1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
# -*- coding: utf-8 -*-
#
# Copyright (c) 2017, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.
"""Parser for MOPAC output files"""
# Based on parser in RMG-Py by Greg Magoon
# https://github.com/ReactionMechanismGenerator/RMG-Py/blob/master/external/cclib/parser/mopacparser.py
# Also parts from Ben Albrecht
# https://github.com/ben-albrecht/cclib/blob/master/cclib/parser/mopacparser.py
# Merged and modernized by Geoff Hutchison
from __future__ import print_function
import re
import math
import numpy
from cclib.parser import data
from cclib.parser import logfileparser
from cclib.parser import utils
def symbol2int(symbol):
t = utils.PeriodicTable()
return t.number[symbol]
class MOPAC(logfileparser.Logfile):
"""A MOPAC20XX output file."""
def __init__(self, *args, **kwargs):
# Call the __init__ method of the superclass
super(MOPAC, self).__init__(logname="MOPAC", *args, **kwargs)
def __str__(self):
"""Return a string representation of the object."""
return "MOPAC log file %s" % (self.filename)
def __repr__(self):
"""Return a representation of the object."""
return 'MOPAC("%s")' % (self.filename)
def normalisesym(self, label):
"""MOPAC does not require normalizing symmetry labels."""
return label
def before_parsing(self):
#TODO
# Defaults
charge = 0
self.set_attribute('charge', charge)
mult = 1
self.set_attribute('mult', mult)
# Keep track of whether or not we're performing an
# (un)restricted calculation.
self.unrestricted = False
self.is_rohf = False
# Keep track of 1SCF vs. gopt since gopt is default
self.onescf = False
self.geomdone = False
# Compile the dashes-and-or-spaces-only regex.
self.re_dashes_and_spaces = re.compile('^[\s-]+$')
self.star = ' * '
self.stars = ' *******************************************************************************'
self.spinstate = {'SINGLET': 1,
'DOUBLET': 2,
'TRIPLET': 3,
'QUARTET': 4,
'QUINTET': 5,
'SEXTET': 6,
'HEPTET': 7,
'OCTET': 8,
'NONET': 9}
def extract(self, inputfile, line):
"""Extract information from the file object inputfile."""
if "(Version:" in line:
# Part of the full version can be extracted from here, but is
# missing information about the bitness.
package_version = line[line.find("MOPAC") + 5:line.find("(")]
package_version = package_version[:4]
if "BETA" in line:
package_version = package_version + " BETA"
self.metadata["package_version"] = package_version
# Don't use the full package version until we know its field
# yet.
if "For non-commercial use only" in line:
tokens = line.split()
tokens = tokens[8:]
assert len(tokens) == 2
package_version_full = tokens[0]
if tokens[1] != "**":
package_version_full = '-'.join(tokens)[:-2]
# Extract the atomic numbers and coordinates from the optimized geometry
# note that cartesian coordinates section occurs multiple times in the file, and we want to end up using the last instance
# also, note that the section labeled cartesian coordinates doesn't have as many decimal places as the one used here
# Example 1 (not used):
# CARTESIAN COORDINATES
#
# NO. ATOM X Y Z
#
# 1 O 4.7928 -0.8461 0.3641
# 2 O 5.8977 -0.3171 0.0092
# ...
# Example 2 (used):
# ATOM CHEMICAL X Y Z
# NUMBER SYMBOL (ANGSTROMS) (ANGSTROMS) (ANGSTROMS)
#
# 1 O 4.79280259 * -0.84610232 * 0.36409474 *
# 2 O 5.89768035 * -0.31706418 * 0.00917035 *
# ... etc.
if line.split() == ["NUMBER", "SYMBOL", "(ANGSTROMS)", "(ANGSTROMS)", "(ANGSTROMS)"]:
self.updateprogress(inputfile, "Attributes", self.cupdate)
self.inputcoords = []
self.inputatoms = []
blankline = inputfile.next()
atomcoords = []
line = inputfile.next()
while len(line.split()) > 6:
# MOPAC Version 14.019L 64BITS suddenly appends this block with
# "CARTESIAN COORDINATES" block with no blank line.
tokens = line.split()
self.inputatoms.append(symbol2int(tokens[1]))
xc = float(tokens[2])
yc = float(tokens[4])
zc = float(tokens[6])
atomcoords.append([xc, yc, zc])
line = inputfile.next()
self.inputcoords.append(atomcoords)
if not hasattr(self, "natom"):
self.atomnos = numpy.array(self.inputatoms, 'i')
self.natom = len(self.atomnos)
if 'CHARGE ON SYSTEM =' in line:
charge = int(line.split()[5])
self.set_attribute('charge', charge)
if 'SPIN STATE DEFINED' in line:
# find the multiplicity from the line token (SINGLET, DOUBLET, TRIPLET, etc)
mult = self.spinstate[line.split()[1]]
self.set_attribute('mult', mult)
# Read energy (in kcal/mol, converted to eV)
#
# FINAL HEAT OF FORMATION = -333.88606 KCAL = -1396.97927 KJ
if 'FINAL HEAT OF FORMATION =' in line:
if not hasattr(self, "scfenergies"):
self.scfenergies = []
self.scfenergies.append(utils.convertor(self.float(line.split()[5]), "kcal/mol", "eV"))
# Molecular mass parsing (units will be amu)
#
# MOLECULAR WEIGHT == 130.1890
if line[0:35] == ' MOLECULAR WEIGHT =':
self.molmass = self.float(line.split()[3])
#rotational constants
#Example:
# ROTATIONAL CONSTANTS IN CM(-1)
#
# A = 0.01757641 B = 0.00739763 C = 0.00712013
# could also read in moment of inertia, but this should just differ by a constant: rot cons= h/(8*Pi^2*I)
# note that the last occurence of this in the thermochemistry section has reduced precision,
# so we will want to use the 2nd to last instance
if line[0:40] == ' ROTATIONAL CONSTANTS IN CM(-1)':
blankline = inputfile.next()
rotinfo = inputfile.next()
if not hasattr(self, "rotcons"):
self.rotcons = []
broken = rotinfo.split()
# leave the rotational constants in Hz
a = float(broken[2])
b = float(broken[5])
c = float(broken[8])
self.rotcons.append([a, b, c])
# Start of the IR/Raman frequency section.
# Example:
# VIBRATION 1 1A ATOM PAIR ENERGY CONTRIBUTION RADIAL
# FREQ. 15.08 C 12 -- C 16 +7.9% (999.0%) 0.0%
# T-DIPOLE 0.2028 C 16 -- H 34 +5.8% (999.0%) 28.0%
# TRAVEL 0.0240 C 16 -- H 32 +5.6% (999.0%) 35.0%
# RED. MASS 1.7712 O 1 -- O 4 +5.2% (999.0%) 0.4%
# EFF. MASS7752.8338
#
# VIBRATION 2 2A ATOM PAIR ENERGY CONTRIBUTION RADIAL
# FREQ. 42.22 C 11 -- C 15 +9.0% (985.8%) 0.0%
# T-DIPOLE 0.1675 C 15 -- H 31 +6.6% (843.6%) 3.3%
# TRAVEL 0.0359 C 15 -- H 29 +6.0% (802.8%) 24.5%
# RED. MASS 1.7417 C 13 -- C 17 +5.8% (792.7%) 0.0%
# EFF. MASS1242.2114
if line[1:10] == 'VIBRATION':
self.updateprogress(inputfile, "Frequency Information", self.fupdate)
# get the vib symmetry
if len(line.split()) >= 3:
sym = line.split()[2]
if not hasattr(self, 'vibsyms'):
self.vibsyms = []
self.vibsyms.append(sym)
line = inputfile.next()
if 'FREQ' in line:
if not hasattr(self, 'vibfreqs'):
self.vibfreqs = []
freq = float(line.split()[1])
self.vibfreqs.append(freq)
line = inputfile.next()
if 'T-DIPOLE' in line:
if not hasattr(self, 'vibirs'):
self.vibirs = []
tdipole = float(line.split()[1])
# transform to km/mol
self.vibirs.append(math.sqrt(tdipole))
# Orbital eigenvalues, e.g.
# ALPHA EIGENVALUES
# BETA EIGENVALUES
# or just "EIGENVALUES" for closed-shell
if 'EIGENVALUES' in line:
if not hasattr(self, 'moenergies'):
self.moenergies = [] # list of arrays
energies = []
line = inputfile.next()
while len(line.split()) > 0:
energies.extend([float(i) for i in line.split()])
line = inputfile.next()
self.moenergies.append(energies)
# todo:
# Partial charges and dipole moments
# Example:
# NET ATOMIC CHARGES
if line[:16] == '== MOPAC DONE ==':
self.metadata['success'] = True
|