File: molcasparser.py

package info (click to toggle)
cclib-data 1.6.2-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 87,912 kB
  • sloc: python: 16,440; sh: 131; makefile: 79; cpp: 31
file content (919 lines) | stat: -rw-r--r-- 44,395 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
# -*- coding: utf-8 -*-
#
# Copyright (c) 2018, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.

"""Parser for Molcas output files"""

from __future__ import print_function

import re
import string

import numpy

from cclib.parser import logfileparser
from cclib.parser import utils


class Molcas(logfileparser.Logfile):
    """A Molcas log file."""

    def __init__(self, *args, **kwargs):

        # Call the __init__ method of the superclass
        super(Molcas, self).__init__(logname="Molcas", *args, **kwargs)

    def __str__(self):
        """Return a string repeesentation of the object."""
        return "Molcas log file %s" % (self.filename)

    def __repr__(self):
        """Return a representation of the object."""
        return 'Molcas("%s")' % (self.filename)

    #These are yet to be implemented.
    def normalisesym(self, label):
        """Does Molcas require symmetry label normalization?"""

    def after_parsing(self):
        for element, ncore in self.core_array:
            self._assign_coreelectrons_to_element(element, ncore)

    def before_parsing(self):
        # Compile the regex for extracting the element symbol from the
        # atom label in the "Molecular structure info" block.
        self.re_atomelement = re.compile('([a-zA-Z]+)\d?')

        # Compile the dashes-and-or-spaces-only regex.
        self.re_dashes_and_spaces = re.compile('^[\s-]+$')

        # Molcas can do multiple calculations in one job, and each one
        # starts from the gateway module. Onle parse the first.
        # TODO: It would be best to parse each calculation as a separate
        # ccData object and return an iterator - something for 2.x
        self.gateway_module_count = 0

    def extract(self, inputfile, line):
        """Extract information from the file object inputfile."""

        if "Start Module: gateway" in line:
            self.gateway_module_count += 1

        if self.gateway_module_count > 1:
            return

        # Extract the version number and optionally the Git tag and hash.
        if "version" in line:
            match = re.search(r"\s{2,}version\s(\d*\.\d*)", line)
            if match:
                package_version = match.groups()[0]
                self.metadata["package_version"] = package_version
        # Don't add revision information to the main package version for now.
        if "tag" in line:
            tag = line.split()[-1]
        if "build" in line:
            match = re.search(r"\*\s*build\s(\S*)\s*\*", line)
            if match:
                revision = match.groups()[0]

        ## This section is present when executing &GATEWAY.
        # ++    Molecular structure info:
        #       -------------------------

        #                     ************************************************
        #                     **** Cartesian Coordinates / Bohr, Angstrom ****
        #                     ************************************************

        #      Center  Label                x              y              z                     x              y              z
        #         1      C1               0.526628      -2.582937       0.000000              0.278679      -1.366832       0.000000
        #         2      C2               2.500165      -0.834760       0.000000              1.323030      -0.441736       0.000000
        if line[25:63] == 'Cartesian Coordinates / Bohr, Angstrom':
            if not hasattr(self, 'atomnos'):
                self.atomnos = []

            self.skip_lines(inputfile, ['stars', 'blank', 'header'])

            line = next(inputfile)

            atomelements = []
            atomcoords = []

            while line.strip() not in ('', '--'):
                sline = line.split()
                atomelement = sline[1].rstrip(string.digits).title()
                atomelements.append(atomelement)
                atomcoords.append(list(map(float, sline[5:])))
                line = next(inputfile)

            self.append_attribute('atomcoords', atomcoords)

            if self.atomnos == []:
                self.atomnos = [self.table.number[ae.title()] for ae in atomelements]

            if not hasattr(self, 'natom'):
                self.set_attribute('natom', len(self.atomnos))

        ## This section is present when executing &SCF.
        #  ++    Orbital specifications:
        #  -----------------------

        #  Symmetry species               1

        #  Frozen orbitals                0
        #  Occupied orbitals              3
        #  Secondary orbitals            77
        #  Deleted orbitals               0
        #  Total number of orbitals      80
        #  Number of basis functions     80
        #  --
        if line[:29] == '++    Orbital specifications:':

            self.skip_lines(inputfile, ['dashes', 'blank'])
            line = next(inputfile)

            symmetry_count = 1
            while not line.startswith('--'):
                if line.strip().startswith('Symmetry species'):
                    symmetry_count = int(line.split()[-1])
                if line.strip().startswith('Total number of orbitals'):
                    nmos = line.split()[-symmetry_count:]
                    self.set_attribute('nmo', sum(map(int, nmos)))
                if line.strip().startswith('Number of basis functions'):
                    nbasis = line.split()[-symmetry_count:]
                    self.set_attribute('nbasis', sum(map(int, nbasis)))

                line = next(inputfile)

        if line.strip().startswith(('Molecular charge', 'Total molecular charge')):
            self.set_attribute('charge', int(float(line.split()[-1])))

        #  ++    Molecular charges:
        #  ------------------

        #  Mulliken charges per centre and basis function type
        #  ---------------------------------------------------

        #         C1
        #  1s     2.0005
        #  2s     2.0207
        #  2px    0.0253
        #  2pz    0.1147
        #  2py    1.8198
        #  *s    -0.0215
        #  *px    0.0005
        #  *pz    0.0023
        #  *py    0.0368
        #  *d2+   0.0002
        #  *d1+   0.0000
        #  *d0    0.0000
        #  *d1-   0.0000
        #  *d2-   0.0000
        #  *f3+   0.0000
        #  *f2+   0.0001
        #  *f1+   0.0000
        #  *f0    0.0001
        #  *f1-   0.0001
        #  *f2-   0.0000
        #  *f3-   0.0003
        #  *g4+   0.0000
        #  *g3+   0.0000
        #  *g2+   0.0000
        #  *g1+   0.0000
        #  *g0    0.0000
        #  *g1-   0.0000
        #  *g2-   0.0000
        #  *g3-   0.0000
        #  *g4-   0.0000
        #  Total  6.0000

        #  N-E    0.0000

        #  Total electronic charge=    6.000000

        #  Total            charge=    0.000000
        #--
        if line[:24] == '++    Molecular charges:':

            atomcharges = []

            while line[6:29] != 'Total electronic charge':
                line = next(inputfile)
                if line[6:9] == 'N-E':
                    atomcharges.extend(map(float, line.split()[1:]))

            # Molcas only performs Mulliken population analysis.
            self.set_attribute('atomcharges', {'mulliken': atomcharges})

            # Ensure the charge printed here is identical to the
            # charge printed before entering the SCF.
            self.skip_line(inputfile, 'blank')
            line = next(inputfile)
            assert line[6:30] == 'Total            charge='
            if hasattr(self, 'charge'):
                assert int(float(line.split()[2])) == self.charge

        # This section is present when executing &SCF
        # This section parses the total SCF Energy.
        # *****************************************************************************************************************************
        # *                                                                                                                           *
        # *                                             SCF/KS-DFT Program, Final results                                             *
        # *                                                                                                                           *
        # *                                                                                                                           *
        # *                                                                                                                           *
        # *                                                       Final Results                                                       *
        # *                                                                                                                           *
        # *****************************************************************************************************************************

        # ::    Total SCF energy                                -37.6045426484
        if line[:22] == '::    Total SCF energy' or line[:25] == '::    Total KS-DFT energy':
            if not hasattr(self, 'scfenergies'):
                self.scfenergies = []
            scfenergy = float(line.split()[-1])
            self.scfenergies.append(utils.convertor(scfenergy, 'hartree', 'eV'))

        ## Parsing the scftargets in this section
        #  ++    Optimization specifications:
        #  ----------------------------

        #  SCF Algorithm: Conventional
        #  Minimized density differences are used
        #  Number of density matrices in core                9
        #  Maximum number of NDDO SCF iterations           400
        #  Maximum number of HF  SCF iterations            400
        #  Threshold for SCF energy change            0.10E-08
        #  Threshold for density matrix               0.10E-03
        #  Threshold for Fock matrix                  0.15E-03
        #  Threshold for linear dependence            0.10E-08
        #  Threshold at which DIIS is turned on       0.15E+00
        #  Threshold at which QNR/C2DIIS is turned on 0.75E-01
        #  Threshold for Norm(delta) (QNR/C2DIIS)     0.20E-04
        if line[:34] == '++    Optimization specifications:':
            self.skip_lines(inputfile, ['d', 'b'])
            line = next(inputfile)
            if line.strip().startswith('SCF'):
                scftargets = []
                self.skip_lines(inputfile,
                                ['Minimized', 'Number', 'Maximum', 'Maximum'])
                lines = [next(inputfile) for i in range(7)]
                targets = [
                    'Threshold for SCF energy change',
                    'Threshold for density matrix',
                    'Threshold for Fock matrix',
                    'Threshold for Norm(delta)',
                ]
                for y in targets:
                    scftargets.extend([float(x.split()[-1]) for x in lines if y in x])

                self.append_attribute('scftargets', scftargets)

        #  ++ Convergence information
        #                                     SCF        iterations: Energy and convergence statistics
        #
        #  Iter     Tot. SCF       One-electron     Two-electron   Energy   Max Dij or  Max Fij    DNorm      TNorm     AccCon    Time
        #             Energy          Energy          Energy       Change   Delta Norm                                          in Sec.
        #     1    -36.83817703    -50.43096166     13.59278464  0.00E+00   0.16E+00*  0.27E+01*   0.30E+01   0.33E+02   NoneDa    0.
        #     2    -36.03405202    -45.74525152      9.71119950  0.80E+00*  0.14E+00*  0.93E-02*   0.26E+01   0.43E+01   Damp      0.
        #     3    -37.08936118    -48.41536598     11.32600480 -0.11E+01*  0.12E+00*  0.91E-01*   0.97E+00   0.16E+01   Damp      0.
        #     4    -37.31610460    -50.54103969     13.22493509 -0.23E+00*  0.11E+00*  0.96E-01*   0.72E+00   0.27E+01   Damp      0.
        #     5    -37.33596239    -49.47021484     12.13425245 -0.20E-01*  0.59E-01*  0.59E-01*   0.37E+00   0.16E+01   Damp      0.
        # ...
        #           Convergence after 26 Macro Iterations
        # --
        if line[46:91] == 'iterations: Energy and convergence statistics':

            self.skip_line(inputfile, 'blank')

            while line.split() != ['Energy', 'Energy', 'Energy', 'Change', 'Delta', 'Norm', 'in', 'Sec.']:
                line = next(inputfile)

            iteration_regex = ("^([0-9]+)"                                  # Iter
                               "( [ \-0-9]*\.[0-9]{6,9})"                   # Tot. SCF Energy
                               "( [ \-0-9]*\.[0-9]{6,9})"                   # One-electron Energy
                               "( [ \-0-9]*\.[0-9]{6,9})"                   # Two-electron Energy
                               "( [ \-0-9]*\.[0-9]{2}E[\-\+][0-9]{2}\*?)"   # Energy Change
                               "( [ \-0-9]*\.[0-9]{2}E[\-\+][0-9]{2}\*?)"   # Max Dij or Delta Norm
                               "( [ \-0-9]*\.[0-9]{2}E[\-\+][0-9]{2}\*?)"   # Max Fij
                               "( [ \-0-9]*\.[0-9]{2}E[\-\+][0-9]{2}\*?)"   # DNorm
                               "( [ \-0-9]*\.[0-9]{2}E[\-\+][0-9]{2}\*?)"   # TNorm
                               "( [ A-Za-z0-9]*)"                           # AccCon
                               "( [ \.0-9]*)$")                             # Time in Sec.

            scfvalues = []
            line = next(inputfile)
            while not line.strip().startswith("Convergence"):

                match = re.match(iteration_regex, line.strip())
                if match:
                    groups = match.groups()
                    cols = [g.strip() for g in match.groups()]
                    cols = [c.replace('*', '') for c in cols]

                    energy = float(cols[4])
                    density = float(cols[5])
                    fock = float(cols[6])
                    dnorm = float(cols[7])
                    scfvalues.append([energy, density, fock, dnorm])

                if line.strip() == "--":
                    self.logger.warning('File terminated before end of last SCF!')
                    break

                line = next(inputfile)

            self.append_attribute('scfvalues', scfvalues)

        #  Harmonic frequencies in cm-1
        #
        #  IR Intensities in km/mol
        #
        #                         1         2         3         4         5         6
        #
        #      Frequency:       i60.14    i57.39    128.18    210.06    298.24    309.65
        #
        #      Intensity:    3.177E-03 2.129E-06 4.767E-01 2.056E-01 6.983E-07 1.753E-07
        #      Red. mass:      2.42030   2.34024   2.68044   3.66414   2.61721   3.34904
        #
        #      C1         x   -0.00000   0.00000   0.00000  -0.05921   0.00000  -0.06807
        #      C1         y    0.00001  -0.00001  -0.00001   0.00889   0.00001  -0.02479
        #      C1         z   -0.03190   0.04096  -0.03872   0.00001  -0.12398  -0.00002
        #      C2         x   -0.00000   0.00001   0.00000  -0.06504   0.00000  -0.03487
        #      C2         y    0.00000  -0.00000  -0.00000   0.01045   0.00001  -0.05659
        #      C2         z   -0.03703  -0.03449  -0.07269   0.00000  -0.07416  -0.00001
        #      C3         x   -0.00000   0.00001   0.00000  -0.06409  -0.00001   0.05110
        #      C3         y   -0.00000   0.00001   0.00000   0.00152   0.00000  -0.03263
        #      C3         z   -0.03808  -0.08037  -0.07267  -0.00001   0.07305   0.00000
        # ...
        #      H20        y    0.00245  -0.00394   0.03215   0.03444  -0.10424  -0.10517
        #      H20        z    0.00002  -0.00001   0.00000  -0.00000  -0.00000   0.00000
        #
        #
        #
        # ++ Thermochemistry
        if line[1:29] == 'Harmonic frequencies in cm-1':

            self.skip_line(inputfile, 'blank')
            line = next(inputfile)

            while 'Thermochemistry' not in line:

                if 'Frequency:' in line:
                    if not hasattr(self, 'vibfreqs'):
                        self.vibfreqs = []
                    vibfreqs = [float(i.replace('i', '-')) for i in line.split()[1:]]
                    self.vibfreqs.extend(vibfreqs)

                if 'Intensity:' in line:
                    if not hasattr(self, 'vibirs'):
                        self.vibirs = []
                    vibirs = map(float, line.split()[1:])
                    self.vibirs.extend(vibirs)

                if 'Red.' in line:
                    self.skip_line(inputfile, 'blank')
                    line = next(inputfile)
                    if not hasattr(self, 'vibdisps'):
                        self.vibdisps = []
                    disps = []
                    for n in range(3*self.natom):
                        numbers = [float(s) for s in line[17:].split()]
                        # The atomindex should start at 0 instead of 1.
                        atomindex = int(re.search(r'\d+$', line.split()[0]).group()) - 1
                        numbermodes = len(numbers)
                        if len(disps) == 0:
                            # Appends empty array of the following
                            # dimensions (numbermodes, natom, 0) to disps.
                            for mode in range(numbermodes):
                                disps.append([[] for x in range(0, self.natom)])
                        for mode in range(numbermodes):
                            disps[mode][atomindex].append(numbers[mode])
                        line = next(inputfile)
                    self.vibdisps.extend(disps)

                line = next(inputfile)

        ## Parsing thermochemistry attributes here
        #  ++ Thermochemistry
        #
        #   *********************
        #   *                   *
        #   *  THERMOCHEMISTRY  *
        #   *                   *
        #   *********************
        #
        #   Mass-centered Coordinates (Angstrom):
        #   ***********************************************************
        # ...
        #   *****************************************************
        #   Temperature =     0.00 Kelvin, Pressure =   1.00 atm
        #   -----------------------------------------------------
        #   Molecular Partition Function and Molar Entropy:
        #                          q/V (M**-3)    S(kcal/mol*K)
        #   Electronic            0.100000D+01        0.000
        #   Translational         0.100000D+01        0.000
        #   Rotational            0.100000D+01        2.981
        #   Vibrational           0.100000D+01        0.000
        #   TOTAL                 0.100000D+01        2.981
        #
        #   Thermal contributions to INTERNAL ENERGY:
        #   Electronic           0.000 kcal/mol      0.000000 au.
        #   Translational        0.000 kcal/mol      0.000000 au.
        #   Rotational           0.000 kcal/mol      0.000000 au.
        #   Vibrational        111.885 kcal/mol      0.178300 au.
        #   TOTAL              111.885 kcal/mol      0.178300 au.
        #
        #   Thermal contributions to
        #   ENTHALPY           111.885 kcal/mol      0.178300 au.
        #   GIBBS FREE ENERGY  111.885 kcal/mol      0.178300 au.
        #
        #   Sum of energy and thermal contributions
        #   INTERNAL ENERGY                       -382.121931 au.
        #   ENTHALPY                              -382.121931 au.
        #   GIBBS FREE ENERGY                     -382.121931 au.
        #   -----------------------------------------------------
        # ...
        #   ENTHALPY                              -382.102619 au.
        #   GIBBS FREE ENERGY                     -382.179819 au.
        #   -----------------------------------------------------
        #  --
        #
        #  ++    Isotopic shifts:
        if line[4:19] == 'THERMOCHEMISTRY':

            temperature_values = []
            pressure_values = []
            entropy_values = []
            internal_energy_values = []
            enthalpy_values = []
            free_energy_values = []

            while 'Isotopic' not in line:

                if line[1:12] == 'Temperature':
                    temperature_values.append(float(line.split()[2]))
                    pressure_values.append(float(line.split()[6]))

                if line[1:48] == 'Molecular Partition Function and Molar Entropy:':
                    while 'TOTAL' not in line:
                        line = next(inputfile)
                    entropy_values.append(utils.convertor(float(line.split()[2]), 'kcal/mol', 'hartree'))

                if line[1:40] == 'Sum of energy and thermal contributions':
                    internal_energy_values.append(float(next(inputfile).split()[2]))
                    enthalpy_values.append(float(next(inputfile).split()[1]))
                    free_energy_values.append(float(next(inputfile).split()[3]))

                line = next(inputfile)
            # When calculations for more than one temperature value are
            # performed, the values corresponding to room temperature (298.15 K)
            # are returned and if no calculations are performed for 298.15 K, then
            # the values corresponding last temperature value are returned.
            index = -1
            if 298.15 in temperature_values:
                index = temperature_values.index(298.15)

            self.set_attribute('temperature', temperature_values[index])
            if len(temperature_values) > 1:
                self.logger.warning('More than 1 values of temperature found')

            self.set_attribute('pressure', pressure_values[index])
            if len(pressure_values) > 1:
                self.logger.warning('More than 1 values of pressure found')

            self.set_attribute('entropy', entropy_values[index])
            if len(entropy_values) > 1:
                self.logger.warning('More than 1 values of entropy found')

            self.set_attribute('enthalpy', enthalpy_values[index])
            if len(enthalpy_values) > 1:
                self.logger.warning('More than 1 values of enthalpy found')

            self.set_attribute('freeenergy', free_energy_values[index])
            if len(free_energy_values) > 1:
                self.logger.warning('More than 1 values of freeenergy found')

        ## Parsing Geometrical Optimization attributes in this section.
        #  ++       Slapaf input parameters:
        #  ------------------------
        #
        # Max iterations:                            2000
        # Convergence test a la Schlegel.
        # Convergence criterion on gradient/para.<=: 0.3E-03
        # Convergence criterion on step/parameter<=: 0.3E-03
        # Convergence criterion on energy change <=: 0.0E+00
        # Max change of an internal coordinate:     0.30E+00
        # ...
        # ...
        #  **********************************************************************************************************************
        #  *                                    Energy Statistics for Geometry Optimization                                     *
        #  **********************************************************************************************************************
        #                          Energy     Grad      Grad              Step                 Estimated   Geom       Hessian
        #  Iter      Energy       Change     Norm      Max    Element    Max     Element     Final Energy Update Update   Index
        #    1   -382.30023222  0.00000000 0.107221  0.039531 nrc047   0.085726  nrc047     -382.30533799 RS-RFO  None      0
        #    2   -382.30702964 -0.00679742 0.043573  0.014908 nrc001   0.068195  nrc001     -382.30871333 RS-RFO  BFGS      0
        #    3   -382.30805348 -0.00102384 0.014883  0.005458 nrc010  -0.020973  nrc001     -382.30822089 RS-RFO  BFGS      0
        # ...
        # ...
        #   18   -382.30823419 -0.00000136 0.001032  0.000100 nrc053   0.012319  nrc053     -382.30823452 RS-RFO  BFGS      0
        #   19   -382.30823198  0.00000221 0.001051 -0.000092 nrc054   0.066565  nrc053     -382.30823822 RS-RFO  BFGS      0
        #   20   -382.30820252  0.00002946 0.001132 -0.000167 nrc021  -0.064003  nrc053     -382.30823244 RS-RFO  BFGS      0
        #
        #         +----------------------------------+----------------------------------+
        #         +    Cartesian Displacements       +    Gradient in internals         +
        #         +  Value      Threshold Converged? +  Value      Threshold Converged? +
        #   +-----+----------------------------------+----------------------------------+
        #   + RMS + 5.7330E-02  1.2000E-03     No    + 1.6508E-04  3.0000E-04     Yes   +
        #   +-----+----------------------------------+----------------------------------+
        #   + Max + 1.2039E-01  1.8000E-03     No    + 1.6711E-04  4.5000E-04     Yes   +
        #   +-----+----------------------------------+----------------------------------+
        if 'Convergence criterion on energy change' in line:
            self.energy_threshold = float(line.split()[6])
            # If energy change threshold equals zero,
            # then energy change is not a criteria for convergence.
            if self.energy_threshold == 0:
                self.energy_threshold = numpy.inf

        if 'Energy Statistics for Geometry Optimization' in line:
            if not hasattr(self, 'geovalues'):
                self.geovalues = []

            self.skip_lines(inputfile, ['stars', 'header'])
            line = next(inputfile)
            assert 'Iter      Energy       Change     Norm' in line
            # A variable keeping track of ongoing iteration.
            iter_number = len(self.geovalues) + 1
            # Iterate till blank line.
            while line.split() != []:
                for i in range(iter_number):
                    line = next(inputfile)
                self.geovalues.append([float(line.split()[2])])
                line = next(inputfile)
            # Along with energy change, RMS and Max values of change in
            # Cartesian Diaplacement and Gradients are used as optimization
            # criteria.
            self.skip_lines(inputfile, ['border', 'header', 'header', 'border'])
            line = next(inputfile)
            assert '+ RMS +' in line
            line_rms = line.split()
            line = next(inputfile)
            line_max = next(inputfile).split()
            if not hasattr(self, 'geotargets'):
                # The attribute geotargets is an array consisting of the following
                # values: [Energy threshold, Max Gradient threshold, RMS Gradient threshold, \
                #          Max Displacements threshold, RMS Displacements threshold].
                max_gradient_threshold = float(line_max[8])
                rms_gradient_threshold = float(line_rms[8])
                max_displacement_threshold = float(line_max[4])
                rms_displacement_threshold = float(line_rms[4])
                self.geotargets = [self.energy_threshold, max_gradient_threshold, rms_gradient_threshold, max_displacement_threshold, rms_displacement_threshold]

            max_gradient_change = float(line_max[7])
            rms_gradient_change = float(line_rms[7])
            max_displacement_change = float(line_max[3])
            rms_displacement_change = float(line_rms[3])
            self.geovalues[iter_number - 1].extend([max_gradient_change, rms_gradient_change, max_displacement_change, rms_displacement_change])

        #   *********************************************************
        #   * Nuclear coordinates for the next iteration / Angstrom *
        #   *********************************************************
        #    ATOM              X               Y               Z
        #    C1               0.235560       -1.415847        0.012012
        #    C2               1.313797       -0.488199        0.015149
        #    C3               1.087050        0.895510        0.014200
        # ...
        # ...
        #    H19             -0.021327       -4.934915       -0.029355
        #    H20             -1.432030       -3.721047       -0.039835
        #
        #  --
        if 'Nuclear coordinates for the next iteration / Angstrom' in line:
            self.skip_lines(inputfile, ['s', 'header'])
            line = next(inputfile)

            atomcoords = []
            while line.split() != []:
                atomcoords.append([float(c) for c in line.split()[1:]])
                line = next(inputfile)

            if len(atomcoords) == self.natom:
                self.atomcoords.append(atomcoords)
            else:
                self.logger.warning(
                        "Parsed coordinates not consistent with previous, skipping. "
                        "This could be due to symmetry being turned on during the job. "
                        "Length was %i, now found %i. New coordinates: %s"
                        % (len(self.atomcoords[-1]), len(atomcoords), str(atomcoords)))

        #  **********************************************************************************************************************
        #  *                                    Energy Statistics for Geometry Optimization                                     *
        #  **********************************************************************************************************************
        #                         Energy     Grad      Grad              Step                 Estimated   Geom       Hessian
        #  Iter      Energy       Change     Norm      Max    Element    Max     Element     Final Energy Update Update   Index
        #    1   -382.30023222  0.00000000 0.107221  0.039531 nrc047   0.085726  nrc047     -382.30533799 RS-RFO  None      0
        # ...
        # ...
        #   23   -382.30823115 -0.00000089 0.001030  0.000088 nrc053   0.000955  nrc053     -382.30823118 RS-RFO  BFGS      0
        #
        #         +----------------------------------+----------------------------------+
        #         +    Cartesian Displacements       +    Gradient in internals         +
        #         +  Value      Threshold Converged? +  Value      Threshold Converged? +
        #   +-----+----------------------------------+----------------------------------+
        #   + RMS + 7.2395E-04  1.2000E-03     Yes   + 2.7516E-04  3.0000E-04     Yes   +
        #   +-----+----------------------------------+----------------------------------+
        #   + Max + 1.6918E-03  1.8000E-03     Yes   + 8.7768E-05  4.5000E-04     Yes   +
        #   +-----+----------------------------------+----------------------------------+
        #
        #   Geometry is converged in  23 iterations to a Minimum Structure
        if 'Geometry is converged' in line:
            if not hasattr(self, 'optdone'):
                self.optdone = []
            self.optdone.append(len(self.atomcoords))

        #   *********************************************************
        #   * Nuclear coordinates of the final structure / Angstrom *
        #   *********************************************************
        #    ATOM              X               Y               Z
        #    C1               0.235547       -1.415838        0.012193
        #    C2               1.313784       -0.488201        0.015297
        #    C3               1.087036        0.895508        0.014333
        # ...
        # ...
        #    H19             -0.021315       -4.934913       -0.029666
        #    H20             -1.431994       -3.721026       -0.041078
        if 'Nuclear coordinates of the final structure / Angstrom' in line:
            self.skip_lines(inputfile, ['s', 'header'])
            line = next(inputfile)

            atomcoords = []

            while line.split() != []:
                atomcoords.append([float(c) for c in line.split()[1:]])
                line = next(inputfile)

            if len(atomcoords) == self.natom:
                self.atomcoords.append(atomcoords)
            else:
                self.logger.error(
                        'Number of atoms (%d) in parsed atom coordinates '
                        'is smaller than previously (%d), possibly due to '
                        'symmetry. Ignoring these coordinates.'
                        % (len(atomcoords), self.natom))

        #        All orbitals with orbital energies smaller than  E(LUMO)+0.5 are printed
        #
        #  ++    Molecular orbitals:
        #        -------------------
        #
        #        Title: RKS-DFT orbitals
        #
        #        Molecular orbitals for symmetry species 1: a
        #
        #            Orbital        1         2         3         4         5         6         7         8         9        10
        #            Energy      -10.0179  -10.0179  -10.0075  -10.0075  -10.0066  -10.0066  -10.0056  -10.0055   -9.9919   -9.9919
        #            Occ. No.      2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000
        #
        #          1 C1    1s     -0.6990    0.6989    0.0342    0.0346    0.0264   -0.0145   -0.0124   -0.0275   -0.0004   -0.0004
        #          2 C1    2s     -0.0319    0.0317   -0.0034   -0.0033   -0.0078    0.0034    0.0041    0.0073   -0.0002   -0.0002
        # ...
        # ...
        #         58 H18   1s      0.2678
        #         59 H19   1s     -0.2473
        #         60 H20   1s      0.1835
        #  --
        if '++    Molecular orbitals:' in line:

            self.skip_lines(inputfile, ['d', 'b'])
            line = next(inputfile)

            # We don't currently support parsing natural orbitals or active space orbitals.
            if 'Natural orbitals' not in line and "Pseudonatural" not in line:
                self.skip_line(inputfile, 'b')

                # Symmetry is not currently supported, so this line can have one form.
                while 'Molecular orbitals for symmetry species 1: a' not in line.strip():
                    line = next(inputfile)

                # Symmetry is not currently supported, so this line can have one form.
                if line.strip() != 'Molecular orbitals for symmetry species 1: a':
                    return
                
                line = next(inputfile)
                moenergies = []
                homos = 0
                mocoeffs = []
                while line[:2] != '--':
                    line = next(inputfile)
                    if line.strip().startswith('Orbital'):
                        orbital_index = line.split()[1:]
                        for i in orbital_index:
                            mocoeffs.append([])

                    if 'Energy' in line:
                        energies = [utils.convertor(float(x), 'hartree', 'eV') for x in line.split()[1:]]
                        moenergies.extend(energies)

                    if 'Occ. No.' in line:
                        for i in line.split()[2:]:
                            if float(i) != 0:
                                homos += 1

                    aonames = []
                    tokens = line.split()
                    if tokens and tokens[0] == '1':
                        while tokens and tokens[0] != '--':
                            aonames.append("{atom}_{orbital}".format(atom=tokens[1], orbital=tokens[2]))
                            info = tokens[3:]
                            j = 0
                            for i in orbital_index:
                                mocoeffs[int(i)-1].append(float(info[j]))
                                j += 1
                            line = next(inputfile)
                            tokens = line.split()
                        self.set_attribute('aonames', aonames)

                if len(moenergies) != self.nmo:
                    moenergies.extend([numpy.nan for x in range(self.nmo - len(moenergies))])

                self.append_attribute('moenergies', moenergies)

                if not hasattr(self, 'homos'):
                    self.homos = []
                self.homos.extend([homos-1])

                while len(mocoeffs) < self.nmo:
                    nan_array = [numpy.nan for i in range(self.nbasis)]
                    mocoeffs.append(nan_array)

                self.append_attribute('mocoeffs', mocoeffs)

        ## Parsing MP energy from the &MBPT2 module.
        #  Conventional algorithm used...
        #
        #         SCF energy                           =      -74.9644564043 a.u.
        #         Second-order correlation energy      =       -0.0364237923 a.u.
        #
        #         Total energy                         =      -75.0008801966 a.u.
        #         Reference weight ( Cref**2 )         =        0.98652
        #
        #  ::    Total MBPT2 energy                              -75.0008801966
        #
        #
        #         Zeroth-order energy (E0)             =      -36.8202538520 a.u.
        #
        #         Shanks-type energy S1(E)             =      -75.0009150108 a.u.
        if 'Total MBPT2 energy' in line:
            mpenergies = []
            mpenergies.append(utils.convertor(self.float(line.split()[4]), 'hartree', 'eV'))
            if not hasattr(self, 'mpenergies'):
                self.mpenergies = []
            self.mpenergies.append(mpenergies)

        # Parsing data ccenergies from &CCSDT module.
        #  --- Start Module: ccsdt at Thu Jul 26 14:03:23 2018 ---
        #
        #  ()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()
        #
        #                                                 &CCSDT
        # ...
        # ...
        #          14          -75.01515915      -0.05070274      -0.00000029
        #          15          -75.01515929      -0.05070289      -0.00000014
        #          16          -75.01515936      -0.05070296      -0.00000007
        #       Convergence after                    17  Iterations
        #
        #
        #      Total energy (diff) :     -75.01515936      -0.00000007
        #      Correlation energy  :        -0.0507029554992
        if 'Start Module: ccsdt' in line:
            self.skip_lines(inputfile, ['b', '()', 'b'])
            line = next(inputfile)
            if '&CCSDT' in line:
                while not line.strip().startswith('Total energy (diff)'):
                    line = next(inputfile)

                ccenergies = utils.convertor(self.float(line.split()[4]), 'hartree', 'eV')
                if not hasattr(self, 'ccenergies'):
                    self.ccenergies= []
                self.ccenergies.append(ccenergies)

        #  ++    Primitive basis info:
        #        ---------------------
        #
        #
        #                      *****************************************************
        #                      ******** Primitive Basis Functions (Valence) ********
        #                      *****************************************************
        #
        #
        #   Basis set:C.AUG-CC-PVQZ.........                                                          
        #
        #                    Type         
        #                     s
        #             No.      Exponent    Contraction Coefficients
        #             1  0.339800000D+05   0.000091  -0.000019   0.000000   0.000000   0.000000   0.000000
        #             2  0.508900000D+04   0.000704  -0.000151   0.000000   0.000000   0.000000   0.000000
        # ...
        # ...
        #             29  0.424000000D+00   0.000000   1.000000
        #
        #   Number of primitives                                   93
        #   Number of basis functions                              80
        #
        #  --
        if line.startswith('++    Primitive basis info:'):
            self.skip_lines(inputfile, ['d', 'b', 'b', 's', 'header', 's', 'b'])
            line = next(inputfile)
            gbasis_array = []
            while '--' not in line and '****' not in line:
                if 'Basis set:' in line:
                    basis_element_patterns = re.findall('Basis set:([A-Za-z]{1,2})\.', line)
                    assert len(basis_element_patterns) == 1
                    basis_element = basis_element_patterns[0].title()
                    gbasis_array.append((basis_element, []))

                if 'Type' in line:
                    line = next(inputfile)
                    shell_type = line.split()[0].upper()

                    self.skip_line(inputfile, 'headers')
                    line = next(inputfile)

                    exponents = []
                    coefficients = []
                    func_array = []
                    while line.split():
                        exponents.append(self.float(line.split()[1]))
                        coefficients.append([self.float(i) for i in line.split()[2:]])
                        line = next(inputfile)

                    for i in range(len(coefficients[0])):
                        func_tuple = (shell_type, [])
                        for iexp, exp in enumerate(exponents):
                            coeff = coefficients[iexp][i]
                            if coeff != 0:
                                func_tuple[1].append((exp, coeff))
                        gbasis_array[-1][1].append(func_tuple)

                line = next(inputfile)

            atomsymbols = [self.table.element[atomno] for atomno in self.atomnos]
            self.gbasis = [[] for i in range(self.natom)]
            for element, gbasis in gbasis_array:
                mask = [element == possible_element for possible_element in atomsymbols]
                indices = [i for (i, x) in enumerate(mask) if x]
                for index in indices:
                    self.gbasis[index] = gbasis

        #  ++    Basis set information:
        #        ----------------------
        # ...
        #        Basis set label: MO.ECP.HAY-WADT.5S6P4D.3S3P2D.14E-LANL2DZ.....
        #
        #        Electronic valence basis set:
        #        ------------------
        #        Associated Effective Charge  14.000000 au
        #        Associated Actual Charge     42.000000 au
        #        Nuclear Model: Point charge
        # ...
        #
        #        Effective Core Potential specification:
        #        =======================================
        #
        #         Label   Cartesian Coordinates / Bohr
        #
        #   MO                 0.0006141610       -0.0006141610        0.0979067106
        #  --
        if '++    Basis set information:' in line:
            self.core_array = []
            basis_element = None
            ncore = 0

            while line[:2] != '--':
                if 'Basis set label' in line:
                    try:
                        basis_element = line.split()[3].split('.')[0]
                        basis_element = basis_element[0] + basis_element[1:].lower()
                    except:
                        self.logger.warning('Basis set label is missing!')
                        basis_element = ''
                if 'valence basis set:' in line.lower():
                    self.skip_line(inputfile, 'd')
                    line = next(inputfile)
                    if 'Associated Effective Charge' in line:
                        effective_charge = float(line.split()[3])
                        actual_charge = float(next(inputfile).split()[3])
                        element = self.table.element[int(actual_charge)]
                        ncore = int(actual_charge - effective_charge)
                        if basis_element:
                            assert basis_element == element
                        else:
                            basis_element = element

                if basis_element and ncore:
                    self.core_array.append((basis_element, ncore))
                    basis_element = ''
                    ncore = 0

                line = next(inputfile)