms' appear in ABACUS.
# Vibrational Frequencies and IR Intensities
# ------------------------------------------
#
# mode irrep frequency IR intensity
# ============================================================
# cm-1 hartrees km/mol (D/A)**2/amu
# ------------------------------------------------------------
# 1 A 3546.72 0.016160 0.000 0.0000
# 2 A 3546.67 0.016160 0.024 0.0006
# ...
if "Vibrational Frequencies and IR Intensities" in line:
self.skip_lines(inputfile, ['dashes', 'blank'])
line = next(inputfile)
assert line.strip() == "mode irrep frequency IR intensity"
self.skip_line(inputfile, 'equals')
line = next(inputfile)
assert line.strip() == "cm-1 hartrees km/mol (D/A)**2/amu"
self.skip_line(inputfile, 'dashes')
line = next(inputfile)
# The normal modes are in order of decreasing IR
# frequency, so they can't be added directly to
# attributes; they must be grouped together first, sorted
# in order of increasing frequency, then added to their
# respective attributes.
vibdata = []
while line.strip():
sline = line.split()
vibsym = sline[1]
vibfreq = float(sline[2])
vibir = float(sline[4])
vibdata.append((vibfreq, vibir, vibsym))
line = next(inputfile)
vibdata.sort(key=lambda normalmode: normalmode[0])
self.vibfreqs = [normalmode[0] for normalmode in vibdata]
self.vibirs = [normalmode[1] for normalmode in vibdata]
self.vibsyms = [normalmode[2] for normalmode in vibdata]
# Now extract the normal mode displacements.
self.skip_lines(inputfile, ['b', 'b'])
line = next(inputfile)
assert line.strip() == "Normal Coordinates (bohrs*amu**(1/2)):"
# Normal Coordinates (bohrs*amu**(1/2)):
# --------------------------------------
#
#
# 1 3547 2 3547 3 3474 4 3471 5 3451
# ----------------------------------------------------------------------
#
# C x -0.000319 -0.000314 0.002038 0.000003 -0.001599
# C y -0.000158 -0.000150 -0.001446 0.003719 -0.002576
# C z 0.000000 -0.000000 -0.000000 0.000000 -0.000000
#
# C x 0.000319 -0.000315 -0.002038 0.000003 0.001600
# C y 0.000157 -0.000150 0.001448 0.003717 0.002577
# ...
self.skip_line(inputfile, 'd')
line = next(inputfile)
vibdisps = numpy.empty(shape=(len(self.vibirs), self.natom, 3))
ndisps = 0
while ndisps < len(self.vibirs):
# Skip two blank lines.
line = next(inputfile)
line = next(inputfile)
# Use the header with the normal mode indices and
# frequencies to update where we are.
ndisps_block = (len(line.split()) // 2)
mode_min, mode_max = ndisps, ndisps + ndisps_block
# Skip a line of dashes and a blank line.
line = next(inputfile)
line = next(inputfile)
for w in range(self.natom):
for coord in range(3):
line = next(inputfile)
vibdisps[mode_min:mode_max, w, coord] = [float(i) for i in line.split()[2:]]
# Skip a blank line.
line = next(inputfile)
ndisps += ndisps_block
# The vibrational displacements are in the wrong order;
# reverse them.
self.vibdisps = vibdisps[::-1, :, :]
## 'vibramans'
# Raman related properties for freq. 0.000000 au = Infinity nm
# ---------------------------------------------------------------
#
# Mode Freq. Alpha**2 Beta(a)**2 Pol.Int. Depol.Int. Dep. Ratio
#
# 1 3546.72 0.379364 16.900089 84.671721 50.700268 0.598786
# 2 3546.67 0.000000 0.000000 0.000000 0.000000 0.599550
if "Raman related properties for freq." in line:
self.skip_lines(inputfile, ['d', 'b'])
line = next(inputfile)
assert line[1:76] == "Mode Freq. Alpha**2 Beta(a)**2 Pol.Int. Depol.Int. Dep. Ratio"
self.skip_line(inputfile, 'b')
line = next(inputfile)
vibramans = []
# The Raman intensities appear under the "Pol.Int."
# (polarization intensity) column.
for m in range(len(self.vibfreqs)):
vibramans.append(float(line.split()[4]))
line = next(inputfile)
# All vibrational properties in DALTON appear in reverse
# order.
self.vibramans = vibramans[::-1]
# Static polarizability from **PROPERTIES/.POLARI.
if line.strip() == "Static polarizabilities (au)":
if not hasattr(self, 'polarizabilities'):
self.polarizabilities = []
polarizability = []
self.skip_lines(inputfile, ['d', 'b', 'directions', 'b'])
for _ in range(3):
line = next(inputfile)
# Separate possibly unspaced huge negative polarizability tensor
# element and the left adjacent column from each other.
line = line.replace('-', ' -')
polarizability.append(line.split()[1:])
self.polarizabilities.append(numpy.array(polarizability))
# Static and dynamic polarizability from **PROPERTIES/.ALPHA/*ABALNR.
if "Polarizability tensor for frequency" in line:
if not hasattr(self, 'polarizabilities'):
self.polarizabilities = []
polarizability = []
self.skip_lines(inputfile, ['d', 'directions', 'b'])
for _ in range(3):
line = next(inputfile)
polarizability.append(line.split()[1:])
self.polarizabilities.append(numpy.array(polarizability))
if "Starting in Dynamic Property Section (RESPONS)" in line:
self.section = "RESPONSE"
# Static and dynamic polarizability from **RESPONSE/*LINEAR.
# This section is *very* general and will need to be expanded later.
# For now, only form the matrix from dipole (length gauge) values.
if "@ FREQUENCY INDEPENDENT SECOND ORDER PROPERTIES" in line:
coord_to_idx = {'X': 0, 'Y': 1, 'Z': 2}
self.skip_line(inputfile, 'b')
line = next(inputfile)
polarizability_diplen = numpy.empty(shape=(3, 3)) * numpy.nan
while "Time used in linear response calculation is" not in line:
tokens = line.split()
if line.count("DIPLEN") == 2:
assert len(tokens) == 8
if not hasattr(self, 'polarizabilities'):
self.polarizabilities = []
i, j = coord_to_idx[tokens[2][0]], coord_to_idx[tokens[4][0]]
polarizability_diplen[i, j] = self.float(tokens[7])
line = next(inputfile)
polarizability_diplen = utils.symmetrize(polarizability_diplen, use_triangle='upper')
if hasattr(self, 'polarizabilities'):
self.polarizabilities.append(polarizability_diplen)
## Electronic excitations: single residues of the linear response
## equations.
#
#
# @ Excited state no: 1 in symmetry 3 ( Bu )
# ----------------------------------------------
#
# @ Excitation energy : 0.19609400 au
# @ 5.3359892 eV; 43037.658 cm-1; 514.84472 kJ / mol
#
# @ Total energy : -381.85462 au
#
# @ Operator type: XDIPLEN
# @ Oscillator strength (LENGTH) : 8.93558787E-03 (Transition moment : 0.26144181 )
#
# @ Operator type: YDIPLEN
# @ Oscillator strength (LENGTH) : 0.15204812 (Transition moment : 1.0784599 )
#
# Eigenvector for state no. 1
#
# Response orbital operator symmetry = 3
# (only scaled elements abs greater than 10.00 % of max abs value)
#
# Index(r,s) r s (r s) operator (s r) operator (r s) scaled (s r) scaled
# ---------- ----- ----- -------------- -------------- -------------- --------------
# 308 57(4) 28(2) 0.4829593728 -0.0024872024 0.6830076950 -0.0035174354
# ...
if "Linear Response single residue calculation" in line:
etsyms = []
etenergies = []
etsecs = []
etoscs = dict()
etoscs_keys = set()
symmap = {"T": "Triplet", "F": "Singlet"}
while "End of Dynamic Property Section (RESPONS)" not in line:
line = next(inputfile)
if "Operator symmetry" in line:
do_triplet = line[-2]
# @ Excited state no: 4 in symmetry 2 ( Au )
if line.startswith(" @ Excited state no:"):
tokens = line.split()
excited_state_num_in_sym = int(tokens[4])
sym_num = int(tokens[7])
etosc_key = (sym_num, excited_state_num_in_sym)
etoscs_keys.add(etosc_key)
etsym = tokens[9]
etsyms.append(symmap[do_triplet] + "-" + etsym)
self.skip_lines(inputfile, ["d", "b", "Excitation energy in a.u."])
line = next(inputfile)
etenergies.append(self.float(line.split()[3]))
self.skip_lines(inputfile, ["b", "@ Total energy", "b"])
if line.startswith("@ Operator type:"):
line = next(inputfile)
assert line.startswith("@ Oscillator strength")
if etosc_key not in etoscs:
etoscs[etosc_key] = 0.0
etoscs[etosc_key] += self.float(line.split()[5])
self.skip_line(inputfile, "b")
# To understand why the "PBHT MO Overlap Diagnostic" section
# cannot be used, see
# `test/regression.py/testDALTON_DALTON_2013_dvb_td_normalprint_out`.
if "Eigenvector for state no." in line:
assert int(line.split()[4]) == excited_state_num_in_sym
self.skip_lines(inputfile, [
"b",
"Response orbital operator symmetry",
"only scaled elements",
"b",
"Index(r,s)",
"d"
])
line = next(inputfile)
etsec = []
while line.strip():
tokens = line.split()
startidx = int(tokens[1].split("(")[0]) - 1
endidx = int(tokens[2].split("(")[0]) - 1
# `(r s) scaled`; to handle anything other than
# CIS/TDA properly, the deexcitation coefficient `(s
# r) scaled` should also be considered, but this
# requires a rework of the attribute structure.
contrib = float(tokens[5])
# Since DALTON is restricted open-shell only, there is
# no distinction between alpha and beta spin.
etsec.append([(startidx, 0), (endidx, 0), contrib])
line = next(inputfile)
etsecs.append(etsec)
self.set_attribute("etsyms", etsyms)
self.set_attribute("etenergies", etenergies)
if etsecs:
self.set_attribute("etsecs", etsecs)
if etoscs:
for k in etoscs_keys:
# If the oscillator strength of a transition is known to
# be zero for symmetry reasons, it isn't printed, however
# we need it for consistency; if it wasn't found, add it.
if k not in etoscs:
etoscs[k] = 0.0
# `.keys()` is not strictly necessary, but make it obvious
# that this is being sorted in order of excitation and
# symmetry, not oscillator strength.
self.set_attribute("etoscs", [etoscs[k] for k in sorted(etoscs.keys())])
if line[:37] == ' >>>> Total wall time used in DALTON:':
self.metadata['success'] = True
# TODO:
# aonames
# aooverlaps
# atomcharges
# atomspins
# coreelectrons
# enthalpy
# entropy
# etrotats
# freeenergy
# grads
# hessian
# mocoeffs
# nocoeffs
# nooccnos
# scancoords
# scanenergies
# scannames
# scanparm
# temperature
# vibanharms
# N/A:
# fonames
# fooverlaps
# fragnames
# frags
|