1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
|
# -*- coding: utf-8 -*-
#
# Copyright (c) 2018, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.
"""Parser for Molcas output files"""
from __future__ import print_function
import re
import string
import numpy
from cclib.parser import logfileparser
from cclib.parser import utils
class Molcas(logfileparser.Logfile):
"""A Molcas log file."""
def __init__(self, *args, **kwargs):
# Call the __init__ method of the superclass
super(Molcas, self).__init__(logname="Molcas", *args, **kwargs)
def __str__(self):
"""Return a string repeesentation of the object."""
return "Molcas log file %s" % (self.filename)
def __repr__(self):
"""Return a representation of the object."""
return 'Molcas("%s")' % (self.filename)
#These are yet to be implemented.
def normalisesym(self, label):
"""Does Molcas require symmetry label normalization?"""
def after_parsing(self):
for element, ncore in self.core_array:
self._assign_coreelectrons_to_element(element, ncore)
def before_parsing(self):
# Compile the regex for extracting the element symbol from the
# atom label in the "Molecular structure info" block.
self.re_atomelement = re.compile('([a-zA-Z]+)\d?')
# Compile the dashes-and-or-spaces-only regex.
self.re_dashes_and_spaces = re.compile('^[\s-]+$')
# Molcas can do multiple calculations in one job, and each one
# starts from the gateway module. Onle parse the first.
# TODO: It would be best to parse each calculation as a separate
# ccData object and return an iterator - something for 2.x
self.gateway_module_count = 0
def extract(self, inputfile, line):
"""Extract information from the file object inputfile."""
if "Start Module: gateway" in line:
self.gateway_module_count += 1
if self.gateway_module_count > 1:
return
# Extract the version number and optionally the Git tag and hash.
if "version" in line:
match = re.search(r"\s{2,}version\s(\d*\.\d*)", line)
if match:
package_version = match.groups()[0]
self.metadata["package_version"] = package_version
# Don't add revision information to the main package version for now.
if "tag" in line:
tag = line.split()[-1]
if "build" in line:
match = re.search(r"\*\s*build\s(\S*)\s*\*", line)
if match:
revision = match.groups()[0]
## This section is present when executing &GATEWAY.
# ++ Molecular structure info:
# -------------------------
# ************************************************
# **** Cartesian Coordinates / Bohr, Angstrom ****
# ************************************************
# Center Label x y z x y z
# 1 C1 0.526628 -2.582937 0.000000 0.278679 -1.366832 0.000000
# 2 C2 2.500165 -0.834760 0.000000 1.323030 -0.441736 0.000000
if line[25:63] == 'Cartesian Coordinates / Bohr, Angstrom':
if not hasattr(self, 'atomnos'):
self.atomnos = []
self.skip_lines(inputfile, ['stars', 'blank', 'header'])
line = next(inputfile)
atomelements = []
atomcoords = []
while line.strip() not in ('', '--'):
sline = line.split()
atomelement = sline[1].rstrip(string.digits).title()
atomelements.append(atomelement)
atomcoords.append(list(map(float, sline[5:])))
line = next(inputfile)
self.append_attribute('atomcoords', atomcoords)
if self.atomnos == []:
self.atomnos = [self.table.number[ae.title()] for ae in atomelements]
if not hasattr(self, 'natom'):
self.set_attribute('natom', len(self.atomnos))
## This section is present when executing &SCF.
# ++ Orbital specifications:
# -----------------------
# Symmetry species 1
# Frozen orbitals 0
# Occupied orbitals 3
# Secondary orbitals 77
# Deleted orbitals 0
# Total number of orbitals 80
# Number of basis functions 80
# --
if line[:29] == '++ Orbital specifications:':
self.skip_lines(inputfile, ['dashes', 'blank'])
line = next(inputfile)
symmetry_count = 1
while not line.startswith('--'):
if line.strip().startswith('Symmetry species'):
symmetry_count = int(line.split()[-1])
if line.strip().startswith('Total number of orbitals'):
nmos = line.split()[-symmetry_count:]
self.set_attribute('nmo', sum(map(int, nmos)))
if line.strip().startswith('Number of basis functions'):
nbasis = line.split()[-symmetry_count:]
self.set_attribute('nbasis', sum(map(int, nbasis)))
line = next(inputfile)
if line.strip().startswith(('Molecular charge', 'Total molecular charge')):
self.set_attribute('charge', int(float(line.split()[-1])))
# ++ Molecular charges:
# ------------------
# Mulliken charges per centre and basis function type
# ---------------------------------------------------
# C1
# 1s 2.0005
# 2s 2.0207
# 2px 0.0253
# 2pz 0.1147
# 2py 1.8198
# *s -0.0215
# *px 0.0005
# *pz 0.0023
# *py 0.0368
# *d2+ 0.0002
# *d1+ 0.0000
# *d0 0.0000
# *d1- 0.0000
# *d2- 0.0000
# *f3+ 0.0000
# *f2+ 0.0001
# *f1+ 0.0000
# *f0 0.0001
# *f1- 0.0001
# *f2- 0.0000
# *f3- 0.0003
# *g4+ 0.0000
# *g3+ 0.0000
# *g2+ 0.0000
# *g1+ 0.0000
# *g0 0.0000
# *g1- 0.0000
# *g2- 0.0000
# *g3- 0.0000
# *g4- 0.0000
# Total 6.0000
# N-E 0.0000
# Total electronic charge= 6.000000
# Total charge= 0.000000
#--
if line[:24] == '++ Molecular charges:':
atomcharges = []
while line[6:29] != 'Total electronic charge':
line = next(inputfile)
if line[6:9] == 'N-E':
atomcharges.extend(map(float, line.split()[1:]))
# Molcas only performs Mulliken population analysis.
self.set_attribute('atomcharges', {'mulliken': atomcharges})
# Ensure the charge printed here is identical to the
# charge printed before entering the SCF.
self.skip_line(inputfile, 'blank')
line = next(inputfile)
assert line[6:30] == 'Total charge='
if hasattr(self, 'charge'):
assert int(float(line.split()[2])) == self.charge
# This section is present when executing &SCF
# This section parses the total SCF Energy.
# *****************************************************************************************************************************
# * *
# * SCF/KS-DFT Program, Final results *
# * *
# * *
# * *
# * Final Results *
# * *
# *****************************************************************************************************************************
# :: Total SCF energy -37.6045426484
if line[:22] == ':: Total SCF energy' or line[:25] == ':: Total KS-DFT energy':
if not hasattr(self, 'scfenergies'):
self.scfenergies = []
scfenergy = float(line.split()[-1])
self.scfenergies.append(utils.convertor(scfenergy, 'hartree', 'eV'))
## Parsing the scftargets in this section
# ++ Optimization specifications:
# ----------------------------
# SCF Algorithm: Conventional
# Minimized density differences are used
# Number of density matrices in core 9
# Maximum number of NDDO SCF iterations 400
# Maximum number of HF SCF iterations 400
# Threshold for SCF energy change 0.10E-08
# Threshold for density matrix 0.10E-03
# Threshold for Fock matrix 0.15E-03
# Threshold for linear dependence 0.10E-08
# Threshold at which DIIS is turned on 0.15E+00
# Threshold at which QNR/C2DIIS is turned on 0.75E-01
# Threshold for Norm(delta) (QNR/C2DIIS) 0.20E-04
if line[:34] == '++ Optimization specifications:':
self.skip_lines(inputfile, ['d', 'b'])
line = next(inputfile)
if line.strip().startswith('SCF'):
scftargets = []
self.skip_lines(inputfile,
['Minimized', 'Number', 'Maximum', 'Maximum'])
lines = [next(inputfile) for i in range(7)]
targets = [
'Threshold for SCF energy change',
'Threshold for density matrix',
'Threshold for Fock matrix',
'Threshold for Norm(delta)',
]
for y in targets:
scftargets.extend([float(x.split()[-1]) for x in lines if y in x])
self.append_attribute('scftargets', scftargets)
# ++ Convergence information
# SCF iterations: Energy and convergence statistics
#
# Iter Tot. SCF One-electron Two-electron Energy Max Dij or Max Fij DNorm TNorm AccCon Time
# Energy Energy Energy Change Delta Norm in Sec.
# 1 -36.83817703 -50.43096166 13.59278464 0.00E+00 0.16E+00* 0.27E+01* 0.30E+01 0.33E+02 NoneDa 0.
# 2 -36.03405202 -45.74525152 9.71119950 0.80E+00* 0.14E+00* 0.93E-02* 0.26E+01 0.43E+01 Damp 0.
# 3 -37.08936118 -48.41536598 11.32600480 -0.11E+01* 0.12E+00* 0.91E-01* 0.97E+00 0.16E+01 Damp 0.
# 4 -37.31610460 -50.54103969 13.22493509 -0.23E+00* 0.11E+00* 0.96E-01* 0.72E+00 0.27E+01 Damp 0.
# 5 -37.33596239 -49.47021484 12.13425245 -0.20E-01* 0.59E-01* 0.59E-01* 0.37E+00 0.16E+01 Damp 0.
# ...
# Convergence after 26 Macro Iterations
# --
if line[46:91] == 'iterations: Energy and convergence statistics':
self.skip_line(inputfile, 'blank')
while line.split() != ['Energy', 'Energy', 'Energy', 'Change', 'Delta', 'Norm', 'in', 'Sec.']:
line = next(inputfile)
iteration_regex = ("^([0-9]+)" # Iter
"( [ \-0-9]*\.[0-9]{6,9})" # Tot. SCF Energy
"( [ \-0-9]*\.[0-9]{6,9})" # One-electron Energy
"( [ \-0-9]*\.[0-9]{6,9})" # Two-electron Energy
"( [ \-0-9]*\.[0-9]{2}E[\-\+][0-9]{2}\*?)" # Energy Change
"( [ \-0-9]*\.[0-9]{2}E[\-\+][0-9]{2}\*?)" # Max Dij or Delta Norm
"( [ \-0-9]*\.[0-9]{2}E[\-\+][0-9]{2}\*?)" # Max Fij
"( [ \-0-9]*\.[0-9]{2}E[\-\+][0-9]{2}\*?)" # DNorm
"( [ \-0-9]*\.[0-9]{2}E[\-\+][0-9]{2}\*?)" # TNorm
"( [ A-Za-z0-9]*)" # AccCon
"( [ \.0-9]*)$") # Time in Sec.
scfvalues = []
line = next(inputfile)
while not line.strip().startswith("Convergence"):
match = re.match(iteration_regex, line.strip())
if match:
groups = match.groups()
cols = [g.strip() for g in match.groups()]
cols = [c.replace('*', '') for c in cols]
energy = float(cols[4])
density = float(cols[5])
fock = float(cols[6])
dnorm = float(cols[7])
scfvalues.append([energy, density, fock, dnorm])
if line.strip() == "--":
self.logger.warning('File terminated before end of last SCF!')
break
line = next(inputfile)
self.append_attribute('scfvalues', scfvalues)
# Harmonic frequencies in cm-1
#
# IR Intensities in km/mol
#
# 1 2 3 4 5 6
#
# Frequency: i60.14 i57.39 128.18 210.06 298.24 309.65
#
# Intensity: 3.177E-03 2.129E-06 4.767E-01 2.056E-01 6.983E-07 1.753E-07
# Red. mass: 2.42030 2.34024 2.68044 3.66414 2.61721 3.34904
#
# C1 x -0.00000 0.00000 0.00000 -0.05921 0.00000 -0.06807
# C1 y 0.00001 -0.00001 -0.00001 0.00889 0.00001 -0.02479
# C1 z -0.03190 0.04096 -0.03872 0.00001 -0.12398 -0.00002
# C2 x -0.00000 0.00001 0.00000 -0.06504 0.00000 -0.03487
# C2 y 0.00000 -0.00000 -0.00000 0.01045 0.00001 -0.05659
# C2 z -0.03703 -0.03449 -0.07269 0.00000 -0.07416 -0.00001
# C3 x -0.00000 0.00001 0.00000 -0.06409 -0.00001 0.05110
# C3 y -0.00000 0.00001 0.00000 0.00152 0.00000 -0.03263
# C3 z -0.03808 -0.08037 -0.07267 -0.00001 0.07305 0.00000
# ...
# H20 y 0.00245 -0.00394 0.03215 0.03444 -0.10424 -0.10517
# H20 z 0.00002 -0.00001 0.00000 -0.00000 -0.00000 0.00000
#
#
#
# ++ Thermochemistry
if line[1:29] == 'Harmonic frequencies in cm-1':
self.skip_line(inputfile, 'blank')
line = next(inputfile)
while 'Thermochemistry' not in line:
if 'Frequency:' in line:
if not hasattr(self, 'vibfreqs'):
self.vibfreqs = []
vibfreqs = [float(i.replace('i', '-')) for i in line.split()[1:]]
self.vibfreqs.extend(vibfreqs)
if 'Intensity:' in line:
if not hasattr(self, 'vibirs'):
self.vibirs = []
vibirs = map(float, line.split()[1:])
self.vibirs.extend(vibirs)
if 'Red.' in line:
self.skip_line(inputfile, 'blank')
line = next(inputfile)
if not hasattr(self, 'vibdisps'):
self.vibdisps = []
disps = []
for n in range(3*self.natom):
numbers = [float(s) for s in line[17:].split()]
# The atomindex should start at 0 instead of 1.
atomindex = int(re.search(r'\d+$', line.split()[0]).group()) - 1
numbermodes = len(numbers)
if len(disps) == 0:
# Appends empty array of the following
# dimensions (numbermodes, natom, 0) to disps.
for mode in range(numbermodes):
disps.append([[] for x in range(0, self.natom)])
for mode in range(numbermodes):
disps[mode][atomindex].append(numbers[mode])
line = next(inputfile)
self.vibdisps.extend(disps)
line = next(inputfile)
## Parsing thermochemistry attributes here
# ++ Thermochemistry
#
# *********************
# * *
# * THERMOCHEMISTRY *
# * *
# *********************
#
# Mass-centered Coordinates (Angstrom):
# ***********************************************************
# ...
# *****************************************************
# Temperature = 0.00 Kelvin, Pressure = 1.00 atm
# -----------------------------------------------------
# Molecular Partition Function and Molar Entropy:
# q/V (M**-3) S(kcal/mol*K)
# Electronic 0.100000D+01 0.000
# Translational 0.100000D+01 0.000
# Rotational 0.100000D+01 2.981
# Vibrational 0.100000D+01 0.000
# TOTAL 0.100000D+01 2.981
#
# Thermal contributions to INTERNAL ENERGY:
# Electronic 0.000 kcal/mol 0.000000 au.
# Translational 0.000 kcal/mol 0.000000 au.
# Rotational 0.000 kcal/mol 0.000000 au.
# Vibrational 111.885 kcal/mol 0.178300 au.
# TOTAL 111.885 kcal/mol 0.178300 au.
#
# Thermal contributions to
# ENTHALPY 111.885 kcal/mol 0.178300 au.
# GIBBS FREE ENERGY 111.885 kcal/mol 0.178300 au.
#
# Sum of energy and thermal contributions
# INTERNAL ENERGY -382.121931 au.
# ENTHALPY -382.121931 au.
# GIBBS FREE ENERGY -382.121931 au.
# -----------------------------------------------------
# ...
# ENTHALPY -382.102619 au.
# GIBBS FREE ENERGY -382.179819 au.
# -----------------------------------------------------
# --
#
# ++ Isotopic shifts:
if line[4:19] == 'THERMOCHEMISTRY':
temperature_values = []
pressure_values = []
entropy_values = []
internal_energy_values = []
enthalpy_values = []
free_energy_values = []
while 'Isotopic' not in line:
if line[1:12] == 'Temperature':
temperature_values.append(float(line.split()[2]))
pressure_values.append(float(line.split()[6]))
if line[1:48] == 'Molecular Partition Function and Molar Entropy:':
while 'TOTAL' not in line:
line = next(inputfile)
entropy_values.append(utils.convertor(float(line.split()[2]), 'kcal/mol', 'hartree'))
if line[1:40] == 'Sum of energy and thermal contributions':
internal_energy_values.append(float(next(inputfile).split()[2]))
enthalpy_values.append(float(next(inputfile).split()[1]))
free_energy_values.append(float(next(inputfile).split()[3]))
line = next(inputfile)
# When calculations for more than one temperature value are
# performed, the values corresponding to room temperature (298.15 K)
# are returned and if no calculations are performed for 298.15 K, then
# the values corresponding last temperature value are returned.
index = -1
if 298.15 in temperature_values:
index = temperature_values.index(298.15)
self.set_attribute('temperature', temperature_values[index])
if len(temperature_values) > 1:
self.logger.warning('More than 1 values of temperature found')
self.set_attribute('pressure', pressure_values[index])
if len(pressure_values) > 1:
self.logger.warning('More than 1 values of pressure found')
self.set_attribute('entropy', entropy_values[index])
if len(entropy_values) > 1:
self.logger.warning('More than 1 values of entropy found')
self.set_attribute('enthalpy', enthalpy_values[index])
if len(enthalpy_values) > 1:
self.logger.warning('More than 1 values of enthalpy found')
self.set_attribute('freeenergy', free_energy_values[index])
if len(free_energy_values) > 1:
self.logger.warning('More than 1 values of freeenergy found')
## Parsing Geometrical Optimization attributes in this section.
# ++ Slapaf input parameters:
# ------------------------
#
# Max iterations: 2000
# Convergence test a la Schlegel.
# Convergence criterion on gradient/para.<=: 0.3E-03
# Convergence criterion on step/parameter<=: 0.3E-03
# Convergence criterion on energy change <=: 0.0E+00
# Max change of an internal coordinate: 0.30E+00
# ...
# ...
# **********************************************************************************************************************
# * Energy Statistics for Geometry Optimization *
# **********************************************************************************************************************
# Energy Grad Grad Step Estimated Geom Hessian
# Iter Energy Change Norm Max Element Max Element Final Energy Update Update Index
# 1 -382.30023222 0.00000000 0.107221 0.039531 nrc047 0.085726 nrc047 -382.30533799 RS-RFO None 0
# 2 -382.30702964 -0.00679742 0.043573 0.014908 nrc001 0.068195 nrc001 -382.30871333 RS-RFO BFGS 0
# 3 -382.30805348 -0.00102384 0.014883 0.005458 nrc010 -0.020973 nrc001 -382.30822089 RS-RFO BFGS 0
# ...
# ...
# 18 -382.30823419 -0.00000136 0.001032 0.000100 nrc053 0.012319 nrc053 -382.30823452 RS-RFO BFGS 0
# 19 -382.30823198 0.00000221 0.001051 -0.000092 nrc054 0.066565 nrc053 -382.30823822 RS-RFO BFGS 0
# 20 -382.30820252 0.00002946 0.001132 -0.000167 nrc021 -0.064003 nrc053 -382.30823244 RS-RFO BFGS 0
#
# +----------------------------------+----------------------------------+
# + Cartesian Displacements + Gradient in internals +
# + Value Threshold Converged? + Value Threshold Converged? +
# +-----+----------------------------------+----------------------------------+
# + RMS + 5.7330E-02 1.2000E-03 No + 1.6508E-04 3.0000E-04 Yes +
# +-----+----------------------------------+----------------------------------+
# + Max + 1.2039E-01 1.8000E-03 No + 1.6711E-04 4.5000E-04 Yes +
# +-----+----------------------------------+----------------------------------+
if 'Convergence criterion on energy change' in line:
self.energy_threshold = float(line.split()[6])
# If energy change threshold equals zero,
# then energy change is not a criteria for convergence.
if self.energy_threshold == 0:
self.energy_threshold = numpy.inf
if 'Energy Statistics for Geometry Optimization' in line:
if not hasattr(self, 'geovalues'):
self.geovalues = []
self.skip_lines(inputfile, ['stars', 'header'])
line = next(inputfile)
assert 'Iter Energy Change Norm' in line
# A variable keeping track of ongoing iteration.
iter_number = len(self.geovalues) + 1
# Iterate till blank line.
while line.split() != []:
for i in range(iter_number):
line = next(inputfile)
self.geovalues.append([float(line.split()[2])])
line = next(inputfile)
# Along with energy change, RMS and Max values of change in
# Cartesian Diaplacement and Gradients are used as optimization
# criteria.
self.skip_lines(inputfile, ['border', 'header', 'header', 'border'])
line = next(inputfile)
assert '+ RMS +' in line
line_rms = line.split()
line = next(inputfile)
line_max = next(inputfile).split()
if not hasattr(self, 'geotargets'):
# The attribute geotargets is an array consisting of the following
# values: [Energy threshold, Max Gradient threshold, RMS Gradient threshold, \
# Max Displacements threshold, RMS Displacements threshold].
max_gradient_threshold = float(line_max[8])
rms_gradient_threshold = float(line_rms[8])
max_displacement_threshold = float(line_max[4])
rms_displacement_threshold = float(line_rms[4])
self.geotargets = [self.energy_threshold, max_gradient_threshold, rms_gradient_threshold, max_displacement_threshold, rms_displacement_threshold]
max_gradient_change = float(line_max[7])
rms_gradient_change = float(line_rms[7])
max_displacement_change = float(line_max[3])
rms_displacement_change = float(line_rms[3])
self.geovalues[iter_number - 1].extend([max_gradient_change, rms_gradient_change, max_displacement_change, rms_displacement_change])
# *********************************************************
# * Nuclear coordinates for the next iteration / Angstrom *
# *********************************************************
# ATOM X Y Z
# C1 0.235560 -1.415847 0.012012
# C2 1.313797 -0.488199 0.015149
# C3 1.087050 0.895510 0.014200
# ...
# ...
# H19 -0.021327 -4.934915 -0.029355
# H20 -1.432030 -3.721047 -0.039835
#
# --
if 'Nuclear coordinates for the next iteration / Angstrom' in line:
self.skip_lines(inputfile, ['s', 'header'])
line = next(inputfile)
atomcoords = []
while line.split() != []:
atomcoords.append([float(c) for c in line.split()[1:]])
line = next(inputfile)
if len(atomcoords) == self.natom:
self.atomcoords.append(atomcoords)
else:
self.logger.warning(
"Parsed coordinates not consistent with previous, skipping. "
"This could be due to symmetry being turned on during the job. "
"Length was %i, now found %i. New coordinates: %s"
% (len(self.atomcoords[-1]), len(atomcoords), str(atomcoords)))
# **********************************************************************************************************************
# * Energy Statistics for Geometry Optimization *
# **********************************************************************************************************************
# Energy Grad Grad Step Estimated Geom Hessian
# Iter Energy Change Norm Max Element Max Element Final Energy Update Update Index
# 1 -382.30023222 0.00000000 0.107221 0.039531 nrc047 0.085726 nrc047 -382.30533799 RS-RFO None 0
# ...
# ...
# 23 -382.30823115 -0.00000089 0.001030 0.000088 nrc053 0.000955 nrc053 -382.30823118 RS-RFO BFGS 0
#
# +----------------------------------+----------------------------------+
# + Cartesian Displacements + Gradient in internals +
# + Value Threshold Converged? + Value Threshold Converged? +
# +-----+----------------------------------+----------------------------------+
# + RMS + 7.2395E-04 1.2000E-03 Yes + 2.7516E-04 3.0000E-04 Yes +
# +-----+----------------------------------+----------------------------------+
# + Max + 1.6918E-03 1.8000E-03 Yes + 8.7768E-05 4.5000E-04 Yes +
# +-----+----------------------------------+----------------------------------+
#
# Geometry is converged in 23 iterations to a Minimum Structure
if 'Geometry is converged' in line:
if not hasattr(self, 'optdone'):
self.optdone = []
self.optdone.append(len(self.atomcoords))
# *********************************************************
# * Nuclear coordinates of the final structure / Angstrom *
# *********************************************************
# ATOM X Y Z
# C1 0.235547 -1.415838 0.012193
# C2 1.313784 -0.488201 0.015297
# C3 1.087036 0.895508 0.014333
# ...
# ...
# H19 -0.021315 -4.934913 -0.029666
# H20 -1.431994 -3.721026 -0.041078
if 'Nuclear coordinates of the final structure / Angstrom' in line:
self.skip_lines(inputfile, ['s', 'header'])
line = next(inputfile)
atomcoords = []
while line.split() != []:
atomcoords.append([float(c) for c in line.split()[1:]])
line = next(inputfile)
if len(atomcoords) == self.natom:
self.atomcoords.append(atomcoords)
else:
self.logger.error(
'Number of atoms (%d) in parsed atom coordinates '
'is smaller than previously (%d), possibly due to '
'symmetry. Ignoring these coordinates.'
% (len(atomcoords), self.natom))
# All orbitals with orbital energies smaller than E(LUMO)+0.5 are printed
#
# ++ Molecular orbitals:
# -------------------
#
# Title: RKS-DFT orbitals
#
# Molecular orbitals for symmetry species 1: a
#
# Orbital 1 2 3 4 5 6 7 8 9 10
# Energy -10.0179 -10.0179 -10.0075 -10.0075 -10.0066 -10.0066 -10.0056 -10.0055 -9.9919 -9.9919
# Occ. No. 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
#
# 1 C1 1s -0.6990 0.6989 0.0342 0.0346 0.0264 -0.0145 -0.0124 -0.0275 -0.0004 -0.0004
# 2 C1 2s -0.0319 0.0317 -0.0034 -0.0033 -0.0078 0.0034 0.0041 0.0073 -0.0002 -0.0002
# ...
# ...
# 58 H18 1s 0.2678
# 59 H19 1s -0.2473
# 60 H20 1s 0.1835
# --
if '++ Molecular orbitals:' in line:
self.skip_lines(inputfile, ['d', 'b'])
line = next(inputfile)
# We don't currently support parsing natural orbitals or active space orbitals.
if 'Natural orbitals' not in line and "Pseudonatural" not in line:
self.skip_line(inputfile, 'b')
# Symmetry is not currently supported, so this line can have one form.
while 'Molecular orbitals for symmetry species 1: a' not in line.strip():
line = next(inputfile)
# Symmetry is not currently supported, so this line can have one form.
if line.strip() != 'Molecular orbitals for symmetry species 1: a':
return
line = next(inputfile)
moenergies = []
homos = 0
mocoeffs = []
while line[:2] != '--':
line = next(inputfile)
if line.strip().startswith('Orbital'):
orbital_index = line.split()[1:]
for i in orbital_index:
mocoeffs.append([])
if 'Energy' in line:
energies = [utils.convertor(float(x), 'hartree', 'eV') for x in line.split()[1:]]
moenergies.extend(energies)
if 'Occ. No.' in line:
for i in line.split()[2:]:
if float(i) != 0:
homos += 1
aonames = []
tokens = line.split()
if tokens and tokens[0] == '1':
while tokens and tokens[0] != '--':
aonames.append("{atom}_{orbital}".format(atom=tokens[1], orbital=tokens[2]))
info = tokens[3:]
j = 0
for i in orbital_index:
mocoeffs[int(i)-1].append(float(info[j]))
j += 1
line = next(inputfile)
tokens = line.split()
self.set_attribute('aonames', aonames)
if len(moenergies) != self.nmo:
moenergies.extend([numpy.nan for x in range(self.nmo - len(moenergies))])
self.append_attribute('moenergies', moenergies)
if not hasattr(self, 'homos'):
self.homos = []
self.homos.extend([homos-1])
while len(mocoeffs) < self.nmo:
nan_array = [numpy.nan for i in range(self.nbasis)]
mocoeffs.append(nan_array)
self.append_attribute('mocoeffs', mocoeffs)
## Parsing MP energy from the &MBPT2 module.
# Conventional algorithm used...
#
# SCF energy = -74.9644564043 a.u.
# Second-order correlation energy = -0.0364237923 a.u.
#
# Total energy = -75.0008801966 a.u.
# Reference weight ( Cref**2 ) = 0.98652
#
# :: Total MBPT2 energy -75.0008801966
#
#
# Zeroth-order energy (E0) = -36.8202538520 a.u.
#
# Shanks-type energy S1(E) = -75.0009150108 a.u.
if 'Total MBPT2 energy' in line:
mpenergies = []
mpenergies.append(utils.convertor(self.float(line.split()[4]), 'hartree', 'eV'))
if not hasattr(self, 'mpenergies'):
self.mpenergies = []
self.mpenergies.append(mpenergies)
# Parsing data ccenergies from &CCSDT module.
# --- Start Module: ccsdt at Thu Jul 26 14:03:23 2018 ---
#
# ()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()
#
# &CCSDT
# ...
# ...
# 14 -75.01515915 -0.05070274 -0.00000029
# 15 -75.01515929 -0.05070289 -0.00000014
# 16 -75.01515936 -0.05070296 -0.00000007
# Convergence after 17 Iterations
#
#
# Total energy (diff) : -75.01515936 -0.00000007
# Correlation energy : -0.0507029554992
if 'Start Module: ccsdt' in line:
self.skip_lines(inputfile, ['b', '()', 'b'])
line = next(inputfile)
if '&CCSDT' in line:
while not line.strip().startswith('Total energy (diff)'):
line = next(inputfile)
ccenergies = utils.convertor(self.float(line.split()[4]), 'hartree', 'eV')
if not hasattr(self, 'ccenergies'):
self.ccenergies= []
self.ccenergies.append(ccenergies)
# ++ Primitive basis info:
# ---------------------
#
#
# *****************************************************
# ******** Primitive Basis Functions (Valence) ********
# *****************************************************
#
#
# Basis set:C.AUG-CC-PVQZ.........
#
# Type
# s
# No. Exponent Contraction Coefficients
# 1 0.339800000D+05 0.000091 -0.000019 0.000000 0.000000 0.000000 0.000000
# 2 0.508900000D+04 0.000704 -0.000151 0.000000 0.000000 0.000000 0.000000
# ...
# ...
# 29 0.424000000D+00 0.000000 1.000000
#
# Number of primitives 93
# Number of basis functions 80
#
# --
if line.startswith('++ Primitive basis info:'):
self.skip_lines(inputfile, ['d', 'b', 'b', 's', 'header', 's', 'b'])
line = next(inputfile)
gbasis_array = []
while '--' not in line and '****' not in line:
if 'Basis set:' in line:
basis_element_patterns = re.findall('Basis set:([A-Za-z]{1,2})\.', line)
assert len(basis_element_patterns) == 1
basis_element = basis_element_patterns[0].title()
gbasis_array.append((basis_element, []))
if 'Type' in line:
line = next(inputfile)
shell_type = line.split()[0].upper()
self.skip_line(inputfile, 'headers')
line = next(inputfile)
exponents = []
coefficients = []
func_array = []
while line.split():
exponents.append(self.float(line.split()[1]))
coefficients.append([self.float(i) for i in line.split()[2:]])
line = next(inputfile)
for i in range(len(coefficients[0])):
func_tuple = (shell_type, [])
for iexp, exp in enumerate(exponents):
coeff = coefficients[iexp][i]
if coeff != 0:
func_tuple[1].append((exp, coeff))
gbasis_array[-1][1].append(func_tuple)
line = next(inputfile)
atomsymbols = [self.table.element[atomno] for atomno in self.atomnos]
self.gbasis = [[] for i in range(self.natom)]
for element, gbasis in gbasis_array:
mask = [element == possible_element for possible_element in atomsymbols]
indices = [i for (i, x) in enumerate(mask) if x]
for index in indices:
self.gbasis[index] = gbasis
# ++ Basis set information:
# ----------------------
# ...
# Basis set label: MO.ECP.HAY-WADT.5S6P4D.3S3P2D.14E-LANL2DZ.....
#
# Electronic valence basis set:
# ------------------
# Associated Effective Charge 14.000000 au
# Associated Actual Charge 42.000000 au
# Nuclear Model: Point charge
# ...
#
# Effective Core Potential specification:
# =======================================
#
# Label Cartesian Coordinates / Bohr
#
# MO 0.0006141610 -0.0006141610 0.0979067106
# --
if '++ Basis set information:' in line:
self.core_array = []
basis_element = None
ncore = 0
while line[:2] != '--':
if 'Basis set label' in line:
try:
basis_element = line.split()[3].split('.')[0]
basis_element = basis_element[0] + basis_element[1:].lower()
except:
self.logger.warning('Basis set label is missing!')
basis_element = ''
if 'valence basis set:' in line.lower():
self.skip_line(inputfile, 'd')
line = next(inputfile)
if 'Associated Effective Charge' in line:
effective_charge = float(line.split()[3])
actual_charge = float(next(inputfile).split()[3])
element = self.table.element[int(actual_charge)]
ncore = int(actual_charge - effective_charge)
if basis_element:
assert basis_element == element
else:
basis_element = element
if basis_element and ncore:
self.core_array.append((basis_element, ncore))
basis_element = ''
ncore = 0
line = next(inputfile)
|