File: gaussianparser.py

package info (click to toggle)
cclib-data 1.6.2-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 87,912 kB
  • sloc: python: 16,440; sh: 131; makefile: 79; cpp: 31
file content (1838 lines) | stat: -rw-r--r-- 85,459 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
# -*- coding: utf-8 -*-
#
# Copyright (c) 2018, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.

"""Parser for Gaussian output files"""


from __future__ import print_function
import re

import numpy

from cclib.parser import data
from cclib.parser import logfileparser
from cclib.parser import utils


class Gaussian(logfileparser.Logfile):
    """A Gaussian 98/03 log file."""

    def __init__(self, *args, **kwargs):

        # Call the __init__ method of the superclass
        super(Gaussian, self).__init__(logname="Gaussian", *args, **kwargs)

    def __str__(self):
        """Return a string representation of the object."""
        return "Gaussian log file %s" % (self.filename)

    def __repr__(self):
        """Return a representation of the object."""
        return 'Gaussian("%s")' % (self.filename)

    def normalisesym(self, label):
        """Use standard symmetry labels instead of Gaussian labels.

        To normalise:
        (1) If label is one of [SG, PI, PHI, DLTA], replace by [sigma, pi, phi, delta]
        (2) replace any G or U by their lowercase equivalent
        """
        # note: DLT must come after DLTA
        greek = [('SG', 'sigma'), ('PI', 'pi'), ('PHI', 'phi'),
                 ('DLTA', 'delta'), ('DLT', 'delta')]
        for k, v in greek:
            if label.startswith(k):
                tmp = label[len(k):]
                label = v
                if tmp:
                    label = v + "." + tmp

        ans = label.replace("U", "u").replace("G", "g")
        return ans

    def before_parsing(self):

        # Used to index self.scftargets[].
        SCFRMS, SCFMAX, SCFENERGY = list(range(3))

        # Extract only well-formed numbers in scientific notation.
        self.re_scinot = re.compile('(\w*)=\s*(-?\d\.\d{2}D[+-]\d{2})')
        # Extract only well-formed numbers in traditional
        # floating-point format.
        self.re_float = re.compile('(\w*-?\w*)=\s*(-?\d+\.\d{10,})')

        # Flag for identifying Coupled Cluster runs.
        self.coupledcluster = False

        # Fragment number for counterpoise or fragment guess calculations
        # (normally zero).
        self.counterpoise = 0

        # Flag for identifying ONIOM calculations.
        self.oniom = False

        # Flag for identifying BOMD calculations.
        # These calculations have a back-integration algorithm so that not all
        # geometries should be kept.
        # We also add a "time" attribute to the parser.
        self.BOMD = False

        # Do we have high-precision polarizabilities printed from a
        # dedicated `polar` job? If so, avoid duplicate parsing.
        self.hp_polarizabilities = False

    def after_parsing(self):

        # Correct the percent values in the etsecs in the case of
        # a restricted calculation. The following has the
        # effect of including each transition twice.
        if hasattr(self, "etsecs") and len(self.homos) == 1:
            new_etsecs = [[(x[0], x[1], x[2] * numpy.sqrt(2)) for x in etsec]
                          for etsec in self.etsecs]
            self.etsecs = new_etsecs

        if hasattr(self, "scanenergies"):
            self.scancoords = []
            self.scancoords = self.atomcoords

        if (hasattr(self, 'enthalpy') and hasattr(self, 'temperature')
                and hasattr(self, 'freeenergy')):
            self.set_attribute('entropy', (self.enthalpy - self.freeenergy) / self.temperature)

        # This bit is needed in order to trim coordinates that are printed a second time
        # at the end of geometry optimizations. Note that we need to do this for both atomcoords
        # and inputcoords. The reason is that normally a standard orientation is printed and that
        # is what we parse into atomcoords, but inputcoords stores the input (unmodified) coordinates
        # and that is copied over to atomcoords if no standard oritentation was printed, which happens
        # for example for jobs with no symmetry. This last step, however, is now generic for all parsers.
        # Perhaps then this part should also be generic code...
        # Regression that tests this: Gaussian03/cyclopropenyl.rhf.g03.cut.log
        if hasattr(self, 'optstatus') and len(self.optstatus) > 0:
            last_point = len(self.optstatus) - 1
            if hasattr(self, 'atomcoords'):
                self.atomcoords = self.atomcoords[:last_point + 1]
            if hasattr(self, 'inputcoords'):
                self.inputcoords = self.inputcoords[:last_point + 1]

        # If we parsed high-precision vibrational displacements, overwrite
        # lower-precision displacements in self.vibdisps
        if hasattr(self, 'vibdispshp'):
            self.vibdisps = self.vibdispshp
            del self.vibdispshp
        if hasattr(self, 'time'):
            self.time = [self.time[i] for i in sorted(self.time.keys())]
        if hasattr(self, 'energies_BOMD'):
            self.set_attribute('scfenergies',
              [self.energies_BOMD[i] for i in sorted(self.energies_BOMD.keys())])
        if hasattr(self, 'atomcoords_BOMD'):
            self.atomcoords= \
              [self.atomcoords_BOMD[i] for i in sorted(self.atomcoords_BOMD.keys())]

    def extract(self, inputfile, line):
        """Extract information from the file object inputfile."""

        # Extract the version number: "Gaussian 09, Revision D.01"
        # becomes "09revisionD.01".
        if line.strip() == "Cite this work as:":
            line = inputfile.next()
            tokens = line.split()
            self.metadata["package_version"] = ''.join([
                tokens[1][:-1],
                'revision',
                tokens[-1][:-1],
            ])

        if line.strip().startswith("Link1:  Proceeding to internal job step number"):
            self.new_internal_job()

        # This block contains some general information as well as coordinates,
        # which could be parsed in the future:
        #
        # Symbolic Z-matrix:
        # Charge =  0 Multiplicity = 1
        # C                     0.73465   0.        0.
        # C                     1.93465   0.        0.
        # C
        # ...
        #
        # It also lists fragments, if there are any, which is potentially valuable:
        #
        # Symbolic Z-matrix:
        # Charge =  0 Multiplicity = 1 in supermolecule
        # Charge =  0 Multiplicity = 1 in fragment      1.
        # Charge =  0 Multiplicity = 1 in fragment      2.
        # B(Fragment=1)         0.06457  -0.0279    0.01364
        # H(Fragment=1)         0.03117  -0.02317   1.21604
        # ...
        #
        # Note, however, that currently we only parse information for the whole system
        # or supermolecule as Gaussian calls it.
        if line.strip() == "Symbolic Z-matrix:":

            self.updateprogress(inputfile, "Symbolic Z-matrix", self.fupdate)

            line = inputfile.next()
            while line.split()[0] == 'Charge':

                # For the supermolecule, we can parse the charge and multicplicity.
                regex = ".*=(.*)Mul.*=\s*-?(\d+).*"
                match = re.match(regex, line)
                assert match, "Something unusual about the line: '%s'" % line

                self.set_attribute('charge', int(match.groups()[0]))
                self.set_attribute('mult', int(match.groups()[1]))

                if line.split()[-2] == "fragment":
                    self.nfragments = int(line.split()[-1].strip('.'))

                if line.strip()[-13:] == "model system.":
                    self.nmodels = getattr(self, 'nmodels', 0) + 1

                line = inputfile.next()

            # The remaining part will allow us to get the atom count.
            # When coordinates are given, there is a blank line at the end, but if
            # there is a Z-matrix here, there will also be variables and we need to
            # stop at those to get the right atom count.
            # Also, in older versions there is bo blank line (G98 regressions),
            # so we need to watch out for leaving the link.
            natom = 0
            while line.split() and not "Variables" in line and not "Leave Link" in line:
                natom += 1
                line = inputfile.next()
            self.set_attribute('natom', natom)

        # Continuing from above, there is not always a symbolic matrix, for example
        # if the Z-matrix was in the input file. In such cases, try to match the
        # line and get at the charge and multiplicity.
        #
        #   Charge =  0 Multiplicity = 1 in supermolecule
        #   Charge =  0 Multiplicity = 1 in fragment  1.
        #   Charge =  0 Multiplicity = 1 in fragment  2.
        if line[1:7] == 'Charge' and line.find("Multiplicity") >= 0:

            self.updateprogress(inputfile, "Charge and Multiplicity", self.fupdate)

            if line.split()[-1] == "supermolecule" or not "fragment" in line:

                regex = ".*=(.*)Mul.*=\s*-?(\d+).*"
                match = re.match(regex, line)
                assert match, "Something unusual about the line: '%s'" % line

                self.set_attribute('charge', int(match.groups()[0]))
                self.set_attribute('mult', int(match.groups()[1]))

            if line.split()[-2] == "fragment":
                self.nfragments = int(line.split()[-1].strip('.'))

        # Number of atoms is also explicitely printed after the above.
        if line[1:8] == "NAtoms=":

            self.updateprogress(inputfile, "Attributes", self.fupdate)

            natom = int(re.search('NAtoms=\s*(\d+)', line).group(1))
            self.set_attribute('natom', natom)

        # Basis set name
        if line[1:15] == "Standard basis":
            self.metadata["basis_set"] = line.split()[2]

        # Dipole moment
        # e.g. from G09
        #  Dipole moment (field-independent basis, Debye):
        #    X=              0.0000    Y=              0.0000    Z=              0.0930
        # e.g. from G03
        #     X=     0.0000    Y=     0.0000    Z=    -1.6735  Tot=     1.6735
        # need the "field independent" part - ONIOM and other calc use diff formats
        if line[1:39] == "Dipole moment (field-independent basis":

            self.updateprogress(inputfile, "Dipole and Higher Moments", self.fupdate)

            self.reference = [0.0, 0.0, 0.0]
            self.moments = [self.reference]

            tokens = inputfile.next().split()
            # split - dipole would need to be *huge* to fail a split
            # and G03 and G09 use different spacing
            if len(tokens) >= 6:
                dipole = (float(tokens[1]), float(tokens[3]), float(tokens[5]))

            if not hasattr(self, 'moments'):
                self.moments = [self.reference, dipole]
            else:
                self.moments.append(dipole)

        if line[1:43] == "Quadrupole moment (field-independent basis":
            # e.g. (g09)
            # Quadrupole moment (field-independent basis, Debye-Ang):
            #   XX=             -6.1213   YY=             -4.2950   ZZ=             -5.4175
            #   XY=              0.0000   XZ=              0.0000   YZ=              0.0000
            # or from g03
            #   XX=    -6.1213   YY=    -4.2950   ZZ=    -5.4175
            quadrupole = {}
            for j in range(2): # two rows
                line = inputfile.next()
                if line[22] == '=': # g03 file
                    for i in (1, 18, 35):
                        quadrupole[line[i:i+4]] = float(line[i+5:i+16])
                else:
                    for i in (1, 27, 53):
                        quadrupole[line[i:i+4]] = float(line[i+5:i+25])

            lex = sorted(quadrupole.keys())
            quadrupole = [quadrupole[key] for key in lex]

            if not hasattr(self, 'moments') or len(self.moments) < 2:
                self.logger.warning("Found quadrupole moments but no previous dipole")
                self.reference = [0.0, 0.0, 0.0]
                self.moments = [self.reference, None, quadrupole]
            else:
                if len(self.moments) == 2:
                    self.moments.append(quadrupole)
                else:
                    assert self.moments[2] == quadrupole

        if line[1:41] == "Octapole moment (field-independent basis":
            # e.g.
            # Octapole moment (field-independent basis, Debye-Ang**2):
            #  XXX=              0.0000  YYY=              0.0000  ZZZ=             -0.1457  XYY=              0.0000
            #  XXY=              0.0000  XXZ=              0.0136  XZZ=              0.0000  YZZ=              0.0000
            #  YYZ=             -0.5848  XYZ=              0.0000
            octapole = {}
            for j in range(2): # two rows
                line = inputfile.next()
                if line[22] == '=': # g03 file
                    for i in (1, 18, 35, 52):
                        octapole[line[i:i+4]] = float(line[i+5:i+16])
                else:
                    for i in (1, 27, 53, 79):
                        octapole[line[i:i+4]] = float(line[i+5:i+25])

            # last line only 2 moments
            line = inputfile.next()
            if line[22] == '=': # g03 file
                for i in (1, 18):
                    octapole[line[i:i+4]] = float(line[i+5:i+16])
            else:
                for i in (1, 27):
                    octapole[line[i:i+4]] = float(line[i+5:i+25])

            lex = sorted(octapole.keys())
            octapole = [octapole[key] for key in lex]

            if not hasattr(self, 'moments') or len(self.moments) < 3:
                self.logger.warning("Found octapole moments but no previous dipole or quadrupole")
                self.reference = [0.0, 0.0, 0.0]
                self.moments = [self.reference, None, None, octapole]
            else:
                if len(self.moments) == 3:
                    self.moments.append(octapole)
                else:
                    assert self.moments[3] == octapole

        if line[1:20] == "Hexadecapole moment":
            # e.g.
            # Hexadecapole moment (field-independent basis, Debye-Ang**3):
            # XXXX=             -3.2614 YYYY=             -6.8264 ZZZZ=             -4.9965 XXXY=              0.0000
            # XXXZ=              0.0000 YYYX=              0.0000 YYYZ=              0.0000 ZZZX=              0.0000
            # ZZZY=              0.0000 XXYY=             -1.8585 XXZZ=             -1.4123 YYZZ=             -1.7504
            # XXYZ=              0.0000 YYXZ=              0.0000 ZZXY=              0.0000
            hexadecapole = {}
            # read three lines worth of 4 moments per line
            for j in range(3):
                line = inputfile.next()
                if line[22] == '=': # g03 file
                    for i in (1, 18, 35, 52):
                        hexadecapole[line[i:i+4]] = float(line[i+5:i+16])
                else:
                    for i in (1, 27, 53, 79):
                        hexadecapole[line[i:i+4]] = float(line[i+5:i+25])

            # last line only 3 moments
            line = inputfile.next()
            if line[22] == '=': # g03 file
                for i in (1, 18, 35):
                    hexadecapole[line[i:i+4]] = float(line[i+5:i+16])
            else:
                for i in (1, 27, 53):
                    hexadecapole[line[i:i+4]] = float(line[i+5:i+25])

            lex = sorted(hexadecapole.keys())
            hexadecapole = [hexadecapole[key] for key in lex]

            if not hasattr(self, 'moments') or len(self.moments) < 4:
                self.reference = [0.0, 0.0, 0.0]
                self.moments = [self.reference, None, None, None, hexadecapole]
            else:
                if len(self.moments) == 4:
                    self.append_attribute("moments", hexadecapole)
                else:
                    try:
                        numpy.testing.assert_equal(self.moments[4], hexadecapole)
                    except AssertionError:
                        self.logger.warning("Attribute hexadecapole changed value (%s -> %s)" % (self.moments[4], hexadecapole))
                    self.append_attribute("moments", hexadecapole)

        # Catch message about completed optimization.
        if line[1:23] == "Optimization completed":

            if not hasattr(self, 'optdone'):
                self.optdone = []
            self.optdone.append(len(self.geovalues) - 1)

            assert hasattr(self, "optstatus") and len(self.optstatus) > 0
            self.optstatus[-1] += data.ccData.OPT_DONE

        # Catch message about stopped optimization (not converged).
        if line[1:21] == "Optimization stopped":

            if not hasattr(self, "optdone"):
                self.optdone = []

            assert hasattr(self, "optstatus") and len(self.optstatus) > 0
            self.optstatus[-1] += data.ccData.OPT_UNCONVERGED

        # Extract the atomic numbers and coordinates from the input orientation,
        #   in the event the standard orientation isn't available.
        # Don't extract from Input or Z-matrix orientation in a BOMD run, as only
        #   the final geometry should be kept but extract inputatoms.
        if line.find("Input orientation") > -1 or line.find("Z-Matrix orientation") > -1:

            # If this is a counterpoise calculation, this output means that
            #   the supermolecule is now being considered, so we can set:
            self.counterpoise = 0

            self.updateprogress(inputfile, "Attributes", self.cupdate)

            if not self.BOMD and  not hasattr(self, "inputcoords"):
                self.inputcoords = []
            self.inputatoms = []

            self.skip_lines(inputfile, ['d', 'cols', 'cols', 'd'])

            atomcoords = []
            line = next(inputfile)
            while list(set(line.strip())) != ["-"]:
                broken = line.split()
                self.inputatoms.append(int(broken[1]))
                atomcoords.append(list(map(float, broken[3:6])))
                line = next(inputfile)

            if not self.BOMD: self.inputcoords.append(atomcoords)

            self.set_attribute('atomnos', self.inputatoms)
            self.set_attribute('natom', len(self.inputatoms))

        if self.BOMD and line.startswith(' Summary information for step'):

            # We keep time and energies_BOMD and coordinates in a dictionary
            #  because steps can be recalculated, and we need to overwite the
            #  previous data

            broken = line.split()
            step = int(broken[-1])
            line = next(inputfile)
            broken = line.split()
            if not hasattr(self, "time"):
                self.set_attribute('time', {step:float(broken[-1])})
            else:
                self.time[step] = float(broken[-1])

            line = next(inputfile)
            broken = line.split(';')[1].split()
            ene = utils.convertor(self.float(broken[-1]), "hartree", "eV")
            if not hasattr(self, "energies_BOMD"):
                self.set_attribute('energies_BOMD', {step:ene})
            else:
                self.energies_BOMD[step] = ene

            self.updateprogress(inputfile, "Attributes", self.cupdate)

            if not hasattr(self, "atomcoords_BOMD"):
                self.atomcoords_BOMD = {}
            #self.inputatoms = []

            self.skip_lines(inputfile, ['EKin', 'Angular', 'JX', 'Total', 'Total', 'Cartesian'])

            atomcoords = []
            line = next(inputfile)
            while not "MW cartesian" in line:
                broken = line.split()
                atomcoords.append(list(map(self.float, (broken[3], broken[5], broken[7]))))
            #    self.inputatoms.append(int(broken[1]))
                line = next(inputfile)

            self.atomcoords_BOMD[step] = atomcoords

            #self.set_attribute('atomnos', self.inputatoms)
            #self.set_attribute('natom', len(self.inputatoms))


        # Extract the atomic masses.
        # Typical section:
        #                    Isotopes and Nuclear Properties:
        #(Nuclear quadrupole moments (NQMom) in fm**2, nuclear magnetic moments (NMagM)
        # in nuclear magnetons)
        #
        #  Atom         1           2           3           4           5           6           7           8           9          10
        # IAtWgt=          12          12          12          12          12           1           1           1          12          12
        # AtmWgt=  12.0000000  12.0000000  12.0000000  12.0000000  12.0000000   1.0078250   1.0078250   1.0078250  12.0000000  12.0000000
        # NucSpn=           0           0           0           0           0           1           1           1           0           0
        # AtZEff=  -3.6000000  -3.6000000  -3.6000000  -3.6000000  -3.6000000  -1.0000000  -1.0000000  -1.0000000  -3.6000000  -3.6000000
        # NQMom=    0.0000000   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000
        # NMagM=    0.0000000   0.0000000   0.0000000   0.0000000   0.0000000   2.7928460   2.7928460   2.7928460   0.0000000   0.0000000
        # ... with blank lines dividing blocks of ten, and Leave Link 101 at the end.
        # This is generally parsed before coordinates, so atomnos is not defined.
        # Note that in Gaussian03 the comments are not there yet and the labels are different.
        if line.strip() == "Isotopes and Nuclear Properties:":

            if not hasattr(self, "atommasses"):
                self.atommasses = []

            line = next(inputfile)
            while line[1:16] != "Leave Link  101":
                if line[1:8] == "AtmWgt=":
                    self.atommasses.extend(list(map(float, line.split()[1:])))
                line = next(inputfile)

        # Extract the atomic numbers and coordinates of the atoms.
        if line.strip() == "Standard orientation:":

            self.updateprogress(inputfile, "Attributes", self.cupdate)

            # If this is a counterpoise calculation, this output means that
            #   the supermolecule is now being considered, so we can set:
            self.counterpoise = 0

            if not hasattr(self, "atomcoords"):
                self.atomcoords = []

            self.skip_lines(inputfile, ['d', 'cols', 'cols', 'd'])

            atomnos = []
            atomcoords = []
            line = next(inputfile)
            while list(set(line.strip())) != ["-"]:
                broken = line.split()
                atomnos.append(int(broken[1]))
                atomcoords.append(list(map(float, broken[-3:])))
                line = next(inputfile)
            self.atomcoords.append(atomcoords)

            self.set_attribute('natom', len(atomnos))
            self.set_attribute('atomnos', atomnos)

        # This is a bit of a hack for regression Gaussian09/BH3_fragment_guess.pop_minimal.log
        # to skip output for all fragments, assuming the supermolecule is always printed first.
        # Eventually we want to make this more general, or even better parse the output for
        # all fragment, but that will happen in a newer version of cclib.
        if line[1:16] == "Fragment guess:" and getattr(self, 'nfragments', 0) > 1:
            if not "full" in line:
                inputfile.seek(0, 2)

        # Another hack for regression Gaussian03/ortho_prod_prod_freq.log, which is an ONIOM job.
        # Basically for now we stop parsing after the output for the real system, because
        # currently we don't support changes in system size or fragments in cclib. When we do,
        # we will want to parse the model systems, too, and that is what nmodels could track.
        if "ONIOM: generating point" in line and line.strip()[-13:] == 'model system.' and getattr(self, 'nmodels', 0) > 0:
            inputfile.seek(0, 2)

        # With the gfinput keyword, the atomic basis set functios are:
        #
        # AO basis set in the form of general basis input (Overlap normalization):
        #  1 0
        # S   3 1.00       0.000000000000
        #      0.7161683735D+02  0.1543289673D+00
        #      0.1304509632D+02  0.5353281423D+00
        #      0.3530512160D+01  0.4446345422D+00
        # SP   3 1.00       0.000000000000
        #      0.2941249355D+01 -0.9996722919D-01  0.1559162750D+00
        #      0.6834830964D+00  0.3995128261D+00  0.6076837186D+00
        #      0.2222899159D+00  0.7001154689D+00  0.3919573931D+00
        # ****
        #  2 0
        # S   3 1.00       0.000000000000
        #      0.7161683735D+02  0.1543289673D+00
        # ...
        #
        # The same is also printed when the gfprint keyword is used, but the
        # interstitial lines differ and there are no stars between atoms:
        #
        # AO basis set (Overlap normalization):
        # Atom C1       Shell     1 S   3     bf    1 -     1          0.509245180608         -2.664678875191          0.000000000000
        #       0.7161683735D+02  0.1543289673D+00
        #       0.1304509632D+02  0.5353281423D+00
        #       0.3530512160D+01  0.4446345422D+00
        # Atom C1       Shell     2 SP   3    bf    2 -     5          0.509245180608         -2.664678875191          0.000000000000
        #       0.2941249355D+01 -0.9996722919D-01  0.1559162750D+00
        # ...

        #ONIOM calculations result basis sets reported for atoms that are not in order of atom number which breaks this code (line 390 relies on atoms coming in order)
        if line[1:13] == "AO basis set" and not self.oniom:

            self.gbasis = []

            # For counterpoise fragment calcualtions, skip these lines.
            if self.counterpoise != 0:
                return

            atom_line = inputfile.next()
            self.gfprint = atom_line.split()[0] == "Atom"
            self.gfinput = not self.gfprint

            # Note how the shell information is on a separate line for gfinput,
            # whereas for gfprint it is on the same line as atom information.
            if self.gfinput:
                shell_line = inputfile.next()

            shell = []
            while len(self.gbasis) < self.natom:

                if self.gfprint:
                    cols = atom_line.split()
                    subshells = cols[4]
                    ngauss = int(cols[5])
                else:
                    cols = shell_line.split()
                    subshells = cols[0]
                    ngauss = int(cols[1])

                parameters = []
                for ig in range(ngauss):
                    line = inputfile.next()
                    parameters.append(list(map(self.float, line.split())))
                for iss, ss in enumerate(subshells):
                    contractions = []
                    for param in parameters:
                        exponent = param[0]
                        coefficient = param[iss+1]
                        contractions.append((exponent, coefficient))
                    subshell = (ss, contractions)
                    shell.append(subshell)

                if self.gfprint:
                    line = inputfile.next()
                    if line.split()[0] == "Atom":
                        atomnum = int(re.sub(r"\D", "", line.split()[1]))
                        if atomnum == len(self.gbasis) + 2:
                            self.gbasis.append(shell)
                            shell = []
                        atom_line = line
                    else:
                        self.gbasis.append(shell)
                else:
                    line = inputfile.next()
                    if line.strip() == "****":
                        self.gbasis.append(shell)
                        shell = []
                        atom_line = inputfile.next()
                        shell_line = inputfile.next()
                    else:
                        shell_line = line

        # Find the targets for SCF convergence (QM calcs).
        # Not for BOMD as targets are not available in the summary
        if not self.BOMD and line[1:44] == 'Requested convergence on RMS density matrix':

            if not hasattr(self, "scftargets"):
                self.scftargets = []
            # The following can happen with ONIOM which are mixed SCF
            # and semi-empirical
            if type(self.scftargets) == type(numpy.array([])):
                self.scftargets = []

            scftargets = []
            # The RMS density matrix.
            scftargets.append(self.float(line.split('=')[1].split()[0]))
            line = next(inputfile)
            # The MAX density matrix.
            scftargets.append(self.float(line.strip().split('=')[1][:-1]))
            line = next(inputfile)
            # For G03, there's also the energy (not for G98).
            if line[1:10] == "Requested":
                scftargets.append(self.float(line.strip().split('=')[1][:-1]))

            self.scftargets.append(scftargets)

        # Extract SCF convergence information (QM calcs).
        if line[1:10] == 'Cycle   1':

            if not hasattr(self, "scfvalues"):
                self.scfvalues = []

            scfvalues = []
            line = next(inputfile)
            while line.find("SCF Done") == -1:

                self.updateprogress(inputfile, "QM convergence", self.fupdate)

                if line.find(' E=') == 0:
                    self.logger.debug(line)

                #  RMSDP=3.74D-06 MaxDP=7.27D-05 DE=-1.73D-07 OVMax= 3.67D-05
                # or
                #  RMSDP=1.13D-05 MaxDP=1.08D-04              OVMax= 1.66D-04
                if line.find(" RMSDP") == 0:

                    # Fields of interest:
                    # RMSDP
                    # MaxDP
                    # (DE) -> Only add the energy if it's a target criteria

                    matches = self.re_scinot.findall(line)
                    matches = {
                        match[0]: self.float(match[1])
                        for match in matches
                    }
                    scfvalues_step = [
                        matches.get('RMSDP', numpy.nan),
                        matches.get('MaxDP', numpy.nan)
                    ]
                    if len(self.scftargets[0]) == 3:
                        scfvalues_step.append(matches.get('DE', numpy.nan))
                    scfvalues.append(scfvalues_step)

                try:
                    line = next(inputfile)
                # May be interupted by EOF.
                except StopIteration:
                    self.logger.warning('File terminated before end of last SCF!')
                    break

            self.scfvalues.append(scfvalues)

        # Extract SCF convergence information (AM1, INDO and other semi-empirical calcs).
        # The output (for AM1) looks like this:
        # Ext34=T Pulay=F Camp-King=F BShift= 0.00D+00
        # It=  1 PL= 0.103D+01 DiagD=T ESCF=     31.564733 Diff= 0.272D+02 RMSDP= 0.152D+00.
        # It=  2 PL= 0.114D+00 DiagD=T ESCF=      7.265370 Diff=-0.243D+02 RMSDP= 0.589D-02.
        # ...
        # It= 11 PL= 0.184D-04 DiagD=F ESCF=      4.687669 Diff= 0.260D-05 RMSDP= 0.134D-05.
        # It= 12 PL= 0.105D-04 DiagD=F ESCF=      4.687669 Diff=-0.686D-07 RMSDP= 0.215D-05.
        # 4-point extrapolation.
        # It= 13 PL= 0.110D-05 DiagD=F ESCF=      4.687669 Diff=-0.111D-06 RMSDP= 0.653D-07.
        # Energy=    0.172272018655 NIter=  14.
        if line[1:4] == 'It=':

            scftargets = numpy.array([1E-7], "d")  # This is the target value for the rms
            scfvalues = [[]]

            while line.find(" Energy") == -1:

                self.updateprogress(inputfile, "AM1 Convergence")

                if line[1:4] == "It=":
                    parts = line.strip().split()
                    scfvalues[0].append(self.float(parts[-1][:-1]))

                line = next(inputfile)

                # If an AM1 or INDO guess is used (Guess=INDO in the input, for example),
                # this will be printed after a single iteration, so that is the line
                # that should trigger a break from this loop. At least that's what we see
                # for regression Gaussian/Gaussian09/guessIndo_modified_ALT.out
                if line[:14] == " Initial guess":
                    break

            # Attach the attributes to the object Only after the energy is found .
            if line.find(" Energy") == 0:
                self.scftargets = scftargets
                self.scfvalues = scfvalues

        # Note: this needs to follow the section where 'SCF Done' is used
        #   to terminate a loop when extracting SCF convergence information.
        if not self.BOMD and line[1:9] == 'SCF Done':

            t1 = line.split()[2]
            if t1 == 'E(RHF)':
                self.metadata["methods"].append("HF")
            else:
                self.metadata["methods"].append("DFT")
                self.metadata["functional"] = t1[t1.index("(") + 2:t1.rindex(")")]

            if not hasattr(self, "scfenergies"):
                self.scfenergies = []

            self.scfenergies.append(utils.convertor(self.float(line.split()[4]), "hartree", "eV"))
        # gmagoon 5/27/09: added scfenergies reading for PM3 case
        # Example line: " Energy=   -0.077520562724 NIter=  14."
        # See regression Gaussian03/QVGXLLKOCUKJST-UHFFFAOYAJmult3Fixed.out
        if line[1:8] == 'Energy=':
            if not hasattr(self, "scfenergies"):
                self.scfenergies = []
            self.scfenergies.append(utils.convertor(self.float(line.split()[1]), "hartree", "eV"))

        # Total energies after Moller-Plesset corrections.
        # Second order correction is always first, so its first occurance
        #   triggers creation of mpenergies (list of lists of energies).
        # Further MP2 corrections are appended as found.
        #
        # Example MP2 output line:
        #  E2 =    -0.9505918144D+00 EUMP2 =    -0.28670924198852D+03
        # Warning! this output line is subtly different for MP3/4/5 runs
        if "EUMP2" in line[27:34]:
            self.metadata["methods"].append("MP2")

            if not hasattr(self, "mpenergies"):
                self.mpenergies = []
            self.mpenergies.append([])
            mp2energy = self.float(line.split("=")[2])
            self.mpenergies[-1].append(utils.convertor(mp2energy, "hartree", "eV"))

        # Example MP3 output line:
        #  E3=       -0.10518801D-01     EUMP3=      -0.75012800924D+02
        if line[34:39] == "EUMP3":
            self.metadata["methods"].append("MP3")

            mp3energy = self.float(line.split("=")[2])
            self.mpenergies[-1].append(utils.convertor(mp3energy, "hartree", "eV"))

        # Example MP4 output lines:
        #  E4(DQ)=   -0.31002157D-02        UMP4(DQ)=   -0.75015901139D+02
        #  E4(SDQ)=  -0.32127241D-02        UMP4(SDQ)=  -0.75016013648D+02
        #  E4(SDTQ)= -0.32671209D-02        UMP4(SDTQ)= -0.75016068045D+02
        # Energy for most substitutions is used only (SDTQ by default)
        if line[34:42] == "UMP4(DQ)":
            self.metadata["methods"].append("MP4")

            mp4energy = self.float(line.split("=")[2])
            line = next(inputfile)
            if line[34:43] == "UMP4(SDQ)":
                mp4energy = self.float(line.split("=")[2])
                line = next(inputfile)
                if line[34:44] == "UMP4(SDTQ)":
                    mp4energy = self.float(line.split("=")[2])
            self.mpenergies[-1].append(utils.convertor(mp4energy, "hartree", "eV"))

        # Example MP5 output line:
        #  DEMP5 =  -0.11048812312D-02 MP5 =  -0.75017172926D+02
        if line[29:32] == "MP5":
            self.metadata["methods"].append("MP5")
            mp5energy = self.float(line.split("=")[2])
            self.mpenergies[-1].append(utils.convertor(mp5energy, "hartree", "eV"))

        # Total energies after Coupled Cluster corrections.
        # Second order MBPT energies (MP2) are also calculated for these runs,
        # but the output is the same as when parsing for mpenergies.
        # Read the consecutive correlated energies
        # but append only the last one to ccenergies.
        # Only the highest level energy is appended - ex. CCSD(T), not CCSD.
        if line[1:10] == "DE(Corr)=" and line[27:35] == "E(CORR)=":
            self.metadata["methods"].append("CCSD")
            self.ccenergy = self.float(line.split()[3])
        if line[1:10] == "T5(CCSD)=":
            line = next(inputfile)
            if line[1:9] == "CCSD(T)=":
                self.metadata["methods"].append("CCSD-T")
                self.ccenergy = self.float(line.split()[1])
        if line[12:53] == "Population analysis using the SCF density":
            if hasattr(self, "ccenergy"):
                if not hasattr(self, "ccenergies"):
                    self.ccenergies = []
                self.ccenergies.append(utils.convertor(self.ccenergy, "hartree", "eV"))
                del self.ccenergy
        # Find step number for current optimization/IRC
        # Matches "Step number  123", "Pt XX Step number 123" and "PtXXX Step number 123"
        if " Step number" in line:
            step = int(line.split()[line.split().index('Step') + 2])
            if not hasattr(self, "optstatus"):
                self.optstatus = []
            self.optstatus.append(data.ccData.OPT_UNKNOWN)
            if step == 1:
                self.optstatus[-1] += data.ccData.OPT_NEW

        # Geometry convergence information.
        if line[49:59] == 'Converged?':

            if not hasattr(self, "geotargets"):
                self.geovalues = []
                self.geotargets = numpy.array([0.0, 0.0, 0.0, 0.0], "d")

            newlist = [0]*4
            for i in range(4):
                line = next(inputfile)
                self.logger.debug(line)
                parts = line.split()
                try:
                    value = self.float(parts[2])
                except ValueError:
                    self.logger.error("Problem parsing the value for geometry optimisation: %s is not a number." % parts[2])
                else:
                    newlist[i] = value
                self.geotargets[i] = self.float(parts[3])

            self.geovalues.append(newlist)

        # Gradients.
        # Read in the cartesian energy gradients (forces) from a block like this:
        # -------------------------------------------------------------------
        # Center     Atomic                   Forces (Hartrees/Bohr)
        # Number     Number              X              Y              Z
        # -------------------------------------------------------------------
        # 1          1          -0.012534744   -0.021754635   -0.008346094
        # 2          6           0.018984731    0.032948887   -0.038003451
        # 3          1          -0.002133484   -0.006226040    0.023174772
        # 4          1          -0.004316502   -0.004968213    0.023174772
        #           -2          -0.001830728   -0.000743108   -0.000196625
        # ------------------------------------------------------------------
        #
        # The "-2" line is for a dummy atom
        #
        # Then optimization is done in internal coordinates, Gaussian also
        # print the forces in internal coordinates, which can be produced from
        # the above. This block looks like this:
        # Variable       Old X    -DE/DX   Delta X   Delta X   Delta X     New X
        #                                 (Linear)    (Quad)   (Total)
        #   ch        2.05980   0.01260   0.00000   0.01134   0.01134   2.07114
        #   hch        1.75406   0.09547   0.00000   0.24861   0.24861   2.00267
        #   hchh       2.09614   0.01261   0.00000   0.16875   0.16875   2.26489
        #         Item               Value     Threshold  Converged?

        # We could get the gradients in BOMD, but it is more complex because
        #   they are not in the summary, and they are not as relevant as for
        #   an optimization
        if not self.BOMD and line[37:43] == "Forces":

            if not hasattr(self, "grads"):
                self.grads = []

            self.skip_lines(inputfile, ['header', 'd'])

            forces = []
            line = next(inputfile)
            while list(set(line.strip())) != ['-']:
                tmpforces = []
                for N in range(3):  # Fx, Fy, Fz
                    force = line[23+N*15:38+N*15]
                    if force.startswith("*"):
                        force = "NaN"
                    tmpforces.append(float(force))
                forces.append(tmpforces)
                line = next(inputfile)
            self.grads.append(forces)

        #Extract PES scan data
        #Summary of the potential surface scan:
        #  N       A          SCF
        #----  ---------  -----------
        #   1   109.0000    -76.43373
        #   2   119.0000    -76.43011
        #   3   129.0000    -76.42311
        #   4   139.0000    -76.41398
        #   5   149.0000    -76.40420
        #   6   159.0000    -76.39541
        #   7   169.0000    -76.38916
        #   8   179.0000    -76.38664
        #   9   189.0000    -76.38833
        #  10   199.0000    -76.39391
        #  11   209.0000    -76.40231
        #----  ---------  -----------
        if "Summary of the potential surface scan:" in line:

            scanenergies = []
            scanparm = []
            colmnames = next(inputfile)
            hyphens = next(inputfile)
            line = next(inputfile)
            while line != hyphens:
                broken = line.split()
                scanenergies.append(float(broken[-1]))
                scanparm.append(map(float, broken[1:-1]))
                line = next(inputfile)
            if not hasattr(self, "scanenergies"):
                self.scanenergies = []
                self.scanenergies = scanenergies
            if not hasattr(self, "scanparm"):
                self.scanparm = []
                self.scanparm = scanparm
            if not hasattr(self, "scannames"):
                self.scannames = colmnames.split()[1:-1]

        # Orbital symmetries.
        if line[1:20] == 'Orbital symmetries:' and not hasattr(self, "mosyms"):

            # For counterpoise fragments, skip these lines.
            if self.counterpoise != 0:
                return

            self.updateprogress(inputfile, "MO Symmetries", self.fupdate)

            self.mosyms = [[]]
            line = next(inputfile)
            unres = False
            if line.find("Alpha Orbitals") == 1:
                unres = True
                line = next(inputfile)
            i = 0
            while len(line) > 18 and line[17] == '(':
                if line.find('Virtual') >= 0:
                    self.homos = [i - 1]
                parts = line[17:].split()
                for x in parts:
                    self.mosyms[0].append(self.normalisesym(x.strip('()')))
                    i += 1
                line = next(inputfile)
            if unres:
                line = next(inputfile)
                # Repeat with beta orbital information
                i = 0
                self.mosyms.append([])
                while len(line) > 18 and line[17] == '(':
                    if line.find('Virtual') >= 0:
                        # Here we consider beta
                        # If there was also an alpha virtual orbital,
                        #  we will store two indices in the array
                        # Otherwise there is no alpha virtual orbital,
                        #  only beta virtual orbitals, and we initialize
                        #  the array with one element. See the regression
                        #  QVGXLLKOCUKJST-UHFFFAOYAJmult3Fixed.out
                        #  donated by Gregory Magoon (gmagoon).
                        if (hasattr(self, "homos")):
                            # Extend the array to two elements
                            # 'HOMO' indexes the HOMO in the arrays
                            self.homos.append(i-1)
                        else:
                            # 'HOMO' indexes the HOMO in the arrays
                            self.homos = [i - 1]
                    parts = line[17:].split()
                    for x in parts:
                        self.mosyms[1].append(self.normalisesym(x.strip('()')))
                        i += 1
                    line = next(inputfile)

            # Some calculations won't explicitely print the number of basis sets used,
            # and will occasionally drop some without warning. We can infer the number,
            # however, from the MO symmetries printed here. Specifically, this fixes
            # regression Gaussian/Gaussian09/dvb_sp_terse.log (#23 on github).
            self.set_attribute('nmo', len(self.mosyms[-1]))

        # Alpha/Beta electron eigenvalues.
        if line[1:6] == "Alpha" and line.find("eigenvalues") >= 0:

            # For counterpoise fragments, skip these lines.
            if self.counterpoise != 0:
                return

            # For ONIOM calcs, ignore this section in order to bypass assertion failure.
            if self.oniom:
                return

            self.updateprogress(inputfile, "Eigenvalues", self.fupdate)
            self.moenergies = [[]]
            HOMO = -2

            while line.find('Alpha') == 1:
                if line.split()[1] == "virt." and HOMO == -2:

                    # If there aren't any symmetries, this is a good way to find the HOMO.
                    HOMO = len(self.moenergies[0])-1
                    self.homos = [HOMO]

                # Convert to floats and append to moenergies, but sometimes Gaussian
                #  doesn't print correctly so test for ValueError (bug 1756789).
                part = line[28:]
                i = 0
                while i*10+4 < len(part):
                    s = part[i*10:(i+1)*10]
                    try:
                        x = self.float(s)
                    except ValueError:
                        x = numpy.nan
                    self.moenergies[0].append(utils.convertor(x, "hartree", "eV"))
                    i += 1
                line = next(inputfile)

            # If, at this point, self.homos is unset, then there were not
            # any alpha virtual orbitals
            if not hasattr(self, "homos"):
                HOMO = len(self.moenergies[0])-1
                self.homos = [HOMO]

            if line.find('Beta') == 2:
                self.moenergies.append([])

            HOMO = -2
            while line.find('Beta') == 2:
                if line.split()[1] == "virt." and HOMO == -2:

                    # If there aren't any symmetries, this is a good way to find the HOMO.
                    # Also, check for consistency if homos was already parsed.
                    HOMO = len(self.moenergies[1])-1
                    self.homos.append(HOMO)

                part = line[28:]
                i = 0
                while i*10+4 < len(part):
                    x = part[i*10:(i+1)*10]
                    self.moenergies[1].append(utils.convertor(self.float(x), "hartree", "eV"))
                    i += 1
                line = next(inputfile)

            self.moenergies = [numpy.array(x, "d") for x in self.moenergies]

        # Start of the IR/Raman frequency section.
        # Caution is advised here, as additional frequency blocks
        #   can be printed by Gaussian (with slightly different formats),
        #   often doubling the information printed.
        # See, for a non-standard exmaple, regression Gaussian98/test_H2.log
        # If either the Gaussian freq=hpmodes keyword or IOP(7/33=1) is used,
        # an extra frequency block with higher-precision vibdisps is
        # printed before the normal frequency block.
        # Note that the code parses only the vibsyms and vibdisps
        # from the high-precision block, but parses vibsyms, vibfreqs,
        # vibramans and vibirs from the normal block. vibsyms parsed
        # from the high-precision block are discarded and replaced by those
        # from the normal block while the high-precision vibdisps, if present,
        # are used to overwrite default-precision vibdisps at the end of the parse.
        if line[1:14] == "Harmonic freq":  # This matches in both freq block types

            self.updateprogress(inputfile, "Frequency Information", self.fupdate)

            # The whole block should not have any blank lines.
            while line.strip() != "":

                # The line with indices
                if line[1:15].strip() == "" and line[15:60].split()[0].isdigit():
                    freqbase = int(line[15:60].split()[0])
                    if freqbase == 1 and hasattr(self, 'vibsyms'):
                        # we are coming accross duplicated information.
                        # We might be be parsing a default-precision block having
                        # already parsed (only) vibsyms and displacements from
                        # the high-precision block, or might be encountering
                        # a second low-precision block (see e.g. 25DMF_HRANH.log
                        # regression).
                        self.vibsyms = []
                        if hasattr(self, "vibirs"):
                            self.vibirs = []
                        if hasattr(self, 'vibfreqs'):
                            self.vibfreqs = []
                        if hasattr(self, 'vibramans'):
                            self.vibramans = []
                        if hasattr(self, 'vibdisps'):
                            self.vibdisps = []

                # Lines with symmetries and symm. indices begin with whitespace.
                if line[1:15].strip() == "" and not line[15:60].split()[0].isdigit():

                    if not hasattr(self, 'vibsyms'):
                        self.vibsyms = []
                    syms = line.split()
                    self.vibsyms.extend(syms)

                if line[1:15] == "Frequencies --":  # note: matches low-precision block, and

                    if not hasattr(self, 'vibfreqs'):
                        self.vibfreqs = []

                    freqs = [self.float(f) for f in line[15:].split()]
                    self.vibfreqs.extend(freqs)

                if line[1:15] == "IR Inten    --":  # note: matches only low-precision block

                    if not hasattr(self, 'vibirs'):
                        self.vibirs = []

                    irs = []
                    for ir in line[15:].split():
                        try:
                            irs.append(self.float(ir))
                        except ValueError:
                            irs.append(self.float('nan'))
                    self.vibirs.extend(irs)

                if line[1:15] == "Raman Activ --":  # note: matches only low-precision block

                    if not hasattr(self, 'vibramans'):
                        self.vibramans = []

                    ramans = []
                    for raman in line[15:].split():
                        try:
                            ramans.append(self.float(raman))
                        except ValueError:
                            ramans.append(self.float('nan'))

                    self.vibramans.extend(ramans)

                # Block with (default-precision) displacements should start with this.
                #                     1                      2                      3
                #                     A                      A                      A
                # Frequencies --   370.7936               370.7987               618.0103
                # Red. masses --     2.3022                 2.3023                 1.9355
                # Frc consts  --     0.1865                 0.1865                 0.4355
                # IR Inten    --     0.0000                 0.0000                 0.0000
                #  Atom  AN      X      Y      Z        X      Y      Z        X      Y      Z
                #     1   6     0.00   0.00  -0.04     0.00   0.00   0.19     0.00   0.00   0.12
                #     2   6     0.00   0.00   0.19     0.00   0.00  -0.06     0.00   0.00  -0.12

                if line.strip().split()[0:3] == ["Atom", "AN", "X"]:
                    if not hasattr(self, 'vibdisps'):
                        self.vibdisps = []
                    disps = []
                    for n in range(self.natom):
                        line = next(inputfile)
                        numbers = [float(s) for s in line[10:].split()]
                        N = len(numbers) // 3
                        if not disps:
                            for n in range(N):
                                disps.append([])
                        for n in range(N):
                            disps[n].append(numbers[3*n:3*n+3])
                    self.vibdisps.extend(disps)

                # Block with high-precision (freq=hpmodes) displacements should start with this.
                #                           1         2         3         4         5
                #                           A         A         A         A         A
                #       Frequencies ---   370.7936  370.7987  618.0103  647.7864  647.7895
                #    Reduced masses ---     2.3022    2.3023    1.9355    6.4600    6.4600
                #   Force constants ---     0.1865    0.1865    0.4355    1.5971    1.5972
                #    IR Intensities ---     0.0000    0.0000    0.0000    0.0000    0.0000
                # Coord Atom Element:
                #   1     1     6          0.00000   0.00000   0.00000  -0.18677   0.05592
                #   2     1     6          0.00000   0.00000   0.00000   0.28440   0.21550
                #   3     1     6         -0.04497   0.19296   0.11859   0.00000   0.00000
                #   1     2     6          0.00000   0.00000   0.00000   0.03243   0.37351
                #   2     2     6          0.00000   0.00000   0.00000   0.14503  -0.06117
                #   3     2     6          0.18959  -0.05753  -0.11859   0.00000   0.00000
                if line.strip().split()[0:3] == ["Coord", "Atom", "Element:"]:
                    # Wait until very end of parsing to assign vibdispshp to self.vibdisps
                    # as otherwise the higher precision displacements will be overwritten
                    # by low precision displacements which are printed further down file
                    if not hasattr(self, 'vibdispshp'):
                        self.vibdispshp = []

                    disps = []
                    for n in range(3*self.natom):
                        line = next(inputfile)
                        numbers = [float(s) for s in line[16:].split()]
                        atomindex = int(line[4:10])-1  # atom index, starting at zero
                        numbermodes = len(numbers)

                        if not disps:
                            for mode in range(numbermodes):
                                # For each mode, make list of list [atom][coord_index]
                                disps.append([[] for x in range(0, self.natom)])
                        for mode in range(numbermodes):
                            disps[mode][atomindex].append(numbers[mode])
                    self.vibdispshp.extend(disps)

                line = next(inputfile)

        # Electronic transitions.
        if line[1:14] == "Excited State":

            if not hasattr(self, "etenergies"):
                self.etenergies = []
                self.etoscs = []
                self.etsyms = []
                self.etsecs = []

            # Need to deal with lines like:
            # (restricted calc)
            # Excited State   1:   Singlet-BU     5.3351 eV  232.39 nm  f=0.1695
            # (unrestricted calc) (first excited state is 2!)
            # Excited State   2:   ?Spin  -A      0.1222 eV 10148.75 nm  f=0.0000
            # (Gaussian 09 ZINDO)
            # Excited State   1:      Singlet-?Sym    2.5938 eV  478.01 nm  f=0.0000  <S**2>=0.000
            p = re.compile(":(?P<sym>.*?)(?P<energy>-?\d*\.\d*) eV")
            groups = p.search(line).groups()
            self.etenergies.append(utils.convertor(self.float(groups[1]), "eV", "wavenumber"))
            self.etoscs.append(self.float(line.split("f=")[-1].split()[0]))
            self.etsyms.append(groups[0].strip())

            line = next(inputfile)

            p = re.compile("(\d+)")
            CIScontrib = []
            while line.find(" ->") >= 0:  # This is a contribution to the transition
                parts = line.split("->")
                self.logger.debug(parts)
                # Has to deal with lines like:
                #       32 -> 38         0.04990
                #      35A -> 45A        0.01921
                frommoindex = 0  # For restricted or alpha unrestricted
                fromMO = parts[0].strip()
                if fromMO[-1] == "B":
                    frommoindex = 1  # For beta unrestricted
                fromMO = int(p.match(fromMO).group())-1  # subtract 1 so that it is an index into moenergies

                t = parts[1].split()
                tomoindex = 0
                toMO = t[0]
                if toMO[-1] == "B":
                    tomoindex = 1
                toMO = int(p.match(toMO).group())-1  # subtract 1 so that it is an index into moenergies

                percent = self.float(t[1])
                # For restricted calculations, the percentage will be corrected
                # after parsing (see after_parsing() above).
                CIScontrib.append([(fromMO, frommoindex), (toMO, tomoindex), percent])
                line = next(inputfile)
            self.etsecs.append(CIScontrib)

        # Circular dichroism data (different for G03 vs G09)
        #
        # G03
        #
        # ## <0|r|b> * <b|rxdel|0>  (Au), Rotatory Strengths (R) in
        # ## cgs (10**-40 erg-esu-cm/Gauss)
        # ##       state          X           Y           Z     R(length)
        # ##         1         0.0006      0.0096     -0.0082     -0.4568
        # ##         2         0.0251     -0.0025      0.0002     -5.3846
        # ##         3         0.0168      0.4204     -0.3707    -15.6580
        # ##         4         0.0721      0.9196     -0.9775     -3.3553
        #
        # G09
        #
        # ## 1/2[<0|r|b>*<b|rxdel|0> + (<0|rxdel|b>*<b|r|0>)*]
        # ## Rotatory Strengths (R) in cgs (10**-40 erg-esu-cm/Gauss)
        # ##       state          XX          YY          ZZ     R(length)     R(au)
        # ##         1        -0.3893     -6.7546      5.7736     -0.4568     -0.0010
        # ##         2       -17.7437      1.7335     -0.1435     -5.3845     -0.0114
        # ##         3       -11.8655   -297.2604    262.1519    -15.6580     -0.0332
        if line[1:52] == "<0|r|b> * <b|rxdel|0>  (Au), Rotatory Strengths (R)" or \
           line[1:50] == "1/2[<0|r|b>*<b|rxdel|0> + (<0|rxdel|b>*<b|r|0>)*]":

            self.etrotats = []

            self.skip_lines(inputfile, ['units'])

            headers = next(inputfile)
            Ncolms = len(headers.split())
            line = next(inputfile)
            parts = line.strip().split()
            while len(parts) == Ncolms:
                try:
                    R = self.float(parts[4])
                except ValueError:
                    # nan or -nan if there is no first excited state
                    # (for unrestricted calculations)
                    pass
                else:
                    self.etrotats.append(R)
                line = next(inputfile)
                temp = line.strip().split()
                parts = line.strip().split()
            self.etrotats = numpy.array(self.etrotats, "d")

        # Number of basis sets functions.
        # Has to deal with lines like:
        #  NBasis =   434 NAE=    97 NBE=    97 NFC=    34 NFV=     0
        # and...
        #  NBasis = 148  MinDer = 0  MaxDer = 0
        # Although the former is in every file, it doesn't occur before
        #   the overlap matrix is printed.
        if line[1:7] == "NBasis" or line[4:10] == "NBasis":

            # For counterpoise fragment, skip these lines.
            if self.counterpoise != 0:
                return

            # For ONIOM calcs, ignore this section in order to bypass assertion failure.
            if self.oniom:
                return

            # If nbasis was already parsed, check if it changed. If it did, issue a warning.
            # In the future, we will probably want to have nbasis, as well as nmo below,
            # as a list so that we don't need to pick one value when it changes.
            nbasis = int(line.split('=')[1].split()[0])
            if hasattr(self, "nbasis"):
                try:
                    assert nbasis == self.nbasis
                except AssertionError:
                    self.logger.warning("Number of basis functions (nbasis) has changed from %i to %i" % (self.nbasis, nbasis))
            self.nbasis = nbasis

        # Number of linearly-independent basis sets.
        if line[1:7] == "NBsUse":

            # For counterpoise fragment, skip these lines.
            if self.counterpoise != 0:
                return

            # For ONIOM calcs, ignore this section in order to bypass assertion failure.
            if self.oniom:
                return

            nmo = int(line.split('=')[1].split()[0])
            self.set_attribute('nmo', nmo)

        # For AM1 calculations, set nbasis by a second method,
        #   as nmo may not always be explicitly stated.
        if line[7:22] == "basis functions, ":

            nbasis = int(line.split()[0])
            self.set_attribute('nbasis', nbasis)

        # Molecular orbital overlap matrix.
        # Has to deal with lines such as:
        #   *** Overlap ***
        #   ****** Overlap ******
        # Note that Gaussian sometimes drops basis functions,
        #  causing the overlap matrix as parsed below to not be
        #  symmetric (which is a problem for population analyses, etc.)
        if line[1:4] == "***" and (line[5:12] == "Overlap" or line[8:15] == "Overlap"):

            # Ensure that this is the main calc and not a fragment
            if self.counterpoise != 0:
                return

            self.aooverlaps = numpy.zeros((self.nbasis, self.nbasis), "d")
            # Overlap integrals for basis fn#1 are in aooverlaps[0]
            base = 0
            colmNames = next(inputfile)
            while base < self.nbasis:

                self.updateprogress(inputfile, "Overlap", self.fupdate)

                for i in range(self.nbasis-base):  # Fewer lines this time
                    line = next(inputfile)
                    parts = line.split()
                    for j in range(len(parts)-1):  # Some lines are longer than others
                        k = float(parts[j+1].replace("D", "E"))
                        self.aooverlaps[base+j, i+base] = k
                        self.aooverlaps[i+base, base+j] = k
                base += 5
                colmNames = next(inputfile)
            self.aooverlaps = numpy.array(self.aooverlaps, "d")

        # Molecular orbital coefficients (mocoeffs).
        # Essentially only produced for SCF calculations.
        # This is also the place where aonames and atombasis are parsed.
        if line[5:35] == "Molecular Orbital Coefficients" or line[5:41] == "Alpha Molecular Orbital Coefficients" or line[5:40] == "Beta Molecular Orbital Coefficients":

            # If counterpoise fragment, return without parsing orbital info
            if self.counterpoise != 0:
                return
            # Skip this for ONIOM calcs
            if self.oniom:
                return

            if line[5:40] == "Beta Molecular Orbital Coefficients":
                beta = True
                if self.popregular:
                    return
                    # This was continue before refactoring the parsers.
                    #continue # Not going to extract mocoeffs
                # Need to add an extra array to self.mocoeffs
                self.mocoeffs.append(numpy.zeros((self.nmo, self.nbasis), "d"))
            else:
                beta = False
                self.aonames = []
                self.atombasis = []
                mocoeffs = [numpy.zeros((self.nmo, self.nbasis), "d")]

            base = 0
            self.popregular = False
            for base in range(0, self.nmo, 5):

                self.updateprogress(inputfile, "Coefficients", self.fupdate)

                colmNames = next(inputfile)

                if not colmNames.split():
                    self.logger.warning("Molecular coefficients header found but no coefficients.")
                    break

                if base == 0 and int(colmNames.split()[0]) != 1:
                    # Implies that this is a POP=REGULAR calculation
                    # and so, only aonames (not mocoeffs) will be extracted
                    self.popregular = True
                symmetries = next(inputfile)
                eigenvalues = next(inputfile)
                for i in range(self.nbasis):

                    line = next(inputfile)
                    if i == 0:
                        # Find location of the start of the basis function name
                        start_of_basis_fn_name = line.find(line.split()[3]) - 1
                    if base == 0 and not beta:  # Just do this the first time 'round
                        parts = line[:start_of_basis_fn_name].split()
                        if len(parts) > 1:  # New atom
                            if i > 0:
                                self.atombasis.append(atombasis)
                            atombasis = []
                            atomname = "%s%s" % (parts[2], parts[1])
                        orbital = line[start_of_basis_fn_name:20].strip()
                        self.aonames.append("%s_%s" % (atomname, orbital))
                        atombasis.append(i)

                    part = line[21:].replace("D", "E").rstrip()
                    temp = []
                    for j in range(0, len(part), 10):
                        temp.append(float(part[j:j+10]))
                    if beta:
                        self.mocoeffs[1][base:base + len(part) // 10, i] = temp
                    else:
                        mocoeffs[0][base:base + len(part) // 10, i] = temp

                if base == 0 and not beta:  # Do the last update of atombasis
                    self.atombasis.append(atombasis)
                if self.popregular:
                    # We now have aonames, so no need to continue
                    break
            if not self.popregular and not beta:
                self.mocoeffs = mocoeffs

        # Natural orbital coefficients (nocoeffs) and occupation numbers (nooccnos),
        # which are respectively define the eigenvectors and eigenvalues of the
        # diagonalized one-electron density matrix. These orbitals are formed after
        # configuration interaction (CI) calculations, but not only. Similarly to mocoeffs,
        # we can parse and check aonames and atombasis here.
        #
        #     Natural Orbital Coefficients:
        #                           1         2         3         4         5
        #     Eigenvalues --     2.01580   2.00363   2.00000   2.00000   1.00000
        #   1 1   O  1S          0.00000  -0.15731  -0.28062   0.97330   0.00000
        #   2        2S          0.00000   0.75440   0.57746   0.07245   0.00000
        # ...
        #
        def natural_orbital_single_spin_parsing(inputfile, updateprogress_title):
            coeffs = numpy.zeros((self.nmo, self.nbasis), "d")
            occnos = []
            aonames = []
            atombasis = []
            for base in range(0, self.nmo, 5):
                self.updateprogress(inputfile, updateprogress_title, self.fupdate)
                colmNames = next(inputfile)
                eigenvalues = next(inputfile)
                occnos.extend(map(float, eigenvalues.split()[2:]))
                for i in range(self.nbasis):
                    line = next(inputfile)
                    # Just do this the first time 'round.
                    if base == 0:
                        # Changed below from :12 to :11 to deal with Elmar Neumann's example.
                        parts = line[:11].split()
                        # New atom.
                        if len(parts) > 1:
                            if i > 0:
                                atombasis.append(basisonatom)
                            basisonatom = []
                            atomname = "%s%s" % (parts[2], parts[1])
                        orbital = line[11:20].strip()
                        aonames.append("%s_%s" % (atomname, orbital))
                        basisonatom.append(i)
                    part = line[21:].replace("D", "E").rstrip()
                    temp = []
                    for j in range(0, len(part), 10):
                        temp.append(float(part[j:j+10]))
                    coeffs[base:base + len(part) // 10, i] = temp
                # Do the last update of atombasis.
                if base == 0:
                    atombasis.append(basisonatom)
            return occnos, coeffs, aonames, atombasis

        if line[5:33] == "Natural Orbital Coefficients":
            updateprogress_title = "Natural orbitals"
            nooccnos, nocoeffs, aonames, atombasis = natural_orbital_single_spin_parsing(inputfile, updateprogress_title)
            self.set_attribute("nocoeffs", nocoeffs)
            self.set_attribute("nooccnos", nooccnos)
            self.set_attribute("atombasis", atombasis)
            self.set_attribute("aonames", aonames)

        # Natural spin orbital coefficients (nsocoeffs) and occupation numbers (nsooccnos)
        # Parsed attributes are similar to the natural orbitals above except
        # the natural spin orbitals and occupation numbers are the eigenvalues
        # and eigenvectors of the one particles spin density matrices
        #     Alpha Natural Orbital Coefficients:
        #                           1         2         3         4         5
        #     Eigenvalues --     1.00000   1.00000   0.99615   0.99320   0.99107
        #   1 1   O  1S          0.70425   0.70600  -0.16844  -0.14996  -0.00000
        #   2        2S          0.01499   0.01209   0.36089   0.34940  -0.00000
        # ...
        #     Beta Natural Orbital Coefficients:
        #                           1         2         3         4         5
        #     Eigenvalues --     1.00000   1.00000   0.99429   0.98790   0.98506
        #   1 1   O  1S          0.70822   0.70798  -0.15316  -0.13458   0.00465
        #   2        2S          0.00521   0.00532   0.33837   0.33189  -0.01301
        #   3        3S         -0.02542  -0.00841   0.28649   0.53224   0.18902
        # ...

        if line[5:39] == "Alpha Natural Orbital Coefficients":
            updateprogress_title = "Natural Spin orbitals (alpha)"
            nsooccnos, nsocoeffs, aonames, atombasis = natural_orbital_single_spin_parsing(inputfile, updateprogress_title)
            if self.unified_no_nso:
                self.append_attribute("nocoeffs", nsocoeffs)
                self.append_attribute("nooccnos", nsooccnos)
            else:
                self.append_attribute("nsocoeffs", nsocoeffs)
                self.append_attribute("nsooccnos", nsooccnos)
            self.set_attribute("atombasis", atombasis)
            self.set_attribute("aonames", aonames)
        if line[5:38] == "Beta Natural Orbital Coefficients":
            updateprogress_title = "Natural Spin orbitals (beta)"
            nsooccnos, nsocoeffs, aonames, atombasis = natural_orbital_single_spin_parsing(inputfile, updateprogress_title)
            if self.unified_no_nso:
                self.append_attribute("nocoeffs", nsocoeffs)
                self.append_attribute("nooccnos", nsooccnos)
            else:
                self.append_attribute("nsocoeffs", nsocoeffs)
                self.append_attribute("nsooccnos", nsooccnos)
            self.set_attribute("atombasis", atombasis)
            self.set_attribute("aonames", aonames)

        # For FREQ=Anharm, extract anharmonicity constants
        if line[1:40] == "X matrix of Anharmonic Constants (cm-1)":
            Nvibs = len(self.vibfreqs)
            self.vibanharms = numpy.zeros((Nvibs, Nvibs), "d")

            base = 0
            colmNames = next(inputfile)
            while base < Nvibs:

                for i in range(Nvibs-base):  # Fewer lines this time
                    line = next(inputfile)
                    parts = line.split()
                    for j in range(len(parts)-1):  # Some lines are longer than others
                        k = float(parts[j+1].replace("D", "E"))
                        self.vibanharms[base+j, i+base] = k
                        self.vibanharms[i+base, base+j] = k
                base += 5
                colmNames = next(inputfile)

        # Pseudopotential charges.
        if line.find("Pseudopotential Parameters") > -1:

            self.skip_lines(inputfile, ['e', 'label1', 'label2', 'e'])

            line = next(inputfile)
            if line.find("Centers:") < 0:
                return
                # This was continue before parser refactoring.
                # continue

            # Needs to handle code like the following:
            #
            #  Center     Atomic      Valence      Angular      Power                                                       Coordinates
            #  Number     Number     Electrons     Momentum     of R      Exponent        Coefficient                X           Y           Z
            # ===================================================================================================================================
            # Centers:   1
            # Centers:  16
            # Centers:  21 24
            # Centers:  99100101102
            #    1         44           16                                                                      -4.012684 -0.696698  0.006750
            #                                      F and up
            #                                                     0      554.3796303       -0.05152700
            centers = []
            while line.find("Centers:") >= 0:
                temp = line[10:]
                for i in range(0, len(temp)-3, 3):
                    centers.append(int(temp[i:i+3]))
                line = next(inputfile)
            centers.sort()  # Not always in increasing order

            self.coreelectrons = numpy.zeros(self.natom, "i")

            for center in centers:
                front = line[:10].strip()
                while not (front and int(front) == center):
                    line = next(inputfile)
                    front = line[:10].strip()
                info = line.split()
                self.coreelectrons[center-1] = int(info[1]) - int(info[2])
                line = next(inputfile)

        # This will be printed for counterpoise calcualtions only.
        # To prevent crashing, we need to know which fragment is being considered.
        # Other information is also printed in lines that start like this.
        if line[1:14] == 'Counterpoise:':

            if line[42:50] == "fragment":
                self.counterpoise = int(line[51:54])

        # This will be printed only during ONIOM calcs; use it to set a flag
        # that will allow assertion failures to be bypassed in the code.
        if line[1:7] == "ONIOM:":
            self.oniom = True

        # This will be printed only during BOMD calcs;
        if line.startswith(" INPUT DATA FOR L118"):
            self.BOMD = True

        # Atomic charges are straightforward to parse, although the header
        # has changed over time somewhat.
        #
        # Mulliken charges:
        #                1
        #     1  C   -0.004513
        #     2  C   -0.077156
        # ...
        # Sum of Mulliken charges =   0.00000
        # Mulliken charges with hydrogens summed into heavy atoms:
        #               1
        #     1  C   -0.004513
        #     2  C    0.002063
        # ...
        #
        if line[1:25] == "Mulliken atomic charges:" or line[1:18] == "Mulliken charges:" or \
           line[1:23] == "Lowdin Atomic Charges:" or line[1:16] == "Lowdin charges:":

            if not hasattr(self, "atomcharges"):
                self.atomcharges = {}

            ones = next(inputfile)

            charges = []
            nline = next(inputfile)
            while not "Sum of" in nline:
                charges.append(float(nline.split()[2]))
                nline = next(inputfile)

            if "Mulliken" in line:
                self.atomcharges["mulliken"] = charges
            else:
                self.atomcharges["lowdin"] = charges

        if line.strip() == "Natural Population":
            if not hasattr(self, 'atomcharges'):
                self.atomcharges = {}
            line1 = next(inputfile)
            line2 = next(inputfile)
            if line1.split()[0] == 'Natural' and line2.split()[2] == 'Charge':
                dashes = next(inputfile)
                charges = []
                for i in range(self.natom):
                    nline = next(inputfile)
                    charges.append(float(nline.split()[2]))
                self.atomcharges["natural"] = charges

        #Extract Thermochemistry
        #Temperature   298.150 Kelvin.  Pressure   1.00000 Atm.
        #Zero-point correction=                           0.342233 (Hartree/
        #Thermal correction to Energy=                    0.
        #Thermal correction to Enthalpy=                  0.
        #Thermal correction to Gibbs Free Energy=         0.302940
        #Sum of electronic and zero-point Energies=           -563.649744
        #Sum of electronic and thermal Energies=              -563.636699
        #Sum of electronic and thermal Enthalpies=            -563.635755
        #Sum of electronic and thermal Free Energies=         -563.689037
        if "Sum of electronic and thermal Enthalpies" in line:
            self.set_attribute('enthalpy', float(line.split()[6]))
        if "Sum of electronic and thermal Free Energies=" in line:
            self.set_attribute('freeenergy', float(line.split()[7]))
        if line[1:13] == "Temperature ":
            self.set_attribute('temperature', float(line.split()[1]))
            self.set_attribute('pressure', float(line.split()[4]))

        # Static polarizability (from `polar`), lower triangular
        # matrix.
        if line[1:26] == "SCF Polarizability for W=":
            self.hp_polarizabilities = True
            if not hasattr(self, 'polarizabilities'):
                self.polarizabilities = []
            polarizability = numpy.zeros(shape=(3, 3))
            self.skip_line(inputfile, 'directions')
            for i in range(3):
                line = next(inputfile)
                polarizability[i, :i+1] = [self.float(x) for x in line.split()[1:]]

            polarizability = utils.symmetrize(polarizability, use_triangle='lower')
            self.polarizabilities.append(polarizability)

        # Static polarizability (from `freq`), lower triangular matrix.
        if line[1:16] == "Polarizability=":
            self.hp_polarizabilities = True
            if not hasattr(self, 'polarizabilities'):
                self.polarizabilities = []
            polarizability = numpy.zeros(shape=(3, 3))
            polarizability_list = []
            polarizability_list.extend([line[16:31], line[31:46], line[46:61]])
            line = next(inputfile)
            polarizability_list.extend([line[16:31], line[31:46], line[46:61]])
            indices = numpy.tril_indices(3)
            polarizability[indices] = [self.float(x) for x in polarizability_list]
            polarizability = utils.symmetrize(polarizability, use_triangle='lower')
            self.polarizabilities.append(polarizability)

        # Static polarizability, compressed into a single line from
        # terse printing.
        # Order is XX, YX, YY, ZX, ZY, ZZ (lower triangle).
        if line[2:23] == "Exact polarizability:":
            if not self.hp_polarizabilities:
                if not hasattr(self, 'polarizabilities'):
                    self.polarizabilities = []
                polarizability = numpy.zeros(shape=(3, 3))
                indices = numpy.tril_indices(3)
                polarizability[indices] = [self.float(x) for x in
                                           [line[23:31], line[31:39], line[39:47], line[47:55], line[55:63], line[63:71]]]
                polarizability = utils.symmetrize(polarizability, use_triangle='lower')
                self.polarizabilities.append(polarizability)

        # IRC Computation convergence checks.
        #
        # -------- Sample extract for IRC step --------
        #
        # IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC
        # ------------------------------------------------------------------------
        # INPUT DATA FOR L123
        # ------------------------------------------------------------------------
        # GENERAL PARAMETERS:
        # Follow reaction path in both directions.
        # Maximum points per path      = 200
        # Step size                    =   0.100 bohr
        # Integration scheme           = HPC
        #    Redo corrector integration= Yes
        #    DWI Weight Power          =  2
        #    DWI will use Hessian update vectors when possible.
        #    Max correction cycles     =  50
        # Initial Hessian              = CalcFC
        # Hessian evaluation           = Analytic every   5 predictor steps
        #                              = Analytic every   5 corrector steps
        # Hessian updating method      = Bofill
        # ------------------------------------------------------------------------
        # IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC
        #
        # -------- Sample extract for converged step --------
        # IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC
        # Pt  1 Step number   1 out of a maximum of  50
        # Modified Bulirsch-Stoer Extrapolation Cycles:
        #    EPS =    0.000010000000000
        # Maximum DWI energy   std dev =  0.000000595 at pt     1
        # Maximum DWI gradient std dev =  0.135684493 at pt     2
        # CORRECTOR INTEGRATION CONVERGENCE:
        #   Recorrection delta-x convergence threshold:    0.010000
        #   Delta-x Convergence Met
        # Point Number:   1          Path Number:   1
        #   CHANGE IN THE REACTION COORDINATE =    0.16730
        #   NET REACTION COORDINATE UP TO THIS POINT =    0.16730
        #  # OF POINTS ALONG THE PATH =   1
        #  # OF STEPS =   1
        #
        # Calculating another point on the path.
        # IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC
        #
        # -------- Sample extract for unconverged intermediate step --------
        # IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC
        # Error in corrector energy =          -0.0000457166
        # Magnitude of corrector gradient =     0.0140183779
        # Magnitude of analytic gradient =      0.0144021969
        # Magnitude of difference =             0.0078709968
        # Angle between gradients (degrees)=   32.1199
        # Pt 40 Step number   2 out of a maximum of  20
        # Modified Bulirsch-Stoer Extrapolation Cycles:
        #    EPS =    0.000010000000000
        # Maximum DWI energy   std dev =  0.000007300 at pt    31
        # Maximum DWI gradient std dev =  0.085197906 at pt    59
        # CORRECTOR INTEGRATION CONVERGENCE:
        #   Recorrection delta-x convergence threshold:    0.010000
        #   Delta-x Convergence NOT Met
        # IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC-IRC
        if line[1:20] == "INPUT DATA FOR L123":  # First IRC step
            if not hasattr(self, "optstatus"):
                self.optstatus = []
            self.optstatus.append(data.ccData.OPT_NEW)
        if line[3:22] == "Delta-x Convergence":
            if line[23:30] == "NOT Met":
                self.optstatus[-1] += data.ccData.OPT_UNCONVERGED
            elif line[23:26] == "Met":
                self.optstatus[-1] += data.ccData.OPT_DONE
                if not hasattr(self, 'optdone'):
                    self.optdone = []
                self.optdone.append(len(self.optstatus) - 1)

        if line[:31] == ' Normal termination of Gaussian':
            self.metadata['success'] = True