1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
|
# -*- coding: utf-8 -*-
#
# Copyright (c) 2017, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.
"""Parser for NWChem output files"""
import itertools
import re
import numpy
from cclib.parser import logfileparser
from cclib.parser import utils
class NWChem(logfileparser.Logfile):
"""An NWChem log file."""
def __init__(self, *args, **kwargs):
# Call the __init__ method of the superclass
super(NWChem, self).__init__(logname="NWChem", *args, **kwargs)
def __str__(self):
"""Return a string representation of the object."""
return "NWChem log file %s" % (self.filename)
def __repr__(self):
"""Return a representation of the object."""
return 'NWChem("%s")' % (self.filename)
def normalisesym(self, label):
"""NWChem does not require normalizing symmetry labels."""
return label
name2element = lambda self, lbl: "".join(itertools.takewhile(str.isalpha, str(lbl)))
def extract(self, inputfile, line):
"""Extract information from the file object inputfile."""
# Extract the version number.
if "nwchem branch" in line:
self.metadata["package_version"] = line.split()[3]
# Don't add revision information to the main package version for now.
if "nwchem revision" in line:
revision = line.split()[3]
# This is printed in the input module, so should always be the first coordinates,
# and contains some basic information we want to parse as well. However, this is not
# the only place where the coordinates are printed during geometry optimization,
# since the gradients module has a separate coordinate printout, which happens
# alongside the coordinate gradients. This geometry printout happens at the
# beginning of each optimization step only.
if line.strip() == 'Geometry "geometry" -> ""' or line.strip() == 'Geometry "geometry" -> "geometry"':
self.skip_lines(inputfile, ['dashes', 'blank', 'units', 'blank', 'header', 'dashes'])
if not hasattr(self, 'atomcoords'):
self.atomcoords = []
line = next(inputfile)
coords = []
atomnos = []
while line.strip():
# The column labeled 'tag' is usually empty, but I'm not sure whether it can have spaces,
# so for now assume that it can and that there will be seven columns in that case.
if len(line.split()) == 6:
index, atomname, nuclear, x, y, z = line.split()
else:
index, atomname, tag, nuclear, x, y, z = line.split()
coords.append(list(map(float, [x, y, z])))
atomnos.append(int(float(nuclear)))
line = next(inputfile)
self.atomcoords.append(coords)
self.set_attribute('atomnos', atomnos)
# If the geometry is printed in XYZ format, it will have the number of atoms.
if line[12:31] == "XYZ format geometry":
self.skip_line(inputfile, 'dashes')
natom = int(next(inputfile).strip())
self.set_attribute('natom', natom)
if line.strip() == "NWChem Geometry Optimization":
self.skip_lines(inputfile, ['d', 'b', 'b', 'b', 'b', 'title', 'b', 'b'])
line = next(inputfile)
while line.strip():
if "maximum gradient threshold" in line:
gmax = float(line.split()[-1])
if "rms gradient threshold" in line:
grms = float(line.split()[-1])
if "maximum cartesian step threshold" in line:
xmax = float(line.split()[-1])
if "rms cartesian step threshold" in line:
xrms = float(line.split()[-1])
line = next(inputfile)
self.set_attribute('geotargets', [gmax, grms, xmax, xrms])
# NWChem does not normally print the basis set for each atom, but rather
# chooses the concise option of printing Gaussian coefficients for each
# atom type/element only once. Therefore, we need to first parse those
# coefficients and afterwards build the appropriate gbasis attribute based
# on that and atom types/elements already parsed (atomnos). However, if atom
# are given different names (number after element, like H1 and H2), then NWChem
# generally prints the gaussian parameters for all unique names, like this:
#
# Basis "ao basis" -> "ao basis" (cartesian)
# -----
# O (Oxygen)
# ----------
# Exponent Coefficients
# -------------- ---------------------------------------------------------
# 1 S 1.30709320E+02 0.154329
# 1 S 2.38088610E+01 0.535328
# (...)
#
# H1 (Hydrogen)
# -------------
# Exponent Coefficients
# -------------- ---------------------------------------------------------
# 1 S 3.42525091E+00 0.154329
# (...)
#
# H2 (Hydrogen)
# -------------
# Exponent Coefficients
# -------------- ---------------------------------------------------------
# 1 S 3.42525091E+00 0.154329
# (...)
#
# This current parsing code below assumes all atoms of the same element
# use the same basis set, but that might not be true, and this will probably
# need to be considered in the future when such a logfile appears.
if line.strip() == """Basis "ao basis" -> "ao basis" (cartesian)""":
self.skip_line(inputfile, 'dashes')
gbasis_dict = {}
line = next(inputfile)
while line.strip():
atomname = line.split()[0]
atomelement = self.name2element(atomname)
gbasis_dict[atomelement] = []
self.skip_lines(inputfile, ['d', 'labels', 'd'])
shells = []
line = next(inputfile)
while line.strip() and line.split()[0].isdigit():
shell = None
while line.strip():
nshell, type, exp, coeff = line.split()
nshell = int(nshell)
assert len(shells) == nshell - 1
if not shell:
shell = (type, [])
else:
assert shell[0] == type
exp = float(exp)
coeff = float(coeff)
shell[1].append((exp, coeff))
line = next(inputfile)
shells.append(shell)
line = next(inputfile)
gbasis_dict[atomelement].extend(shells)
gbasis = []
for i in range(self.natom):
atomtype = self.table.element[self.atomnos[i]]
gbasis.append(gbasis_dict[atomtype])
self.set_attribute('gbasis', gbasis)
# Normally the indexes of AOs assigned to specific atoms are also not printed,
# so we need to infer that. We could do that from the previous section,
# it might be worthwhile to take numbers from two different places, hence
# the code below, which builds atombasis based on the number of functions
# listed in this summary of the AO basis. Similar to previous section, here
# we assume all atoms of the same element have the same basis sets, but
# this will probably need to be revised later.
# The section we can glean info about aonmaes looks like:
#
# Summary of "ao basis" -> "ao basis" (cartesian)
# ------------------------------------------------------------------------------
# Tag Description Shells Functions and Types
# ---------------- ------------------------------ ------ ---------------------
# C sto-3g 3 5 2s1p
# H sto-3g 1 1 1s
#
# However, we need to make sure not to match the following entry lines:
#
# * Summary of "ao basis" -> "" (cartesian)
# * Summary of allocated global arrays
#
# Unfortantely, "ao basis" isn't unique because it can be renamed to anything for
# later reference: http://www.nwchem-sw.org/index.php/Basis
# It also appears that we have to handle cartesian vs. spherical
if line[1:11] == "Summary of":
match = re.match(' Summary of "([^\"]*)" -> "([^\"]*)" \((.+)\)', line)
if match and match.group(1) == match.group(2):
self.skip_lines(inputfile, ['d', 'title', 'd'])
self.shells = {}
self.shells["type"] = match.group(3)
atombasis_dict = {}
line = next(inputfile)
while line.strip():
atomname, desc, shells, funcs, types = line.split()
atomelement = self.name2element(atomname)
self.metadata["basis_set"] = desc
self.shells[atomname] = types
atombasis_dict[atomelement] = int(funcs)
line = next(inputfile)
last = 0
atombasis = []
for atom in self.atomnos:
atomelement = self.table.element[atom]
nfuncs = atombasis_dict[atomelement]
atombasis.append(list(range(last, last+nfuncs)))
last = atombasis[-1][-1] + 1
self.set_attribute('atombasis', atombasis)
# This section contains general parameters for Hartree-Fock calculations,
# which do not contain the 'General Information' section like most jobs.
if line.strip() == "NWChem SCF Module":
# If the calculation doesn't have a title specified, there
# aren't as many lines to skip here.
self.skip_lines(inputfile, ['d', 'b', 'b'])
line = next(inputfile)
if line.strip():
self.skip_lines(inputfile, ['b', 'b', 'b'])
line = next(inputfile)
while line.strip():
if line[2:8] == "charge":
charge = int(float(line.split()[-1]))
self.set_attribute('charge', charge)
if line[2:13] == "open shells":
unpaired = int(line.split()[-1])
self.set_attribute('mult', 2*unpaired + 1)
if line[2:7] == "atoms":
natom = int(line.split()[-1])
self.set_attribute('natom', natom)
if line[2:11] == "functions":
nfuncs = int(line.split()[-1])
self.set_attribute("nbasis", nfuncs)
line = next(inputfile)
# This section contains general parameters for DFT calculations, as well as
# for the many-electron theory module.
if line.strip() == "General Information":
if hasattr(self, 'linesearch') and self.linesearch:
return
while line.strip():
if "No. of atoms" in line:
self.set_attribute('natom', int(line.split()[-1]))
if "Charge" in line:
self.set_attribute('charge', int(line.split()[-1]))
if "Spin multiplicity" in line:
mult = line.split()[-1]
if mult == "singlet":
mult = 1
self.set_attribute('mult', int(mult))
if "AO basis - number of function" in line:
nfuncs = int(line.split()[-1])
self.set_attribute('nbasis', nfuncs)
# These will be present only in the DFT module.
if "Convergence on energy requested" in line:
target_energy = self.float(line.split()[-1])
if "Convergence on density requested" in line:
target_density = self.float(line.split()[-1])
if "Convergence on gradient requested" in line:
target_gradient = self.float(line.split()[-1])
line = next(inputfile)
# Pretty nasty temporary hack to set scftargets only in the SCF module.
if "target_energy" in dir() and "target_density" in dir() and "target_gradient" in dir():
if not hasattr(self, 'scftargets'):
self.scftargets = []
self.scftargets.append([target_energy, target_density, target_gradient])
#DFT functional information
if "XC Information" in line:
line = next(inputfile)
line = next(inputfile)
self.metadata["functional"] = line.split()[0]
# If the full overlap matrix is printed, it looks like this:
#
# global array: Temp Over[1:60,1:60], handle: -996
#
# 1 2 3 4 5 6
# ----------- ----------- ----------- ----------- ----------- -----------
# 1 1.00000 0.24836 -0.00000 -0.00000 0.00000 0.00000
# 2 0.24836 1.00000 0.00000 -0.00000 0.00000 0.00030
# 3 -0.00000 0.00000 1.00000 0.00000 0.00000 -0.00014
# ...
if "global array: Temp Over[" in line:
self.set_attribute('nbasis', int(line.split('[')[1].split(',')[0].split(':')[1]))
self.set_attribute('nmo', int(line.split(']')[0].split(',')[1].split(':')[1]))
aooverlaps = []
while len(aooverlaps) < self.nbasis:
self.skip_line(inputfile, 'blank')
indices = [int(i) for i in inputfile.next().split()]
assert indices[0] == len(aooverlaps) + 1
self.skip_line(inputfile, "dashes")
data = [inputfile.next().split() for i in range(self.nbasis)]
indices = [int(d[0]) for d in data]
assert indices == list(range(1, self.nbasis+1))
for i in range(1, len(data[0])):
vector = [float(d[i]) for d in data]
aooverlaps.append(vector)
self.set_attribute('aooverlaps', aooverlaps)
if line.strip() in ("The SCF is already converged", "The DFT is already converged"):
if self.linesearch:
return
if hasattr(self, 'scftargets'):
self.scftargets.append(self.scftargets[-1])
if hasattr(self, 'scfvalues'):
self.scfvalues.append(self.scfvalues[-1])
# The default (only?) SCF algorithm for Hartree-Fock is a preconditioned conjugate
# gradient method that apparently "always" converges, so this header should reliably
# signal a start of the SCF cycle. The convergence targets are also printed here.
if line.strip() == "Quadratically convergent ROHF":
if hasattr(self, 'linesearch') and self.linesearch:
return
while not "Final" in line:
# Only the norm of the orbital gradient is used to test convergence.
if line[:22] == " Convergence threshold":
target = float(line.split()[-1])
if not hasattr(self, "scftargets"):
self.scftargets = []
self.scftargets.append([target])
# This is critical for the stop condition of the section,
# because the 'Final Fock-matrix accuracy' is along the way.
# It would be prudent to find a more robust stop condition.
while list(set(line.strip())) != ["-"]:
line = next(inputfile)
if line.split() == ['iter', 'energy', 'gnorm', 'gmax', 'time']:
values = []
self.skip_line(inputfile, 'dashes')
line = next(inputfile)
while line.strip():
it, energy, gnorm, gmax, time = line.split()
gnorm = self.float(gnorm)
values.append([gnorm])
try:
line = next(inputfile)
# Is this the end of the file for some reason?
except StopIteration:
self.logger.warning('File terminated before end of last SCF! Last gradient norm: {}'.format(gnorm))
break
if not hasattr(self, 'scfvalues'):
self.scfvalues = []
self.scfvalues.append(values)
try:
line = next(inputfile)
except StopIteration:
self.logger.warning('File terminated?')
break
# The SCF for DFT does not use the same algorithm as Hartree-Fock, but always
# seems to use the following format to report SCF convergence:
# convergence iter energy DeltaE RMS-Dens Diis-err time
# ---------------- ----- ----------------- --------- --------- --------- ------
# d= 0,ls=0.0,diis 1 -382.2544324446 -8.28D+02 1.42D-02 3.78D-01 23.2
# d= 0,ls=0.0,diis 2 -382.3017298534 -4.73D-02 6.99D-03 3.82D-02 39.3
# d= 0,ls=0.0,diis 3 -382.2954343173 6.30D-03 4.21D-03 7.95D-02 55.3
# ...
if line.split() == ['convergence', 'iter', 'energy', 'DeltaE', 'RMS-Dens', 'Diis-err', 'time']:
if hasattr(self, 'linesearch') and self.linesearch:
return
self.skip_line(inputfile, 'dashes')
line = next(inputfile)
values = []
while line.strip():
# Sometimes there are things in between iterations with fewer columns,
# and we want to skip those lines, most probably. An exception might
# unrestricted calcualtions, which show extra RMS density and DIIS
# errors, although it is not clear yet whether these are for the
# beta orbitals or somethine else. The iterations look like this in that case:
# convergence iter energy DeltaE RMS-Dens Diis-err time
# ---------------- ----- ----------------- --------- --------- --------- ------
# d= 0,ls=0.0,diis 1 -382.0243202601 -8.28D+02 7.77D-03 1.04D-01 30.0
# 7.68D-03 1.02D-01
# d= 0,ls=0.0,diis 2 -382.0647539758 -4.04D-02 4.64D-03 1.95D-02 59.2
# 5.39D-03 2.36D-02
# ...
if len(line[17:].split()) == 6:
iter, energy, deltaE, dens, diis, time = line[17:].split()
val_energy = self.float(deltaE)
val_density = self.float(dens)
val_gradient = self.float(diis)
values.append([val_energy, val_density, val_gradient])
try:
line = next(inputfile)
# Is this the end of the file for some reason?
except StopIteration:
self.logger.warning('File terminated before end of last SCF! Last error: {}'.format(diis))
break
if not hasattr(self, 'scfvalues'):
self.scfvalues = []
self.scfvalues.append(values)
# These triggers are supposed to catch the current step in a geometry optimization search
# and determine whether we are currently in the main (initial) SCF cycle of that step
# or in the subsequent line search. The step is printed between dashes like this:
#
# --------
# Step 0
# --------
#
# and the summary lines that describe the main SCF cycle for the frsit step look like this:
#
#@ Step Energy Delta E Gmax Grms Xrms Xmax Walltime
#@ ---- ---------------- -------- -------- -------- -------- -------- --------
#@ 0 -379.76896249 0.0D+00 0.04567 0.01110 0.00000 0.00000 4.2
# ok ok
#
# However, for subsequent step the format is a bit different:
#
# Step Energy Delta E Gmax Grms Xrms Xmax Walltime
# ---- ---------------- -------- -------- -------- -------- -------- --------
#@ 2 -379.77794602 -7.4D-05 0.00118 0.00023 0.00440 0.01818 14.8
# ok
#
# There is also a summary of the line search (which we don't use now), like this:
#
# Line search:
# step= 1.00 grad=-1.8D-05 hess= 8.9D-06 energy= -379.777955 mode=accept
# new step= 1.00 predicted energy= -379.777955
#
if line[10:14] == "Step":
self.geostep = int(line.split()[-1])
self.skip_line(inputfile, 'dashes')
self.linesearch = False
if line[0] == "@" and line.split()[1] == "Step":
at_and_dashes = next(inputfile)
line = next(inputfile)
assert int(line.split()[1]) == self.geostep == 0
gmax = float(line.split()[4])
grms = float(line.split()[5])
xrms = float(line.split()[6])
xmax = float(line.split()[7])
if not hasattr(self, 'geovalues'):
self.geovalues = []
self.geovalues.append([gmax, grms, xmax, xrms])
self.linesearch = True
if line[2:6] == "Step":
self.skip_line(inputfile, 'dashes')
line = next(inputfile)
assert int(line.split()[1]) == self.geostep
if self.linesearch:
#print(line)
return
gmax = float(line.split()[4])
grms = float(line.split()[5])
xrms = float(line.split()[6])
xmax = float(line.split()[7])
if not hasattr(self, 'geovalues'):
self.geovalues = []
self.geovalues.append([gmax, grms, xmax, xrms])
self.linesearch = True
# There is a clear message when the geometry optimization has converged:
#
# ----------------------
# Optimization converged
# ----------------------
#
if line.strip() == "Optimization converged":
self.skip_line(inputfile, 'dashes')
if not hasattr(self, 'optdone'):
self.optdone = []
self.optdone.append(len(self.geovalues) - 1)
if "Failed to converge" in line and hasattr(self, 'geovalues'):
if not hasattr(self, 'optdone'):
self.optdone = []
# extract the theoretical method
if "Total SCF energy" in line:
self.metadata["methods"].append("HF")
if "Total DFT energy" in line:
self.metadata["methods"].append("DFT")
# The line containing the final SCF energy seems to be always identifiable like this.
if "Total SCF energy" in line or "Total DFT energy" in line:
# NWChem often does a line search during geometry optimization steps, reporting
# the SCF information but not the coordinates (which are not necessarily 'intermediate'
# since the step size can become smaller). We want to skip these SCF cycles,
# unless the coordinates can also be extracted (possibly from the gradients?).
if hasattr(self, 'linesearch') and self.linesearch:
return
if not hasattr(self, "scfenergies"):
self.scfenergies = []
energy = float(line.split()[-1])
energy = utils.convertor(energy, "hartree", "eV")
self.scfenergies.append(energy)
# The final MO orbitals are printed in a simple list, but apparently not for
# DFT calcs, and often this list does not contain all MOs, so make sure to
# parse them from the MO analysis below if possible. This section will be like this:
#
# Symmetry analysis of molecular orbitals - final
# -----------------------------------------------
#
# Numbering of irreducible representations:
#
# 1 ag 2 au 3 bg 4 bu
#
# Orbital symmetries:
#
# 1 bu 2 ag 3 bu 4 ag 5 bu
# 6 ag 7 bu 8 ag 9 bu 10 ag
# ...
if line.strip() == "Symmetry analysis of molecular orbitals - final":
self.skip_lines(inputfile, ['d', 'b', 'numbering', 'b', 'reps', 'b', 'syms', 'b'])
if not hasattr(self, 'mosyms'):
self.mosyms = [[None]*self.nbasis]
line = next(inputfile)
while line.strip():
ncols = len(line.split())
assert ncols % 2 == 0
for i in range(ncols//2):
index = int(line.split()[i*2]) - 1
sym = line.split()[i*2+1]
sym = sym[0].upper() + sym[1:]
if self.mosyms[0][index]:
if self.mosyms[0][index] != sym:
self.logger.warning("Symmetry of MO %i has changed" % (index+1))
self.mosyms[0][index] = sym
line = next(inputfile)
# The same format is used for HF and DFT molecular orbital analysis. We want to parse
# the MO energies from this section, although it is printed already before this with
# less precision (might be useful to parse that if this is not available). Also, this
# section contains coefficients for the leading AO contributions, so it might also
# be useful to parse and use those values if the full vectors are not printed.
#
# The block looks something like this (two separate alpha/beta blocks in the unrestricted case):
#
# ROHF Final Molecular Orbital Analysis
# -------------------------------------
#
# Vector 1 Occ=2.000000D+00 E=-1.104059D+01 Symmetry=bu
# MO Center= 1.4D-17, 0.0D+00, -6.5D-37, r^2= 2.1D+00
# Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function
# ----- ------------ --------------- ----- ------------ ---------------
# 1 0.701483 1 C s 6 -0.701483 2 C s
#
# Vector 2 Occ=2.000000D+00 E=-1.104052D+01 Symmetry=ag
# ...
# Vector 12 Occ=2.000000D+00 E=-1.020253D+00 Symmetry=bu
# MO Center= -1.4D-17, -5.6D-17, 2.9D-34, r^2= 7.9D+00
# Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function
# ----- ------------ --------------- ----- ------------ ---------------
# 36 -0.298699 11 C s 41 0.298699 12 C s
# 2 0.270804 1 C s 7 -0.270804 2 C s
# 48 -0.213655 15 C s 53 0.213655 16 C s
# ...
#
if "Final" in line and "Molecular Orbital Analysis" in line:
# Unrestricted jobs have two such blocks, for alpha and beta orbitals, and
# we need to keep track of which one we're parsing (always alpha in restricted case).
unrestricted = ("Alpha" in line) or ("Beta" in line)
alphabeta = int("Beta" in line)
self.skip_lines(inputfile, ['dashes', 'blank'])
nvectors = []
mooccnos = []
energies = []
symmetries = [None]*self.nbasis
line = next(inputfile)
while line[:7] == " Vector":
# Note: the vector count starts from 1 in NWChem.
nvector = int(line[7:12])
nvectors.append(nvector)
# A nonzero occupancy for SCF jobs means the orbital is occupied.
mooccno = int(self.float(line[18:30]))
mooccnos.append(mooccno)
# If the printout does not start from the first MO, assume None for all previous orbitals.
if len(energies) == 0 and nvector > 1:
for i in range(1, nvector):
energies.append(None)
energy = self.float(line[34:47])
energy = utils.convertor(energy, "hartree", "eV")
energies.append(energy)
# When symmetry is not used, this part of the line is missing.
if line[47:58].strip() == "Symmetry=":
sym = line[58:].strip()
sym = sym[0].upper() + sym[1:]
symmetries[nvector-1] = sym
line = next(inputfile)
if "MO Center" in line:
line = next(inputfile)
if "Bfn." in line:
line = next(inputfile)
if "-----" in line:
line = next(inputfile)
while line.strip():
line = next(inputfile)
line = next(inputfile)
self.set_attribute('nmo', nvector)
if not hasattr(self, 'moenergies') or (len(self.moenergies) > alphabeta):
self.moenergies = []
self.moenergies.append(energies)
if not hasattr(self, 'mosyms') or (len(self.mosyms) > alphabeta):
self.mosyms = []
self.mosyms.append(symmetries)
if not hasattr(self, 'homos') or (len(self.homos) > alphabeta):
self.homos = []
nvector_index = mooccnos.index(0) - 1
if nvector_index > -1:
self.homos.append(nvectors[nvector_index] - 1)
else:
self.homos.append(-1)
# If this was a restricted open-shell calculation, append
# to HOMOs twice since only one Molecular Orbital Analysis
# section is in the output file.
if (not unrestricted) and (1 in mooccnos):
nvector_index = mooccnos.index(1) - 1
if nvector_index > -1:
self.homos.append(nvectors[nvector_index] - 1)
else:
self.homos.append(-1)
# This is where the full MO vectors are printed, but a special
# directive is needed for it in the `scf` or `dft` block:
# print "final vectors" "final vectors analysis"
# which gives:
#
# Final MO vectors
# ----------------
#
#
# global array: alpha evecs[1:60,1:60], handle: -995
#
# 1 2 3 4 5 6
# ----------- ----------- ----------- ----------- ----------- -----------
# 1 -0.69930 -0.69930 -0.02746 -0.02769 -0.00313 -0.02871
# 2 -0.03156 -0.03135 0.00410 0.00406 0.00078 0.00816
# 3 0.00002 -0.00003 0.00067 0.00065 -0.00526 -0.00120
# ...
#
if line.strip() == "Final MO vectors":
if not hasattr(self, 'mocoeffs'):
self.mocoeffs = []
self.skip_lines(inputfile, ['d', 'b', 'b'])
# The columns are MOs, rows AOs, but that's and educated guess since no
# atom information is printed alongside the indices. This next line gives
# the dimensions, which we can check. if set before this. Also, this line
# specifies whether we are dealing with alpha or beta vectors.
array_info = next(inputfile)
while ("global array" in array_info):
alphabeta = int(line.split()[2] == "beta")
size = array_info.split('[')[1].split(']')[0]
nbasis = int(size.split(',')[0].split(':')[1])
nmo = int(size.split(',')[1].split(':')[1])
self.set_attribute('nbasis', nbasis)
self.set_attribute('nmo', nmo)
self.skip_line(inputfile, 'blank')
mocoeffs = []
while len(mocoeffs) < self.nmo:
nmos = list(map(int, next(inputfile).split()))
assert len(mocoeffs) == nmos[0] - 1
for n in nmos:
mocoeffs.append([])
self.skip_line(inputfile, 'dashes')
for nb in range(nbasis):
line = next(inputfile)
index = int(line.split()[0])
assert index == nb+1
coefficients = list(map(float, line.split()[1:]))
assert len(coefficients) == len(nmos)
for i, c in enumerate(coefficients):
mocoeffs[nmos[i]-1].append(c)
self.skip_line(inputfile, 'blank')
self.mocoeffs.append(mocoeffs)
array_info = next(inputfile)
# For Hartree-Fock, the atomic Mulliken charges are typically printed like this:
#
# Mulliken analysis of the total density
# --------------------------------------
#
# Atom Charge Shell Charges
# ----------- ------ -------------------------------------------------------
# 1 C 6 6.00 1.99 1.14 2.87
# 2 C 6 6.00 1.99 1.14 2.87
# ...
if line.strip() == "Mulliken analysis of the total density":
if not hasattr(self, "atomcharges"):
self.atomcharges = {}
self.skip_lines(inputfile, ['d', 'b', 'header', 'd'])
charges = []
line = next(inputfile)
while line.strip():
index, atomname, nuclear, atom = line.split()[:4]
shells = line.split()[4:]
charges.append(float(atom)-float(nuclear))
line = next(inputfile)
self.atomcharges['mulliken'] = charges
# Not the the 'overlap population' as printed in the Mulliken population analysis,
# is not the same thing as the 'overlap matrix'. In fact, it is the overlap matrix
# multiplied elementwise times the density matrix.
#
# ----------------------------
# Mulliken population analysis
# ----------------------------
#
# ----- Total overlap population -----
#
# 1 2 3 4 5 6 7
#
# 1 1 C s 2.0694818227 -0.0535883400 -0.0000000000 -0.0000000000 -0.0000000000 -0.0000000000 0.0000039991
# 2 1 C s -0.0535883400 0.8281341291 0.0000000000 -0.0000000000 0.0000000000 0.0000039991 -0.0009906747
# ...
#
# DFT does not seem to print the separate listing of Mulliken charges
# by default, but they are printed by this modules later on. They are also print
# for Hartree-Fock runs, though, so in that case make sure they are consistent.
if line.strip() == "Mulliken population analysis":
self.skip_lines(inputfile, ['d', 'b', 'total_overlap_population', 'b'])
overlaps = []
line = next(inputfile)
while all([c.isdigit() for c in line.split()]):
# There is always a line with the MO indices printed in thie block.
indices = [int(i)-1 for i in line.split()]
for i in indices:
overlaps.append([])
# There is usually a blank line after the MO indices, but
# there are exceptions, so check if line is blank first.
line = next(inputfile)
if not line.strip():
line = next(inputfile)
# Now we can iterate or atomic orbitals.
for nao in range(self.nbasis):
data = list(map(float, line.split()[4:]))
for i, d in enumerate(data):
overlaps[indices[i]].append(d)
line = next(inputfile)
line = next(inputfile)
# This header should be printed later, before the charges are print, which of course
# are just sums of the overlaps and could be calculated. But we just go ahead and
# parse them, make sure they're consistent with previously parsed values and
# use these since they are more precise (previous precision could have been just 0.01).
while "Total gross population on atoms" not in line:
line = next(inputfile)
self.skip_line(inputfile, 'blank')
charges = []
for i in range(self.natom):
line = next(inputfile)
iatom, element, ncharge, epop = line.split()
iatom = int(iatom)
ncharge = float(ncharge)
epop = float(epop)
assert iatom == (i+1)
charges.append(epop-ncharge)
if not hasattr(self, 'atomcharges'):
self.atomcharges = {}
if not "mulliken" in self.atomcharges:
self.atomcharges['mulliken'] = charges
else:
assert max(self.atomcharges['mulliken'] - numpy.array(charges)) < 0.01
self.atomcharges['mulliken'] = charges
# NWChem prints the dipole moment in atomic units first, and we could just fast forward
# to the values in Debye, which are also printed. But we can also just convert them
# right away and so parse a little bit less. Note how the reference point is print
# here within the block nicely, as it is for all moment later.
#
# -------------
# Dipole Moment
# -------------
#
# Center of charge (in au) is the expansion point
# X = 0.0000000 Y = 0.0000000 Z = 0.0000000
#
# Dipole moment 0.0000000000 Debye(s)
# DMX 0.0000000000 DMXEFC 0.0000000000
# DMY 0.0000000000 DMYEFC 0.0000000000
# DMZ -0.0000000000 DMZEFC 0.0000000000
#
# ...
#
if line.strip() == "Dipole Moment":
self.skip_lines(inputfile, ['d', 'b'])
reference_comment = next(inputfile)
assert "(in au)" in reference_comment
reference = next(inputfile).split()
self.reference = [reference[-7], reference[-4], reference[-1]]
self.reference = numpy.array([float(x) for x in self.reference])
self.reference = utils.convertor(self.reference, 'bohr', 'Angstrom')
self.skip_line(inputfile, 'blank')
magnitude = next(inputfile)
assert magnitude.split()[-1] == "A.U."
dipole = []
for i in range(3):
line = next(inputfile)
dipole.append(float(line.split()[1]))
dipole = utils.convertor(numpy.array(dipole), "ebohr", "Debye")
if not hasattr(self, 'moments'):
self.moments = [self.reference, dipole]
else:
self.moments[1] == dipole
# The quadrupole moment is pretty straightforward to parse. There are several
# blocks printed, and the first one called 'second moments' contains the raw
# moments, and later traceless values are printed. The moments, however, are
# not in lexicographical order, so we need to sort them. Also, the first block
# is in atomic units, so remember to convert to Buckinghams along the way.
#
# -----------------
# Quadrupole Moment
# -----------------
#
# Center of charge (in au) is the expansion point
# X = 0.0000000 Y = 0.0000000 Z = 0.0000000
#
# < R**2 > = ********** a.u. ( 1 a.u. = 0.280023 10**(-16) cm**2 )
# ( also called diamagnetic susceptibility )
#
# Second moments in atomic units
#
# Component Electronic+nuclear Point charges Total
# --------------------------------------------------------------------------
# XX -38.3608511210 0.0000000000 -38.3608511210
# YY -39.0055467347 0.0000000000 -39.0055467347
# ...
#
if line.strip() == "Quadrupole Moment":
self.skip_lines(inputfile, ['d', 'b'])
reference_comment = next(inputfile)
assert "(in au)" in reference_comment
reference = next(inputfile).split()
self.reference = [reference[-7], reference[-4], reference[-1]]
self.reference = numpy.array([float(x) for x in self.reference])
self.reference = utils.convertor(self.reference, 'bohr', 'Angstrom')
self.skip_lines(inputfile, ['b', 'units', 'susc', 'b'])
line = next(inputfile)
assert line.strip() == "Second moments in atomic units"
self.skip_lines(inputfile, ['b', 'header', 'd'])
# Parse into a dictionary and then sort by the component key.
quadrupole = {}
for i in range(6):
line = next(inputfile)
quadrupole[line.split()[0]] = float(line.split()[-1])
lex = sorted(quadrupole.keys())
quadrupole = [quadrupole[key] for key in lex]
quadrupole = utils.convertor(numpy.array(quadrupole), "ebohr2", "Buckingham")
# The checking of potential previous values if a bit more involved here,
# because it turns out NWChem has separate keywords for dipole, quadrupole
# and octupole output. So, it is perfectly possible to print the quadrupole
# and not the dipole... if that is the case set the former to None and
# issue a warning. Also, a regression has been added to cover this case.
if not hasattr(self, 'moments') or len(self.moments) < 2:
self.logger.warning("Found quadrupole moments but no previous dipole")
self.moments = [self.reference, None, quadrupole]
else:
if len(self.moments) == 2:
self.moments.append(quadrupole)
else:
assert self.moments[2] == quadrupole
# The octupole moment is analogous to the quadrupole, but there are more components
# and the checking of previously parsed dipole and quadrupole moments is more involved,
# with a corresponding test also added to regressions.
#
# ---------------
# Octupole Moment
# ---------------
#
# Center of charge (in au) is the expansion point
# X = 0.0000000 Y = 0.0000000 Z = 0.0000000
#
# Third moments in atomic units
#
# Component Electronic+nuclear Point charges Total
# --------------------------------------------------------------------------
# XXX -0.0000000000 0.0000000000 -0.0000000000
# YYY -0.0000000000 0.0000000000 -0.0000000000
# ...
#
if line.strip() == "Octupole Moment":
self.skip_lines(inputfile, ['d', 'b'])
reference_comment = next(inputfile)
assert "(in au)" in reference_comment
reference = next(inputfile).split()
self.reference = [reference[-7], reference[-4], reference[-1]]
self.reference = numpy.array([float(x) for x in self.reference])
self.reference = utils.convertor(self.reference, 'bohr', 'Angstrom')
self.skip_line(inputfile, 'blank')
line = next(inputfile)
assert line.strip() == "Third moments in atomic units"
self.skip_lines(inputfile, ['b', 'header', 'd'])
octupole = {}
for i in range(10):
line = next(inputfile)
octupole[line.split()[0]] = float(line.split()[-1])
lex = sorted(octupole.keys())
octupole = [octupole[key] for key in lex]
octupole = utils.convertor(numpy.array(octupole), "ebohr3", "Debye.ang2")
if not hasattr(self, 'moments') or len(self.moments) < 2:
self.logger.warning("Found octupole moments but no previous dipole or quadrupole moments")
self.moments = [self.reference, None, None, octupole]
elif len(self.moments) == 2:
self.logger.warning("Found octupole moments but no previous quadrupole moments")
self.moments.append(None)
self.moments.append(octupole)
else:
if len(self.moments) == 3:
self.moments.append(octupole)
else:
assert self.moments[3] == octupole
if "Total MP2 energy" in line:
self.metadata["methods"].append("MP2")
mpenerg = float(line.split()[-1])
if not hasattr(self, "mpenergies"):
self.mpenergies = []
self.mpenergies.append([])
self.mpenergies[-1].append(utils.convertor(mpenerg, "hartree", "eV"))
if "CCSD total energy / hartree" in line or "total CCSD energy:" in line:
self.metadata["methods"].append("CCSD")
ccenerg = float(line.split()[-1])
if not hasattr(self, "ccenergies"):
self.ccenergies = []
self.ccenergies.append([])
self.ccenergies[-1].append(utils.convertor(ccenerg, "hartree", "eV"))
if "CCSD(T) total energy / hartree" in line:
self.metadata["methods"].append("CCSD(T)")
ccenerg = float(line.split()[-1])
if not hasattr(self, "ccenergies"):
self.ccenergies = []
self.ccenergies.append([])
self.ccenergies[-1].append(utils.convertor(ccenerg, "hartree", "eV"))
# Static and dynamic polarizability.
if "Linear Response polarizability / au" in line:
if not hasattr(self, "polarizabilities"):
self.polarizabilities = []
polarizability = []
line = next(inputfile)
assert line.split()[0] == "Frequency"
line = next(inputfile)
assert line.split()[0] == "Wavelength"
self.skip_lines(inputfile, ['coordinates', 'd'])
for _ in range(3):
line = next(inputfile)
polarizability.append(line.split()[1:])
self.polarizabilities.append(numpy.array(polarizability))
if line[:18] == ' Total times cpu:':
self.metadata['success'] = True
if line.strip() == "NWChem QMD Module":
self.is_BOMD = True
# Born-Oppenheimer molecular dynamics (BOMD): time.
if "QMD Run Information" in line:
self.skip_line(inputfile, 'd')
line = next(inputfile)
assert "Time elapsed (fs)" in line
time = float(line.split()[4])
self.append_attribute('time', time)
# BOMD: geometry coordinates when `print low`.
if line.strip() == "DFT ENERGY GRADIENTS":
if self.is_BOMD:
self.skip_lines(inputfile, ['b', 'atom coordinates gradient', 'xyzxyz'])
line = next(inputfile)
atomcoords_step = []
while line.strip():
tokens = line.split()
assert len(tokens) == 8
atomcoords_step.append([float(c) for c in tokens[2:5]])
line = next(inputfile)
self.atomcoords.append(atomcoords_step)
def before_parsing(self):
"""NWChem-specific routines performed before parsing a file.
"""
# The only reason we need this identifier is if `print low` is
# set in the input file, which we assume is likely for a BOMD
# trajectory. This will enable parsing coordinates from the
# 'DFT ENERGY GRADIENTS' section.
self.is_BOMD = False
def after_parsing(self):
"""NWChem-specific routines for after parsing a file.
Currently, expands self.shells() into self.aonames.
"""
# setup a few necessary things, including a regular expression
# for matching the shells
table = utils.PeriodicTable()
elements = [table.element[x] for x in self.atomnos]
pattern = re.compile("(\ds)+(\dp)*(\dd)*(\df)*(\dg)*")
labels = {}
labels['s'] = ["%iS"]
labels['p'] = ["%iPX", "%iPY", "%iPZ"]
if self.shells['type'] == 'spherical':
labels['d'] = ['%iD-2', '%iD-1', '%iD0', '%iD1', '%iD2']
labels['f'] = ['%iF-3', '%iF-2', '%iF-1', '%iF0',
'%iF1', '%iF2', '%iF3']
labels['g'] = ['%iG-4', '%iG-3', '%iG-2', '%iG-1', '%iG0',
'%iG1', '%iG2', '%iG3', '%iG4']
elif self.shells['type'] == 'cartesian':
labels['d'] = ['%iDXX', '%iDXY', '%iDXZ',
'%iDYY', '%iDYZ',
'%iDZZ']
labels['f'] = ['%iFXXX', '%iFXXY', '%iFXXZ',
'%iFXYY', '%iFXYZ', '%iFXZZ',
'%iFYYY', '%iFYYZ', '%iFYZZ',
'%iFZZZ']
labels['g'] = ['%iGXXXX', '%iGXXXY', '%iGXXXZ',
'%iGXXYY', '%iGXXYZ', '%iGXXZZ',
'%iGXYYY', '%iGXYYZ', '%iGXYZZ',
'%iGXZZZ', '%iGYYYY', '%iGYYYZ',
'%iGYYZZ', '%iGYZZZ', '%iGZZZZ']
else:
self.logger.warning("Found a non-standard aoname representation type.")
return
# now actually build aonames
# involves expanding 2s1p into appropriate types
self.aonames = []
for i, element in enumerate(elements):
try:
shell_text = self.shells[element]
except KeyError:
del self.aonames
msg = "Cannot determine aonames for at least one atom."
self.logger.warning(msg)
break
prefix = "%s%i_" % (element, i + 1) # (e.g. C1_)
matches = pattern.match(shell_text)
for j, group in enumerate(matches.groups()):
if group is None:
continue
count = int(group[:-1])
label = group[-1]
for k in range(count):
temp = [x % (j + k + 1) for x in labels[label]]
self.aonames.extend([prefix + x for x in temp])
# If we parsed a BOMD trajectory, the first two parsed
# geometries are identical, and all from the second onward are
# in Bohr. Delete the first one and perform the unit
# conversion.
if self.is_BOMD:
self.atomcoords = utils.convertor(numpy.asarray(self.atomcoords)[1:, ...],
'bohr', 'Angstrom')
|