1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
|
# -*- coding: utf-8 -*-
#
# Copyright (c) 2019, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.
"""Parser for Molpro output files"""
import itertools
import numpy
from cclib.parser import logfileparser
from cclib.parser import utils
def create_atomic_orbital_names(orbitals):
"""Generate all atomic orbital names that could be used by Molpro.
The names are returned in a dictionary, organized by subshell (S, P, D and so on).
"""
# We can write out the first two manually, since there are not that many.
atomic_orbital_names = {
'S': ['s', '1s'],
'P': ['x', 'y', 'z', '2px', '2py', '2pz'],
}
# Although we could write out all names for the other subshells, it is better
# to generate them if we need to expand further, since the number of functions quickly
# grows and there are both Cartesian and spherical variants to consider.
# For D orbitals, the Cartesian functions are xx, yy, zz, xy, xz and yz, and the
# spherical ones are called 3d0, 3d1-, 3d1+, 3d2- and 3d2+. For F orbitals, the Cartesians
# are xxx, xxy, xxz, xyy, ... and the sphericals are 4f0, 4f1-, 4f+ and so on.
for i, orb in enumerate(orbitals):
# Cartesian can be generated directly by combinations.
cartesian = list(map(''.join, list(itertools.combinations_with_replacement(['x', 'y', 'z'], i+2))))
# For spherical functions, we need to construct the names.
pre = str(i+3) + orb.lower()
spherical = [pre + '0'] + [pre + str(j) + s for j in range(1, i+3) for s in ['-', '+']]
atomic_orbital_names[orb] = cartesian + spherical
return atomic_orbital_names
class Molpro(logfileparser.Logfile):
"""Molpro file parser"""
atomic_orbital_names = create_atomic_orbital_names(['D', 'F', 'G'])
def __init__(self, *args, **kwargs):
# Call the __init__ method of the superclass
super(Molpro, self).__init__(logname="Molpro", *args, **kwargs)
def __str__(self):
"""Return a string representation of the object."""
return "Molpro log file %s" % (self.filename)
def __repr__(self):
"""Return a representation of the object."""
return 'Molpro("%s")' % (self.filename)
def normalisesym(self, label):
"""Normalise the symmetries used by Molpro."""
ans = label.replace("`", "'").replace("``", "''")
return ans
def before_parsing(self):
self.electronorbitals = ""
self.insidescf = False
def after_parsing(self):
# If optimization thresholds are default, they are normally not printed and we need
# to set them to the default after parsing. Make sure to set them in the same order that
# they appear in the in the geometry optimization progress printed in the output,
# namely: energy difference, maximum gradient, maximum step.
if not hasattr(self, "geotargets"):
self.geotargets = []
# Default THRENERG (required accuracy of the optimized energy).
self.geotargets.append(1E-6)
# Default THRGRAD (required accuracy of the optimized gradient).
self.geotargets.append(3E-4)
# Default THRSTEP (convergence threshold for the geometry optimization step).
self.geotargets.append(3E-4)
def _parse_orbitals(self, inputfile, line):
# From this block aonames, atombasis, moenergies and mocoeffs can be parsed. The data is
# flipped compared to most programs (GAMESS, Gaussian), since the MOs are in rows. Also, Molpro
# does not cut the table into parts, rather each MO row has as many lines as it takes ro print
# all of the MO coefficients. Each row normally has 10 coefficients, although this can be less
# for the last row and when symmetry is used (each irrep has its own block).
#
# ELECTRON ORBITALS
# =================
#
#
# Orb Occ Energy Couls-En Coefficients
#
# 1 1s 1 1s 1 2px 1 2py 1 2pz 2 1s (...)
# 3 1s 3 1s 3 2px 3 2py 3 2pz 4 1s (...)
# (...)
#
# 1.1 2 -11.0351 -43.4915 0.701460 0.025696 -0.000365 -0.000006 0.000000 0.006922 (...)
# -0.006450 0.004742 -0.001028 -0.002955 0.000000 -0.701460 (...)
# (...)
#
# If an MCSCF calculation was performed, the natural orbitals
# (coefficients and occupation numbers) are printed in a
# format nearly identical to the ELECTRON ORBITALS section.
#
# NATURAL ORBITALS (state averaged)
# =================================
#
# Orb Occ Energy Coefficients
#
# 1 s 1 s 1 s 1 z 1 z 1 xx 1 yy 1 zz 2 s 2 s
# 2 s 2 z 2 z 2 xx 2 yy 2 zz 3 s 3 s 3 z 3 y
#
# 1.1 2.00000 -20.678730 0.000141 -0.000057 0.001631 -0.001377 0.001117 0.000029 0.000293 -0.000852 1.000748 0.001746
# -0.002552 -0.002005 0.001658 -0.001266 -0.001274 -0.001001 0.000215 -0.000131 -0.000242 -0.000126
#
# 2.1 2.00000 -11.322823 1.000682 0.004626 -0.000485 0.006634 -0.002096 -0.003072 -0.003282 -0.001724 -0.000181 0.006734
# -0.002398 -0.000527 0.001335 0.000091 0.000058 0.000396 -0.003219 0.000981 0.000250 -0.000191
# (...)
# The assigment of final cclib attributes is different for
# canonical/natural orbitals.
self.naturalorbitals = (line[1:17] == "NATURAL ORBITALS")
# Make sure we didn't get here by mistake.
assert line[1:18] == "ELECTRON ORBITALS" or self.electronorbitals or self.naturalorbitals
# For unrestricted calculations, ELECTRON ORBITALS is followed on the same line
# by FOR POSITIVE SPIN or FOR NEGATIVE SPIN as appropriate.
spin = (line[19:36] == "FOR NEGATIVE SPIN") or (self.electronorbitals[19:36] == "FOR NEGATIVE SPIN")
if self.naturalorbitals:
self.skip_lines(inputfile, ['equals', 'b', 'headers', 'b'])
else:
if not self.electronorbitals:
self.skip_line(inputfile, 'equals')
self.skip_lines(inputfile, ['b', 'b', 'headers', 'b'])
aonames = []
atombasis = [[] for i in range(self.natom)]
moenergies = []
# Use for both canonical and natural orbital coefficients.
mocoeffs = []
occnos = []
line = next(inputfile)
# Besides a double blank line, stop when the next orbitals are encountered for unrestricted jobs
# or if there are stars on the line which always signifies the end of the block.
while line.strip() and (not "ORBITALS" in line) and (not set(line.strip()) == {'*'}):
# The function names are normally printed just once, but if symmetry is used then each irrep
# has its own mocoeff block with a preceding list of names.
is_aonames = line[:25].strip() == ""
if is_aonames:
# We need to save this offset for parsing the coefficients later.
offset = len(aonames)
aonum = len(aonames)
while line.strip():
for s in line.split():
if s.isdigit():
atomno = int(s)
atombasis[atomno-1].append(aonum)
aonum += 1
else:
functype = s
element = self.table.element[self.atomnos[atomno-1]]
aoname = "%s%i_%s" % (element, atomno, functype)
aonames.append(aoname)
line = next(inputfile)
# Now there can be one or two blank lines.
while not line.strip():
line = next(inputfile)
# Newer versions of Molpro (for example, 2012 test files) will print some
# more things here, such as HOMO and LUMO, but these have less than 10 columns.
if "HOMO" in line or "LUMO" in line:
break
# End of the NATURAL ORBITALS section.
if "Natural orbital dump" in line:
break
# Now parse the MO coefficients, padding the list with an appropriate amount of zeros.
coeffs = [0.0 for i in range(offset)]
while line.strip() != "":
if line[:31].rstrip():
tokens = line.split()
moenergy = float(tokens[2])
moenergy = utils.convertor(moenergy, "hartree", "eV")
moenergies.append(moenergy)
if self.naturalorbitals:
occno = float(tokens[1])
occnos.append(occno)
# Coefficients are in 10.6f format and splitting does not work since there are not
# always spaces between them. If the numbers are very large, there will be stars.
str_coeffs = line[31:]
ncoeffs = len(str_coeffs) // 10
coeff = []
for ic in range(ncoeffs):
p = str_coeffs[ic*10:(ic+1)*10]
try:
c = float(p)
except ValueError as detail:
self.logger.warn("setting coeff element to zero: %s" % detail)
c = 0.0
coeff.append(c)
coeffs.extend(coeff)
line = next(inputfile)
mocoeffs.append(coeffs)
# The loop should keep going until there is a double blank line, and there is
# a single line between each coefficient block.
line = next(inputfile)
if not line.strip():
line = next(inputfile)
# If symmetry was used (offset was needed) then we will need to pad all MO vectors
# up to nbasis for all irreps before the last one.
if offset > 0:
for im, m in enumerate(mocoeffs):
if len(m) < self.nbasis:
mocoeffs[im] = m + [0.0 for i in range(self.nbasis - len(m))]
self.set_attribute('atombasis', atombasis)
self.set_attribute('aonames', aonames)
if self.naturalorbitals:
# Consistent with current cclib conventions, keep only the
# last possible set of natural orbital coefficients and
# occupation numbers.
self.nocoeffs = mocoeffs
self.nooccnos = occnos
else:
# Consistent with current cclib conventions, reset moenergies/mocoeffs if they have been
# previously parsed, since we want to produce only the final values.
if not hasattr(self, "moenergies") or spin == 0:
self.mocoeffs = []
self.moenergies = []
self.moenergies.append(moenergies)
self.mocoeffs.append(mocoeffs)
# Check if last line begins the next ELECTRON ORBITALS section, because we already used
# this line and need to know when this method is called next time.
if line[1:18] == "ELECTRON ORBITALS":
self.electronorbitals = line
else:
self.electronorbitals = ""
return
def extract(self, inputfile, line):
"""Extract information from the file object inputfile."""
# Extract the package version number.
if "Version" in line:
self.metadata["package_version"] = line.split()[1]
if line[1:19] == "ATOMIC COORDINATES":
if not hasattr(self, "atomcoords"):
self.atomcoords = []
atomcoords = []
atomnos = []
self.skip_lines(inputfile, ['line', 'line', 'line'])
line = next(inputfile)
while line.strip():
temp = line.strip().split()
atomcoords.append([utils.convertor(float(x), "bohr", "Angstrom") for x in temp[3:6]]) # bohrs to angs
atomnos.append(int(round(float(temp[2]))))
line = next(inputfile)
self.atomcoords.append(atomcoords)
self.set_attribute('atomnos', atomnos)
self.set_attribute('natom', len(self.atomnos))
# Use BASIS DATA to parse input for gbasis, aonames and atombasis. If symmetry is used,
# the function number starts from 1 for each irrep (the irrep index comes after the dot).
#
# BASIS DATA
#
# Nr Sym Nuc Type Exponents Contraction coefficients
#
# 1.1 A 1 1s 71.616837 0.154329
# 13.045096 0.535328
# 3.530512 0.444635
# 2.1 A 1 1s 2.941249 -0.099967
# 0.683483 0.399513
# ...
#
if line[1:11] == "BASIS DATA":
# We can do a sanity check with the header.
self.skip_line(inputfile, 'blank')
header = next(inputfile)
assert header.split() == ["Nr", "Sym", "Nuc", "Type", "Exponents", "Contraction", "coefficients"]
self.skip_line(inputfile, 'blank')
aonames = []
atombasis = [[] for i in range(self.natom)]
gbasis = [[] for i in range(self.natom)]
while line.strip():
# We need to read the line at the start of the loop here, because the last function
# will be added when a blank line signalling the end of the block is encountered.
line = next(inputfile)
# The formatting here can exhibit subtle differences, including the number of spaces
# or indentation size. However, we will rely on explicit slices since not all components
# are always available. In fact, components not being there has some meaning (see below).
line_nr = line[1:6].strip()
line_sym = line[7:9].strip()
line_nuc = line[11:15].strip()
line_type = line[16:22].strip()
line_exp = line[25:38].strip()
line_coeffs = line[38:].strip()
# If a new function type is printed or the BASIS DATA block ends with a blank line,
# then add the previous function to gbasis, except for the first function since
# there was no preceeding one. When translating the Molpro function name to gbasis,
# note that Molpro prints all components, but we want it only once, with the proper
# shell type (S,P,D,F,G). Molpro names also differ between Cartesian/spherical representations.
if (line_type and aonames) or line.strip() == "":
# All the possible AO names are created with the class. The function should always
# find a match in that dictionary, so we can check for that here and will need to
# update the dict if something unexpected comes up.
funcbasis = None
for fb, names in self.atomic_orbital_names.items():
if functype in names:
funcbasis = fb
assert funcbasis
# There is a separate basis function for each column of contraction coefficients. Since all
# atomic orbitals for a subshell will have the same parameters, we can simply check if
# the function tuple is already in gbasis[i] before adding it.
for i in range(len(coefficients[0])):
func = (funcbasis, [])
for j in range(len(exponents)):
func[1].append((exponents[j], coefficients[j][i]))
if func not in gbasis[funcatom-1]:
gbasis[funcatom-1].append(func)
# If it is a new type, set up the variables for the next shell(s). An exception is symmetry functions,
# which we want to copy from the previous function and don't have a new number on the line. For them,
# we just want to update the nuclear index.
if line_type:
if line_nr:
exponents = []
coefficients = []
functype = line_type
funcatom = int(line_nuc)
# Add any exponents and coefficients to lists.
if line_exp and line_coeffs:
funcexp = float(line_exp)
funccoeffs = [float(s) for s in line_coeffs.split()]
exponents.append(funcexp)
coefficients.append(funccoeffs)
# If the function number is present then add to atombasis and aonames, which is different from
# adding to gbasis since it enumerates AOs rather than basis functions. The number counts functions
# in each irrep from 1 and we could add up the functions for each irrep to get the global count,
# but it is simpler to just see how many aonames we have already parsed. Any symmetry functions
# are also printed, but they don't get numbers so they are nor parsed.
if line_nr:
element = self.table.element[self.atomnos[funcatom-1]]
aoname = "%s%i_%s" % (element, funcatom, functype)
aonames.append(aoname)
funcnr = len(aonames)
atombasis[funcatom-1].append(funcnr-1)
self.set_attribute('aonames', aonames)
self.set_attribute('atombasis', atombasis)
self.set_attribute('gbasis', gbasis)
if line[1:23] == "NUMBER OF CONTRACTIONS":
nbasis = int(line.split()[3])
self.set_attribute('nbasis', nbasis)
# Basis set name
if line[1:8] == "Library":
self.metadata["basis_set"] = line.split()[4]
# This is used to signalize whether we are inside an SCF calculation.
if line[1:8] == "PROGRAM" and line[14:18] == "-SCF":
self.insidescf = True
self.metadata["methods"].append("HF")
# Use this information instead of 'SETTING ...', in case the defaults are standard.
# Note that this is sometimes printed in each geometry optimization step.
if line[1:20] == "NUMBER OF ELECTRONS":
spinup = int(line.split()[3][:-1])
spindown = int(line.split()[4][:-1])
# Nuclear charges (atomnos) should be parsed by now.
nuclear = numpy.sum(self.atomnos)
charge = nuclear - spinup - spindown
self.set_attribute('charge', charge)
mult = spinup - spindown + 1
self.set_attribute('mult', mult)
# Convergenve thresholds for SCF cycle, should be contained in a line such as:
# CONVERGENCE THRESHOLDS: 1.00E-05 (Density) 1.40E-07 (Energy)
if self.insidescf and line[1:24] == "CONVERGENCE THRESHOLDS:":
if not hasattr(self, "scftargets"):
self.scftargets = []
scftargets = list(map(float, line.split()[2::2]))
self.scftargets.append(scftargets)
# Usually two criteria, but save the names this just in case.
self.scftargetnames = line.split()[3::2]
# Read in the print out of the SCF cycle - for scfvalues. For RHF looks like:
# ITERATION DDIFF GRAD ENERGY 2-EL.EN. DIPOLE MOMENTS DIIS
# 1 0.000D+00 0.000D+00 -379.71523700 1159.621171 0.000000 0.000000 0.000000 0
# 2 0.000D+00 0.898D-02 -379.74469736 1162.389787 0.000000 0.000000 0.000000 1
# 3 0.817D-02 0.144D-02 -379.74635529 1162.041033 0.000000 0.000000 0.000000 2
# 4 0.213D-02 0.571D-03 -379.74658063 1162.159929 0.000000 0.000000 0.000000 3
# 5 0.799D-03 0.166D-03 -379.74660889 1162.144256 0.000000 0.000000 0.000000 4
if self.insidescf and line[1:10] == "ITERATION":
if not hasattr(self, "scfvalues"):
self.scfvalues = []
line = next(inputfile)
energy = 0.0
scfvalues = []
while line.strip() != "":
chomp = line.split()
if chomp[0].isdigit():
ddiff = float(chomp[1].replace('D', 'E'))
grad = float(chomp[2].replace('D', 'E'))
newenergy = float(chomp[3])
ediff = newenergy - energy
energy = newenergy
# The convergence thresholds must have been read above.
# Presently, we recognize MAX DENSITY and MAX ENERGY thresholds.
numtargets = len(self.scftargetnames)
values = [numpy.nan]*numtargets
for n, name in zip(list(range(numtargets)), self.scftargetnames):
if "ENERGY" in name.upper():
values[n] = ediff
elif "DENSITY" in name.upper():
values[n] = ddiff
scfvalues.append(values)
try:
line = next(inputfile)
except StopIteration:
self.logger.warning('File terminated before end of last SCF! Last gradient: {}'.format(grad))
break
self.scfvalues.append(numpy.array(scfvalues))
# SCF result - RHF/UHF and DFT (RKS) energies.
if (line[1:5] in ["!RHF", "!UHF", "!RKS"] and line[16:22].lower() == "energy"):
if not hasattr(self, "scfenergies"):
self.scfenergies = []
scfenergy = float(line.split()[4])
self.scfenergies.append(utils.convertor(scfenergy, "hartree", "eV"))
# We are now done with SCF cycle (after a few lines).
self.insidescf = False
# MP2 energies.
if line[1:5] == "!MP2":
self.metadata["methods"].append("MP2")
if not hasattr(self, 'mpenergies'):
self.mpenergies = []
mp2energy = float(line.split()[-1])
mp2energy = utils.convertor(mp2energy, "hartree", "eV")
self.mpenergies.append([mp2energy])
# MP2 energies if MP3 or MP4 is also calculated.
if line[1:5] == "MP2:":
self.metadata["methods"].append("MP2")
if not hasattr(self, 'mpenergies'):
self.mpenergies = []
mp2energy = float(line.split()[2])
mp2energy = utils.convertor(mp2energy, "hartree", "eV")
self.mpenergies.append([mp2energy])
# MP3 (D) and MP4 (DQ or SDQ) energies.
if line[1:8] == "MP3(D):":
self.metadata["methods"].append("MP3")
mp3energy = float(line.split()[2])
mp2energy = utils.convertor(mp3energy, "hartree", "eV")
line = next(inputfile)
self.mpenergies[-1].append(mp2energy)
if line[1:9] == "MP4(DQ):":
self.metadata["methods"].append("MP4")
mp4energy = float(line.split()[2])
line = next(inputfile)
if line[1:10] == "MP4(SDQ):":
self.metadata["methods"].append("MP4")
mp4energy = float(line.split()[2])
mp4energy = utils.convertor(mp4energy, "hartree", "eV")
self.mpenergies[-1].append(mp4energy)
# The CCSD program operates all closed-shel coupled cluster runs.
if line[1:15] == "PROGRAM * CCSD":
self.metadata["methods"].append("CCSD")
if not hasattr(self, "ccenergies"):
self.ccenergies = []
while line[1:20] != "Program statistics:":
# The last energy (most exact) will be read last and thus saved.
if line[1:5] == "!CCD" or line[1:6] == "!CCSD" or line[1:9] == "!CCSD(T)":
ccenergy = float(line.split()[-1])
ccenergy = utils.convertor(ccenergy, "hartree", "eV")
line = next(inputfile)
self.ccenergies.append(ccenergy)
# Read the occupancy (index of HOMO s).
# For restricted calculations, there is one line here. For unrestricted, two:
# Final alpha occupancy: ...
# Final beta occupancy: ...
if line[1:17] == "Final occupancy:":
self.homos = [int(line.split()[-1])-1]
if line[1:23] == "Final alpha occupancy:":
self.homos = [int(line.split()[-1])-1]
line = next(inputfile)
self.homos.append(int(line.split()[-1])-1)
# Dipole is always printed on one line after the final RHF energy, and by default
# it seems Molpro uses the origin as the reference point.
if line.strip()[:13] == "Dipole moment":
assert line.split()[2] == "/Debye"
reference = [0.0, 0.0, 0.0]
dipole = [float(d) for d in line.split()[-3:]]
if not hasattr(self, 'moments'):
self.moments = [reference, dipole]
else:
self.moments[1] == dipole
# Static dipole polarizability.
if line.strip() == "SCF dipole polarizabilities":
if not hasattr(self, "polarizabilities"):
self.polarizabilities = []
polarizability = []
self.skip_lines(inputfile, ['b', 'directions'])
for _ in range(3):
line = next(inputfile)
polarizability.append(line.split()[1:])
self.polarizabilities.append(numpy.array(polarizability))
# Check for ELECTRON ORBITALS (canonical molecular orbitals).
if line[1:18] == "ELECTRON ORBITALS" or self.electronorbitals:
self._parse_orbitals(inputfile, line)
# If the MATROP program was called appropriately,
# the atomic obital overlap matrix S is printed.
# The matrix is printed straight-out, ten elements in each row, both halves.
# Note that is the entire matrix is not printed, then aooverlaps
# will not have dimensions nbasis x nbasis.
if line[1:9] == "MATRIX S":
if not hasattr(self, "aooverlaps"):
self.aooverlaps = [[]]
self.skip_lines(inputfile, ['b', 'symblocklabel'])
line = next(inputfile)
while line.strip() != "":
elements = [float(s) for s in line.split()]
if len(self.aooverlaps[-1]) + len(elements) <= self.nbasis:
self.aooverlaps[-1] += elements
else:
n = len(self.aooverlaps[-1]) + len(elements) - self.nbasis
self.aooverlaps[-1] += elements[:-n]
self.aooverlaps.append([])
self.aooverlaps[-1] += elements[-n:]
line = next(inputfile)
# Check for MCSCF natural orbitals.
if line[1:17] == "NATURAL ORBITALS":
self._parse_orbitals(inputfile, line)
# Thresholds are printed only if the defaults are changed with GTHRESH.
# In that case, we can fill geotargets with non-default values.
# The block should look like this as of Molpro 2006.1:
# THRESHOLDS:
# ZERO = 1.00D-12 ONEINT = 1.00D-12 TWOINT = 1.00D-11 PREFAC = 1.00D-14 LOCALI = 1.00D-09 EORDER = 1.00D-04
# ENERGY = 0.00D+00 ETEST = 0.00D+00 EDENS = 0.00D+00 THRDEDEF= 1.00D-06 GRADIENT= 1.00D-02 STEP = 1.00D-03
# ORBITAL = 1.00D-05 CIVEC = 1.00D-05 COEFF = 1.00D-04 PRINTCI = 5.00D-02 PUNCHCI = 9.90D+01 OPTGRAD = 3.00D-04
# OPTENERG= 1.00D-06 OPTSTEP = 3.00D-04 THRGRAD = 2.00D-04 COMPRESS= 1.00D-11 VARMIN = 1.00D-07 VARMAX = 1.00D-03
# THRDOUB = 0.00D+00 THRDIV = 1.00D-05 THRRED = 1.00D-07 THRPSP = 1.00D+00 THRDC = 1.00D-10 THRCS = 1.00D-10
# THRNRM = 1.00D-08 THREQ = 0.00D+00 THRDE = 1.00D+00 THRREF = 1.00D-05 SPARFAC = 1.00D+00 THRDLP = 1.00D-07
# THRDIA = 1.00D-10 THRDLS = 1.00D-07 THRGPS = 0.00D+00 THRKEX = 0.00D+00 THRDIS = 2.00D-01 THRVAR = 1.00D-10
# THRLOC = 1.00D-06 THRGAP = 1.00D-06 THRLOCT = -1.00D+00 THRGAPT = -1.00D+00 THRORB = 1.00D-06 THRMLTP = 0.00D+00
# THRCPQCI= 1.00D-10 KEXTA = 0.00D+00 THRCOARS= 0.00D+00 SYMTOL = 1.00D-06 GRADTOL = 1.00D-06 THROVL = 1.00D-08
# THRORTH = 1.00D-08 GRID = 1.00D-06 GRIDMAX = 1.00D-03 DTMAX = 0.00D+00
if line[1:12] == "THRESHOLDS":
self.skip_line(input, 'blank')
line = next(inputfile)
while line.strip():
if "OPTENERG" in line:
start = line.find("OPTENERG")
optenerg = line[start+10:start+20]
if "OPTGRAD" in line:
start = line.find("OPTGRAD")
optgrad = line[start+10:start+20]
if "OPTSTEP" in line:
start = line.find("OPTSTEP")
optstep = line[start+10:start+20]
line = next(inputfile)
self.geotargets = [optenerg, optgrad, optstep]
# The optimization history is the source for geovlues:
#
# END OF GEOMETRY OPTIMIZATION. TOTAL CPU: 246.9 SEC
#
# ITER. ENERGY(OLD) ENERGY(NEW) DE GRADMAX GRADNORM GRADRMS STEPMAX STEPLEN STEPRMS
# 1 -382.02936898 -382.04914450 -0.01977552 0.11354875 0.20127947 0.01183997 0.12972761 0.20171740 0.01186573
# 2 -382.04914450 -382.05059234 -0.00144784 0.03299860 0.03963339 0.00233138 0.05577169 0.06687650 0.00393391
# 3 -382.05059234 -382.05069136 -0.00009902 0.00694359 0.01069889 0.00062935 0.01654549 0.02016307 0.00118606
# ...
#
# The above is an exerpt from Molpro 2006, but it is a little bit different
# for Molpro 2012, namely the 'END OF GEOMETRY OPTIMIZATION occurs after the
# actual history list. It seems there is a another consistent line before the
# history, but this might not be always true -- so this is a potential weak link.
if line[1:30] == "END OF GEOMETRY OPTIMIZATION." or line.strip() == "Quadratic Steepest Descent - Minimum Search":
# I think this is the trigger for convergence, and it shows up at the top in Molpro 2006.
geometry_converged = line[1:30] == "END OF GEOMETRY OPTIMIZATION."
self.skip_line(inputfile, 'blank')
# Newer version of Molpro (at least for 2012) print and additional column
# with the timing information for each step. Otherwise, the history looks the same.
headers = next(inputfile).split()
if not len(headers) in (10, 11):
return
# Although criteria can be changed, the printed format should not change.
# In case it does, retrieve the columns for each parameter.
index_ITER = headers.index('ITER.')
index_THRENERG = headers.index('DE')
index_THRGRAD = headers.index('GRADMAX')
index_THRSTEP = headers.index('STEPMAX')
line = next(inputfile)
self.geovalues = []
while line.strip():
line = line.split()
istep = int(line[index_ITER])
geovalues = []
geovalues.append(float(line[index_THRENERG]))
geovalues.append(float(line[index_THRGRAD]))
geovalues.append(float(line[index_THRSTEP]))
self.geovalues.append(geovalues)
line = next(inputfile)
if line.strip() == "Freezing grid":
line = next(inputfile)
# The convergence trigger shows up somewhere at the bottom in Molpro 2012,
# before the final stars. If convergence is not reached, there is an additional
# line that can be checked for. This is a little tricky, though, since it is
# not the last line... so bail out of the loop if convergence failure is detected.
while "*****" not in line:
line = next(inputfile)
if line.strip() == "END OF GEOMETRY OPTIMIZATION.":
geometry_converged = True
if "No convergence" in line:
geometry_converged = False
break
# Finally, deal with optdone, append the last step to it only if we had convergence.
if not hasattr(self, 'optdone'):
self.optdone = []
if geometry_converged:
self.optdone.append(istep-1)
# This block should look like this:
# Normal Modes
#
# 1 Au 2 Bu 3 Ag 4 Bg 5 Ag
# Wavenumbers [cm-1] 151.81 190.88 271.17 299.59 407.86
# Intensities [km/mol] 0.33 0.28 0.00 0.00 0.00
# Intensities [relative] 0.34 0.28 0.00 0.00 0.00
# CX1 0.00000 -0.01009 0.02577 0.00000 0.06008
# CY1 0.00000 -0.05723 -0.06696 0.00000 0.06349
# CZ1 -0.02021 0.00000 0.00000 0.11848 0.00000
# CX2 0.00000 -0.01344 0.05582 0.00000 -0.02513
# CY2 0.00000 -0.06288 -0.03618 0.00000 0.00349
# CZ2 -0.05565 0.00000 0.00000 0.07815 0.00000
# ...
# Molpro prints low frequency modes in a subsequent section with the same format,
# which also contains zero frequency modes, with the title:
# Normal Modes of low/zero frequencies
if line[1:13] == "Normal Modes":
islow = (line[1:37] == "Normal Modes of low/zero frequencies")
self.skip_line(inputfile, 'blank')
# Each portion of five modes is followed by a single blank line.
# The whole block is followed by an additional blank line.
line = next(inputfile)
while line.strip():
if line[1:25].isspace():
if not islow: # vibsyms not printed for low freq modes
numbers = list(map(int, line.split()[::2]))
vibsyms = line.split()[1::2]
else:
# give low freq modes an empty str as vibsym
# note there could be other possibilities..
numbers = list(map(int, line.split()))
vibsyms = ['']*len(numbers)
if line[1:12] == "Wavenumbers":
vibfreqs = list(map(float, line.strip().split()[2:]))
if line[1:21] == "Intensities [km/mol]":
vibirs = list(map(float, line.strip().split()[2:]))
# There should always by 3xnatom displacement rows.
if line[1:11].isspace() and line[13:25].strip().isdigit():
# There are a maximum of 5 modes per line.
nmodes = len(line.split())-1
vibdisps = []
for i in range(nmodes):
vibdisps.append([])
for n in range(self.natom):
vibdisps[i].append([])
for i in range(nmodes):
disp = float(line.split()[i+1])
vibdisps[i][0].append(disp)
for i in range(self.natom*3 - 1):
line = next(inputfile)
iatom = (i+1)//3
for i in range(nmodes):
disp = float(line.split()[i+1])
vibdisps[i][iatom].append(disp)
line = next(inputfile)
if not line.strip():
if not hasattr(self, "vibfreqs"):
self.vibfreqs = []
if not hasattr(self, "vibsyms"):
self.vibsyms = []
if not hasattr(self, "vibirs") and "vibirs" in dir():
self.vibirs = []
if not hasattr(self, "vibdisps") and "vibdisps" in dir():
self.vibdisps = []
if not islow:
self.vibfreqs.extend(vibfreqs)
self.vibsyms.extend(vibsyms)
if "vibirs" in dir():
self.vibirs.extend(vibirs)
if "vibdisps" in dir():
self.vibdisps.extend(vibdisps)
else:
nonzero = [f > 0 for f in vibfreqs]
vibfreqs = [f for f in vibfreqs if f > 0]
self.vibfreqs = vibfreqs + self.vibfreqs
vibsyms = [vibsyms[i] for i in range(len(vibsyms)) if nonzero[i]]
self.vibsyms = vibsyms + self.vibsyms
if "vibirs" in dir():
vibirs = [vibirs[i] for i in range(len(vibirs)) if nonzero[i]]
self.vibirs = vibirs + self.vibirs
if "vibdisps" in dir():
vibdisps = [vibdisps[i] for i in range(len(vibdisps)) if nonzero[i]]
self.vibdisps = vibdisps + self.vibdisps
line = next(inputfile)
if line[1:16] == "Force Constants":
hessian = []
line = next(inputfile)
hess = []
tmp = []
while line.strip():
try:
list(map(float, line.strip().split()[2:]))
except:
line = next(inputfile)
line.strip().split()[1:]
hess.extend([list(map(float, line.strip().split()[1:]))])
line = next(inputfile)
lig = 0
while (lig == 0) or (len(hess[0]) > 1):
tmp.append(hess.pop(0))
lig += 1
k = 5
while len(hess) != 0:
tmp[k] += hess.pop(0)
k += 1
if (len(tmp[k-1]) == lig):
break
if k >= lig:
k = len(tmp[-1])
for l in tmp:
hessian += l
self.set_attribute("hessian", hessian)
if line[1:14] == "Atomic Masses" and hasattr(self, "hessian"):
line = next(inputfile)
self.amass = list(map(float, line.strip().split()[2:]))
while line.strip():
line = next(inputfile)
self.amass += list(map(float, line.strip().split()[2:]))
#1PROGRAM * POP (Mulliken population analysis)
#
#
# Density matrix read from record 2100.2 Type=RHF/CHARGE (state 1.1)
#
# Population analysis by basis function type
#
# Unique atom s p d f g Total Charge
# 2 C 3.11797 2.88497 0.00000 0.00000 0.00000 6.00294 - 0.00294
# 3 C 3.14091 2.91892 0.00000 0.00000 0.00000 6.05984 - 0.05984
# ...
if line.strip() == "1PROGRAM * POP (Mulliken population analysis)":
self.skip_lines(inputfile, ['b', 'b', 'density_source', 'b', 'func_type', 'b'])
header = next(inputfile)
icharge = header.split().index('Charge')
charges = []
line = next(inputfile)
while line.strip():
cols = line.split()
charges.append(float(cols[icharge]+cols[icharge+1]))
line = next(inputfile)
if not hasattr(self, "atomcharges"):
self.atomcharges = {}
self.atomcharges['mulliken'] = charges
if 'GRADIENT FOR STATE' in line:
for _ in range(3):
next(inputfile)
grad = []
lines_read = 0
while lines_read < self.natom:
line = next(inputfile)
# Because molpro inserts an empty line every 50th atom.
if line:
grad.append([float(x) for x in line.split()[1:]])
lines_read += 1
if not hasattr(self, 'grads'):
self.grads = []
self.grads.append(grad)
if line[:25] == ' Variable memory released':
self.metadata['success'] = True
|