File: orcaparser.py

package info (click to toggle)
cclib-data 1.6.2-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 87,912 kB
  • sloc: python: 16,440; sh: 131; makefile: 79; cpp: 31
file content (1663 lines) | stat: -rw-r--r-- 79,033 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
# -*- coding: utf-8 -*-
#
# Copyright (c) 2019, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.

"""Parser for ORCA output files"""


from __future__ import print_function

import numpy
import re

from cclib.parser import logfileparser
from cclib.parser import utils


class ORCA(logfileparser.Logfile):
    """An ORCA log file."""

    def __init__(self, *args, **kwargs):

        # Call the __init__ method of the superclass
        super(ORCA, self).__init__(logname="ORCA", *args, **kwargs)


    def __str__(self):
        """Return a string representation of the object."""
        return "ORCA log file %s" % (self.filename)

    def __repr__(self):
        """Return a representation of the object."""
        return 'ORCA("%s")' % (self.filename)

    def normalisesym(self, label):
        """ORCA does not require normalizing symmetry labels."""
        return label

    def before_parsing(self):

        # A geometry optimization is started only when
        # we parse a cycle (so it will be larger than zero().
        self.gopt_cycle = 0

        # Keep track of whether this is a relaxed scan calculation
        self.is_relaxed_scan = False

    def extract(self, inputfile, line):
        """Extract information from the file object inputfile."""

        # Extract the version number.
        if "Program Version" == line.strip()[:15]:
            self.metadata["package_version"] = line.split()[2]

        # ================================================================================
        #                                         WARNINGS
        #                        Please study these warnings very carefully!
        # ================================================================================
        #
        # Warning: TCutStore was < 0. Adjusted to Thresh (uncritical)
        #
        # WARNING: your system is open-shell and RHF/RKS was chosen
        #   ===> : WILL SWITCH to UHF/UKS
        #
        #
        # INFO   : the flag for use of LIBINT has been found!
        #
        # ================================================================================
        if "WARNINGS" == line.strip():
            self.skip_lines(inputfile, ['text', '=', 'blank'])
            if 'warnings' not in self.metadata:
                self.metadata['warnings'] = []
            if 'info' not in self.metadata:
                self.metadata['info'] = []

            line = next(inputfile)
            while line[0] != '=':
                if line.lower()[:7] == 'warning':
                    self.metadata['warnings'].append('')
                    while len(line) > 1:
                        self.metadata['warnings'][-1] += line[9:].strip()
                        line = next(inputfile)
                elif line.lower()[:4] == 'info':
                    self.metadata['info'].append('')
                    while len(line) > 1:
                        self.metadata['info'][-1] += line[9:].strip()
                        line = next(inputfile)
                line = next(inputfile)

        # ================================================================================
        #                                        INPUT FILE
        # ================================================================================
        # NAME = input.dat
        # |  1> %pal nprocs 4 end
        # |  2> ! B3LYP def2-svp
        # |  3> ! Grid4
        # |  4>
        # |  5> *xyz 0 3
        # |  6>     O   0   0   0
        # |  7>     O   0   0   1.5
        # |  8> *
        # |  9>
        # | 10>                          ****END OF INPUT****
        # ================================================================================
        if "INPUT FILE" == line.strip():
            self.skip_line(inputfile, '=')
            self.metadata['input_file_name'] = next(inputfile).split()[-1]

            # First, collect all the lines...
            lines = []
            for line in inputfile:
                if line[0] != '|':
                    break
                lines.append(line[6:])

            self.metadata['input_file_contents'] = ''.join(lines[:-1])
            lines_iter = iter(lines[:-1])

            keywords = []
            coords = []
            # ...then parse them separately.
            for line in lines_iter:
                line = line.strip()
                if not line:
                    continue

                # Keywords block
                if line[0] == '!':
                    keywords += line[1:].split()

                # Impossible to parse without knowing whether a keyword opens a new block
                elif line[0] == '%':
                    pass

                # Geometry block
                elif line[0] == '*':
                    coord_type, charge, multiplicity = line[1:].split()[:3]
                    self.set_attribute('charge', int(charge))
                    self.set_attribute('multiplicity', int(multiplicity))
                    coord_type = coord_type.lower()
                    self.metadata['coord_type'] = coord_type
                    if coord_type == 'xyz':
                        def splitter(line):
                            atom, x, y, z = line.split()[:4]
                            return [atom, float(x), float(y), float(z)]
                    elif coord_type in ['int', 'internal']:
                        def splitter(line):
                            atom, a1, a2, a3, bond, angle, dihedral = line.split()[:7]
                            return [atom, int(a1), int(a2), int(a3), float(bond), float(angle), float(dihedral)]
                    elif coord_type == 'gzmt':
                        def splitter(line):
                            vals = line.split()[:7]
                            if len(vals) == 7:
                                atom, a1, bond, a2, angle, a3, dihedral = vals
                                return [atom, int(a1), float(bond), int(a2), float(angle), int(a3), float(dihedral)]
                            elif len(vals) == 5:
                                return [vals[0], int(vals[1]), float(vals[2]), int(vals[3]), float(vals[4])]
                            elif len(vals) == 3:
                                return [vals[0], int(vals[1]), float(vals[2])]
                            elif len(vals) == 1:
                                return [vals[0]]
                            self.logger.warning('Incorrect number of atoms in input geometry.')
                    elif 'file' in coord_type:
                        pass
                    else:
                        self.logger.warning('Invalid coordinate type.')

                    if 'file' not in coord_type:
                        for line in lines_iter:
                            if not line:
                                continue
                            if line[0] == '#' or line.strip(' ') == '\n':
                                continue
                            if line[0] == '*' or line.strip() == "end":
                                break
                            # Strip basis specification that can appear after coordinates
                            line = line.split('newGTO')[0].strip()
                            coords.append(splitter(line))

            self.metadata['keywords'] = keywords
            self.metadata['coords'] = coords

        if line[0:15] == "Number of atoms":

            natom = int(line.split()[-1])
            self.set_attribute('natom', natom)

        if line[1:13] == "Total Charge":

            charge = int(line.split()[-1])
            self.set_attribute('charge', charge)

            line = next(inputfile)

            mult = int(line.split()[-1])
            self.set_attribute('mult', mult)

        # SCF convergence output begins with:
        #
        # --------------
        # SCF ITERATIONS
        # --------------
        #
        # However, there are two common formats which need to be handled, implemented as separate functions.
        if line.strip() == "SCF ITERATIONS":

            self.skip_line(inputfile, 'dashes')

            line = next(inputfile)
            columns = line.split()
            # "Starting incremental Fock matrix formation" doesn't
            # necessarily appear before the extended format.
            if not columns:
                self.parse_scf_expanded_format(inputfile, columns)
            # A header with distinct columns indicates the condensed
            # format.
            elif columns[1] == "Energy":
                self.parse_scf_condensed_format(inputfile, columns)
            # Assume the extended format.
            else:
                self.parse_scf_expanded_format(inputfile, columns)

        # Information about the final iteration, which also includes the convergence
        # targets and the convergence values, is printed separately, in a section like this:
        #
        #       *****************************************************
        #       *                     SUCCESS                       *
        #       *           SCF CONVERGED AFTER   9 CYCLES          *
        #       *****************************************************
        #
        # ...
        #
        # Total Energy       :         -382.04963064 Eh          -10396.09898 eV
        #
        # ...
        #
        # -------------------------   ----------------
        # FINAL SINGLE POINT ENERGY     -382.049630637
        # -------------------------   ----------------
        #
        # We cannot use this last message as a stop condition in general, because
        # often there is vibrational output before it. So we use the 'Total Energy'
        # line. However, what comes after that is different for single point calculations
        # and in the inner steps of geometry optimizations.
        if "SCF CONVERGED AFTER" in line:

            if not hasattr(self, "scfenergies"):
                self.scfenergies = []
            if not hasattr(self, "scfvalues"):
                self.scfvalues = []
            if not hasattr(self, "scftargets"):
                self.scftargets = []

            while not "Total Energy       :" in line:
                line = next(inputfile)
            energy = utils.convertor(float(line.split()[3]), "hartree", "eV")
            self.scfenergies.append(energy)

            self._append_scfvalues_scftargets(inputfile, line)

        # Sometimes the SCF does not converge, but does not halt the
        # the run (like in bug 3184890). In this this case, we should
        # remain consistent and use the energy from the last reported
        # SCF cycle. In this case, ORCA print a banner like this:
        #
        #       *****************************************************
        #       *                     ERROR                         *
        #       *           SCF NOT CONVERGED AFTER   8 CYCLES      *
        #       *****************************************************
        if "SCF NOT CONVERGED AFTER" in line:

            if not hasattr(self, "scfenergies"):
                self.scfenergies = []
            if not hasattr(self, "scfvalues"):
                self.scfvalues = []
            if not hasattr(self, "scftargets"):
                self.scftargets = []

            energy = utils.convertor(self.scfvalues[-1][-1][0], "hartree", "eV")
            self.scfenergies.append(energy)

            self._append_scfvalues_scftargets(inputfile, line)

        # The convergence targets for geometry optimizations are printed at the
        # beginning of the output, although the order and their description is
        # different than later on. So, try to standardize the names of the criteria
        # and save them for later so that we can get the order right.
        #
        #                        *****************************
        #                        * Geometry Optimization Run *
        #                        *****************************
        #
        # Geometry optimization settings:
        # Update method            Update   .... BFGS
        # Choice of coordinates    CoordSys .... Redundant Internals
        # Initial Hessian          InHess   .... Almoef's Model
        #
        # Convergence Tolerances:
        # Energy Change            TolE     ....  5.0000e-06 Eh
        # Max. Gradient            TolMAXG  ....  3.0000e-04 Eh/bohr
        # RMS Gradient             TolRMSG  ....  1.0000e-04 Eh/bohr
        # Max. Displacement        TolMAXD  ....  4.0000e-03 bohr
        # RMS Displacement         TolRMSD  ....  2.0000e-03 bohr
        #
        if line[25:50] == "Geometry Optimization Run":

            stars = next(inputfile)
            blank = next(inputfile)

            line = next(inputfile)
            while line[0:23] != "Convergence Tolerances:":
                line = next(inputfile)

            if hasattr(self, 'geotargets'):
                self.logger.warning('The geotargets attribute should not exist yet. There is a problem in the parser.')
            self.geotargets = []
            self.geotargets_names = []

            # There should always be five tolerance values printed here.
            for i in range(5):
                line = next(inputfile)
                name = line[:25].strip().lower().replace('.', '').replace('displacement', 'step')
                target = float(line.split()[-2])
                self.geotargets_names.append(name)
                self.geotargets.append(target)

        # The convergence targets for relaxed surface scan steps are printed at the
        # beginning of the output, although the order and their description is
        # different than later on. So, try to standardize the names of the criteria
        # and save them for later so that we can get the order right.
        #
        #         *************************************************************
        #         *               RELAXED SURFACE SCAN STEP  12               *
        #         *                                                           *
        #         *   Dihedral ( 11,  10,   3,   4)  : 180.00000000           *
        #         *************************************************************
        #
        # Geometry optimization settings:
        # Update method            Update   .... BFGS
        # Choice of coordinates    CoordSys .... Redundant Internals
        # Initial Hessian          InHess   .... Almoef's Model
        #
        # Convergence Tolerances:
        # Energy Change            TolE     ....  5.0000e-06 Eh
        # Max. Gradient            TolMAXG  ....  3.0000e-04 Eh/bohr
        # RMS Gradient             TolRMSG  ....  1.0000e-04 Eh/bohr
        # Max. Displacement        TolMAXD  ....  4.0000e-03 bohr
        # RMS Displacement         TolRMSD  ....  2.0000e-03 bohr
        if line[25:50] == "RELAXED SURFACE SCAN STEP":

            self.is_relaxed_scan = True
            blank = next(inputfile)
            info = next(inputfile)
            stars = next(inputfile)
            blank = next(inputfile)

            line = next(inputfile)
            while line[0:23] != "Convergence Tolerances:":
                line = next(inputfile)

            self.geotargets = []
            self.geotargets_names = []

            # There should always be five tolerance values printed here.
            for i in range(5):
                line = next(inputfile)
                name = line[:25].strip().lower().replace('.', '').replace('displacement', 'step')
                target = float(line.split()[-2])
                self.geotargets_names.append(name)
                self.geotargets.append(target)

        # ------------------
        # CARTESIAN GRADIENT
        # ------------------
        #
        # 1   H   :    0.000000004    0.019501450   -0.021537091
        # 2   O   :    0.000000054   -0.042431648    0.042431420
        # 3   H   :    0.000000004    0.021537179   -0.019501388
        if line[:18] == 'CARTESIAN GRADIENT':
            next(inputfile)
            next(inputfile)

            grads = []
            line = next(inputfile).strip()
            while line:
                idx, atom, colon, x, y, z = line.split()
                grads.append((float(x), float(y), float(z)))

                line = next(inputfile).strip()

            if not hasattr(self, 'grads'):
                self.grads = []
            self.grads.append(grads)

        # After each geometry optimization step, ORCA prints the current convergence
        # parameters and the targets (again), so it is a good idea to check that they
        # have not changed. Note that the order of these criteria here are different
        # than at the beginning of the output, so make use of the geotargets_names created
        # before and save the new geovalues in correct order.
        #
        #          ----------------------|Geometry convergence|---------------------
        #          Item                value                 Tolerance   Converged
        #          -----------------------------------------------------------------
        #          Energy change       0.00006021            0.00000500      NO
        #          RMS gradient        0.00031313            0.00010000      NO
        #          RMS step            0.01596159            0.00200000      NO
        #          MAX step            0.04324586            0.00400000      NO
        #          ....................................................
        #          Max(Bonds)      0.0218      Max(Angles)    2.48
        #          Max(Dihed)        0.00      Max(Improp)    0.00
        #          -----------------------------------------------------------------
        #
        if line[33:53] == "Geometry convergence":

            headers = next(inputfile)
            dashes = next(inputfile)

            names = []
            values = []
            targets = []
            line = next(inputfile)
            # Handle both the dots only and dashes only cases
            while len(list(set(line.strip()))) != 1:
                name = line[10:28].strip().lower()
                tokens = line.split()
                value = float(tokens[2])
                target = float(tokens[3])
                names.append(name)
                values.append(value)
                targets.append(target)
                line = next(inputfile)

            # The energy change is normally not printed in the first iteration, because
            # there was no previous energy -- in that case assume zero. There are also some
            # edge cases where the energy change is not printed, for example when internal
            # angles become improper and internal coordinates are rebuilt as in regression
            # CuI-MePY2-CH3CN_optxes, and in such cases use NaN.
            newvalues = []
            for i, n in enumerate(self.geotargets_names):
                if (n == "energy change") and (n not in names):
                    if self.is_relaxed_scan:
                        newvalues.append(0.0)
                    else:
                        newvalues.append(numpy.nan)
                else:
                    newvalues.append(values[names.index(n)])
                    assert targets[names.index(n)] == self.geotargets[i]

            self.append_attribute("geovalues", newvalues)

        """ Grab cartesian coordinates
        ---------------------------------
        CARTESIAN COORDINATES (ANGSTROEM)
        ---------------------------------
        H      0.000000    0.000000    0.000000
        O      0.000000    0.000000    1.000000
        H      0.000000    1.000000    1.000000
        """
        if line[0:33] == "CARTESIAN COORDINATES (ANGSTROEM)":
            next(inputfile)

            atomnos = []
            atomcoords = []
            line = next(inputfile)
            while len(line) > 1:
                atom, x, y, z = line.split()
                if atom[-1] != ">":
                    atomnos.append(self.table.number[atom])
                    atomcoords.append([float(x), float(y), float(z)])
                line = next(inputfile)

            self.set_attribute('natom', len(atomnos))
            self.set_attribute('atomnos', atomnos)
            self.append_attribute("atomcoords", atomcoords)

        """ Grab atom masses
        ----------------------------
        CARTESIAN COORDINATES (A.U.)
        ----------------------------
        NO LB      ZA    FRAG     MASS         X           Y           Z
        0 H     1.0000    0     1.008    0.000000    0.000000    0.000000
        1 O     8.0000    0    15.999    0.000000    0.000000    1.889726
        2 H     1.0000    0     1.008    0.000000    1.889726    1.889726
        """
        if line[0:28] == "CARTESIAN COORDINATES (A.U.)" and not hasattr(self, 'atommasses'):
            next(inputfile)
            next(inputfile)

            line = next(inputfile)
            self.atommasses = []
            while len(line) > 1:
                if line[:32] == '* core charge reduced due to ECP':
                    break
                if line.strip() == "> coreless ECP center with (optional) point charge":
                    break
                no, lb, za, frag, mass, x, y, z = line.split()
                if lb[-1] != ">":
                    self.atommasses.append(float(mass))
                line = next(inputfile)

        if line[21:68] == "FINAL ENERGY EVALUATION AT THE STATIONARY POINT":
            if not hasattr(self, 'optdone'):
                self.optdone = []
            self.optdone.append(len(self.atomcoords))

        if "The optimization did not converge" in line:
            if not hasattr(self, 'optdone'):
                self.optdone = []

        if line[0:16] == "ORBITAL ENERGIES":

            self.skip_lines(inputfile, ['d', 'text', 'text'])

            self.mooccnos = [[]]
            self.moenergies = [[]]

            line = next(inputfile)
            while len(line) > 20:  # restricted calcs are terminated by ------
                info = line.split()
                mooccno = int(float(info[1]))
                moenergy = float(info[2])
                self.mooccnos[0].append(mooccno)
                self.moenergies[0].append(utils.convertor(moenergy, "hartree", "eV"))
                line = next(inputfile)

            line = next(inputfile)

            # handle beta orbitals for UHF
            if line[17:35] == "SPIN DOWN ORBITALS":
                text = next(inputfile)

                self.mooccnos.append([])
                self.moenergies.append([])

                line = next(inputfile)
                while len(line) > 20:  # actually terminated by ------
                    info = line.split()
                    mooccno = int(float(info[1]))
                    moenergy = float(info[2])
                    self.mooccnos[1].append(mooccno)
                    self.moenergies[1].append(utils.convertor(moenergy, "hartree", "eV"))
                    line = next(inputfile)

            if not hasattr(self, 'homos'):
                doubly_occupied = self.mooccnos[0].count(2)
                singly_occupied = self.mooccnos[0].count(1)
                # Restricted closed-shell.
                if doubly_occupied > 0 and singly_occupied == 0:
                    self.set_attribute('homos', [doubly_occupied - 1])
                # Restricted open-shell.
                elif doubly_occupied > 0 and singly_occupied > 0:
                    self.set_attribute('homos', [doubly_occupied + singly_occupied - 1,
                                                 doubly_occupied - 1])
                # Unrestricted.
                else:
                    assert len(self.moenergies) == 2
                    assert doubly_occupied == 0
                    assert self.mooccnos[1].count(2) == 0
                    nbeta = self.mooccnos[1].count(1)
                    self.set_attribute('homos', [singly_occupied - 1, nbeta - 1])

        # So nbasis was parsed at first with the first pattern, but it turns out that
        # semiempirical methods (at least AM1 as reported by Julien Idé) do not use this.
        # For this reason, also check for the second patterns, and use it as an assert
        # if nbasis was already parsed. Regression PCB_1_122.out covers this test case.
        if line[1:32] == "# of contracted basis functions":
            self.set_attribute('nbasis', int(line.split()[-1]))
        if line[1:27] == "Basis Dimension        Dim":
            self.set_attribute('nbasis', int(line.split()[-1]))

        if line[0:14] == "OVERLAP MATRIX":

            self.skip_line(inputfile, 'dashes')

            self.aooverlaps = numpy.zeros((self.nbasis, self.nbasis), "d")
            for i in range(0, self.nbasis, 6):
                self.updateprogress(inputfile, "Overlap")

                header = next(inputfile)
                size = len(header.split())

                for j in range(self.nbasis):
                    line = next(inputfile)
                    broken = line.split()
                    self.aooverlaps[j, i:i+size] = list(map(float, broken[1:size+1]))

        # Molecular orbital coefficients are parsed here, but also related things
        #like atombasis and aonames if possible.
        #
        # Normally the output is easy to parse like this:
        # ------------------
        # MOLECULAR ORBITALS
        # ------------------
        #                       0         1         2         3         4         5   
        #                  -19.28527 -19.26828 -19.26356 -19.25801 -19.25765 -19.21471
        #                    2.00000   2.00000   2.00000   2.00000   2.00000   2.00000
        #                   --------  --------  --------  --------  --------  --------
        #   0C   1s         0.000002 -0.000001  0.000000  0.000000 -0.000000  0.000001
        #   0C   2s        -0.000007  0.000006 -0.000002 -0.000000  0.000001 -0.000003
        #   0C   3s        -0.000086 -0.000061  0.000058 -0.000033 -0.000027 -0.000058
        # ...
        #
        # But when the numbers get big, things get yucky since ORCA does not use
        # fixed width formatting for the floats, and does not insert extra spaces
        # when the numbers get wider. So things get stuck together overflowing columns,
        # like this:
        #   12C   6s       -11.608845-53.775398161.302640-76.633779 29.914985 22.083999
        #
        # One assumption that seems to hold is that there are always six significant
        # digits in the coefficients, so we can try to use that to delineate numbers
        # when the parsing gets rough. This is what we do below with a regex, and a case
        # like this is tested in regression ORCA/ORCA4.0/invalid-literal-for-float.out
        # which was reported in https://github.com/cclib/cclib/issues/629
        if line[0:18] == "MOLECULAR ORBITALS":

            self.skip_line(inputfile, 'dashes')

            aonames = []
            atombasis = [[] for i in range(self.natom)]
            mocoeffs = [numpy.zeros((self.nbasis, self.nbasis), "d")]

            for spin in range(len(self.moenergies)):

                if spin == 1:
                    self.skip_line(inputfile, 'blank')
                    mocoeffs.append(numpy.zeros((self.nbasis, self.nbasis), "d"))

                for i in range(0, self.nbasis, 6):

                    self.updateprogress(inputfile, "Coefficients")

                    self.skip_lines(inputfile, ['numbers', 'energies', 'occs'])
                    dashes = next(inputfile)

                    for j in range(self.nbasis):
                        line = next(inputfile)

                        # Only need this in the first iteration.
                        if spin == 0 and i == 0:
                            atomname = line[3:5].split()[0]
                            num = int(line[0:3])
                            orbital = line.split()[1].upper()

                            aonames.append("%s%i_%s" % (atomname, num+1, orbital))
                            atombasis[num].append(j)

                        # This regex will tease out all number with exactly
                        # six digits after the decimal point.
                        coeffs = re.findall('-?\d+\.\d{6}', line)

                        # Something is very wrong if this does not hold.
                        assert len(coeffs) <= 6

                        mocoeffs[spin][i:i+len(coeffs), j] = [float(c) for c in coeffs]

            self.set_attribute('aonames', aonames)
            self.set_attribute('atombasis', atombasis)
            self.set_attribute("mocoeffs", mocoeffs)

        # Basis set information
        # ORCA prints this out in a somewhat indirect fashion.
        # Therefore, parsing occurs in several steps:
        # 1. read which atom belongs to which basis set group
        if line[0:21] == "BASIS SET INFORMATION":
            line = next(inputfile)
            line = next(inputfile)

            self.tmp_atnames = [] # temporary attribute, needed later
            while(not line[0:5] == '-----'):
                if line[0:4] == "Atom":
                    self.tmp_atnames.append(line[8:12].strip())
                line = next(inputfile)

        # 2. Read information for the basis set groups
        if line[0:25] == "BASIS SET IN INPUT FORMAT":
            line = next(inputfile)
            line = next(inputfile)

            # loop over basis set groups
            gbasis_tmp = {}
            while(not line[0:5] == '-----'):
                if line[1:7] == 'NewGTO':
                    bas_atname = line.split()[1]
                    gbasis_tmp[bas_atname] = []

                    line = next(inputfile)
                    # loop over contracted GTOs
                    while(not line[0:6] == '  end;'):
                        words = line.split()
                        ang = words[0]
                        nprim = int(words[1])

                        # loop over primitives
                        coeff = []
                        for iprim in range(nprim):
                            words = next(inputfile).split()
                            coeff.append( (float(words[1]), float(words[2])) )
                        gbasis_tmp[bas_atname].append((ang, coeff))

                        line = next(inputfile)
                line = next(inputfile)

            # 3. Assign the basis sets to gbasis
            self.gbasis = []
            for bas_atname in self.tmp_atnames:
                self.gbasis.append(gbasis_tmp[bas_atname])
            del self.tmp_atnames

        """ Banner announcing Thermochemistry
        --------------------------
        THERMOCHEMISTRY AT 298.15K
        --------------------------
        """
        if 'THERMOCHEMISTRY AT' == line[:18]:

            next(inputfile)
            next(inputfile)
            self.temperature = float(next(inputfile).split()[2])
            self.pressure = float(next(inputfile).split()[2])
            total_mass = float(next(inputfile).split()[3])

            # Vibrations, rotations, and translations
            line = next(inputfile)
            while line[:17] != 'Electronic energy':
                line = next(inputfile)
            self.zpe = next(inputfile).split()[4]
            thermal_vibrational_correction = float(next(inputfile).split()[4])
            thermal_rotional_correction = float(next(inputfile).split()[4])
            thermal_translational_correction = float(next(inputfile).split()[4])
            next(inputfile)
            total_thermal_energy = float(next(inputfile).split()[3])

            # Enthalpy
            line = next(inputfile)
            while line[:17] != 'Total free energy':
                line = next(inputfile)
            thermal_enthalpy_correction = float(next(inputfile).split()[4])
            next(inputfile)
            self.enthalpy = float(next(inputfile).split()[3])

            # Entropy
            line = next(inputfile)
            while line[:18] != 'Electronic entropy':
                line = next(inputfile)
            electronic_entropy = float(line.split()[3])
            vibrational_entropy = float(next(inputfile).split()[3])
            rotational_entropy = float(next(inputfile).split()[3])
            translational_entropy = float(next(inputfile).split()[3])
            next(inputfile)
            self.entropy = float(next(inputfile).split()[4])

            line = next(inputfile)
            while line[:25] != 'Final Gibbs free enthalpy':
                line = next(inputfile)
            self.freeenergy = float(line.split()[5])

        # Read TDDFT information
        if any(x in line for x in ("TD-DFT/TDA EXCITED", "TD-DFT EXCITED")):
            # Could be singlets or triplets
            if line.find("SINGLETS") >= 0:
                sym = "Singlet"
            elif line.find("TRIPLETS") >= 0:
                sym = "Triplet"
            else:
                sym = "Not specified"

            etsecs = []
            etenergies = []
            etsyms = []

            lookup = {'a': 0, 'b': 1}
            line = next(inputfile)
            while line.find("STATE") < 0:
                line = next(inputfile)
            # Contains STATE or is blank
            while line.find("STATE") >= 0:
                broken = line.split()
                etenergies.append(float(broken[-2]))
                etsyms.append(sym)
                line = next(inputfile)
                sec = []
                # Contains SEC or is blank
                while line.strip():
                    start = line[0:8].strip()
                    start = (int(start[:-1]), lookup[start[-1]])
                    end = line[10:17].strip()
                    end = (int(end[:-1]), lookup[end[-1]])
                    # Coeffients are not printed for RPA, only
                    # TDA/CIS.
                    contrib = line[35:47].strip()
                    try:
                        contrib = float(contrib)
                    except ValueError:
                        contrib = numpy.nan
                    sec.append([start, end, contrib])
                    line = next(inputfile)
                etsecs.append(sec)
                line = next(inputfile)

            self.extend_attribute('etenergies', etenergies)
            self.extend_attribute('etsecs', etsecs)
            self.extend_attribute('etsyms', etsyms)

        # Parse the various absorption spectra for TDDFT and ROCIS.
        if 'ABSORPTION SPECTRUM' in line or 'ELECTRIC DIPOLE' in line:
            # CASSCF has an anomalous printing of ABSORPTION SPECTRUM.
            if line[:-1] == 'ABSORPTION SPECTRUM':
                return

            line = line.strip()

            # Standard header, occasionally changes
            header = ['d', 'header', 'header', 'd']

            def energy_intensity(line):
                """ TDDFT and related methods standard method of output
-----------------------------------------------------------------------------
         ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-----------------------------------------------------------------------------
State   Energy  Wavelength   fosc         T2         TX        TY        TZ
        (cm-1)    (nm)                  (au**2)     (au)      (au)      (au)
-----------------------------------------------------------------------------
   1 5184116.7      1.9   0.040578220   0.00258  -0.05076  -0.00000  -0.00000
"""
                try:
                    state, energy, wavelength, intensity, t2, tx, ty, tz = line.split()
                except ValueError as e:
                    # Must be spin forbidden and thus no intensity
                    energy = line.split()[1]
                    intensity = 0
                return energy, intensity

            # Check for variations
            if line == 'COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM' or \
               line == 'COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM (origin adjusted)':
                def energy_intensity(line):
                    """ TDDFT with DoQuad == True
------------------------------------------------------------------------------------------------------
                COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM
------------------------------------------------------------------------------------------------------
State   Energy Wavelength    D2        m2        Q2         D2+m2+Q2       D2/TOT    m2/TOT    Q2/TOT
        (cm-1)   (nm)                (*1e6)    (*1e6)
------------------------------------------------------------------------------------------------------
   1 61784150.6      0.2   0.00000   0.00000   3.23572   0.00000323571519   0.00000   0.00000   1.00000
"""
                    state, energy, wavelength, d2, m2, q2, intensity, d2_contrib, m2_contrib, q2_contrib = line.split()
                    return energy, intensity

            elif line == 'COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM (Origin Independent, Length Representation)':
                def energy_intensity(line):
                    """ TDDFT with doQuad == True (Origin Independent Length Representation)
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                    COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM (Origin Independent, Length Representation)
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
State  Energy   Wavelength       D2            m2              Q2               DM             DO               D2+m2+Q2+DM+DO          D2/TOT          m2/TOT          Q2/TOT         DM/TOT          DO/TOT
       (cm-1)      (nm)                      (*1e6)          (*1e6)           (*1e6)         (*1e6)
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
   1 61784150.6      0.2      0.00000         0.00000         3.23572         0.00000         0.00000         0.00000323571519         0.00000         0.00000         1.00000         0.00000          0.00000
   2 61793079.3      0.2      0.00000         0.00000         2.85949         0.00000        -0.00000         0.00000285948800         0.00000         0.00000         1.00000         0.00000         -0.00000
"""
                    vals = line.split()
                    if len(vals) < 14:
                        return vals[1], 0
                    return vals[1], vals[8]

            elif line[:5] == 'X-RAY' and \
                (line[6:23] == 'EMISSION SPECTRUM' or line[6:25] == 'ABSORPTION SPECTRUM'):
                def energy_intensity(line):
                    """ X-Ray from XES (emission or absorption, electric or velocity dipole moments)
-------------------------------------------------------------------------------------
          X-RAY ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-------------------------------------------------------------------------------------
       Transition          Energy           INT             TX        TY        TZ
                            (eV)        (normalized)       (au)      (au)      (au)
-------------------------------------------------------------------------------------
    1   90a ->    0a      8748.824     0.000002678629     0.00004  -0.00001   0.00003
"""
                    state, start, arrow, end, energy, intensity, tx, ty, tz = line.split()
                    return energy, intensity

            elif line[:70] == 'COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE X-RAY':
                header = ['header', 'd', 'header', 'd', 'header', 'header', 'd']
                def energy_intensity(line):
                    """ XAS with quadrupole (origin adjusted)
-------------------------------------------------------------------------------------------------------------------------------
          COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE X-RAY ABSORPTION SPECTRUM
                                      (origin adjusted)
-------------------------------------------------------------------------------------------------------------------------------
                                                        INT (normalized)
                                     ---------------------------------------------------------
       Transition         Energy        D2             M2             Q2           D2+M2+Q2       D2/TOT     M2/TOT     Q2/TOT
                           (eV)                      (*1e6)         (*1e6)
-------------------------------------------------------------------------------------------------------------------------------
    1   90a ->    0a     8748.824    0.000000       0.000292       0.003615     0.000000027512   0.858012   0.010602   0.131386
"""
                    state, start, arrow, end, energy, d2, m2, q2, intensity, d2_contrib, m2_contrib, q2_contrib = line.split()
                    return energy, intensity

            elif line[:55] == 'SPIN ORBIT CORRECTED ABSORPTION SPECTRUM VIA TRANSITION':
                def energy_intensity(line):
                    """ ROCIS dipole approximation with SOC == True (electric or velocity dipole moments)
-------------------------------------------------------------------------------
SPIN ORBIT CORRECTED ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-------------------------------------------------------------------------------
States    Energy  Wavelength   fosc         T2         TX        TY        TZ
          (cm-1)    (nm)                  (au**2)     (au)      (au)      (au)
-------------------------------------------------------------------------------
 0  1       0.0      0.0   0.000000000   0.00000   0.00000   0.00000   0.00000
 0  2 5184116.4      1.9   0.020288451   0.00258   0.05076   0.00003   0.00000
"""
                    state, state2, energy, wavelength, intensity, t2, tx, ty, tz = line.split()
                    return energy, intensity

            elif line[:79] == 'ROCIS COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM' \
                 or line[:87] == 'SOC CORRECTED COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM':
                def energy_intensity(line):
                    """ ROCIS with DoQuad = True and SOC = True (also does origin adjusted)
------------------------------------------------------------------------------------------------------
          ROCIS COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM
------------------------------------------------------------------------------------------------------
States  Energy Wavelength    D2        m2        Q2         D2+m2+Q2       D2/TOT    m2/TOT    Q2/TOT
        (cm-1)   (nm)                (*1e6)    (*1e6)     (*population)
------------------------------------------------------------------------------------------------------
 0  1       0.0      0.0   0.00000   0.00000   0.00000   0.00000000000000   0.00000   0.00000   0.00000
 0  2 669388066.6      0.0   0.00000   0.00000   0.00876   0.00000000437784   0.00000   0.00000   1.00000
"""
                    state, state2, energy, wavelength, d2, m2, q2, intensity, d2_contrib, m2_contrib, q2_contrib = line.split()
                    return energy, intensity

            # Clashes with Orca 2.6 (and presumably before) TDDFT absorption spectrum printing
            elif line == 'ABSORPTION SPECTRUM' and float(self.metadata['package_version']) > 2.6:
                def energy_intensity(line):
                    """ CASSCF absorption spectrum
------------------------------------------------------------------------------------------
                                ABSORPTION SPECTRUM
------------------------------------------------------------------------------------------
  States           Energy   Wavelength   fosc          T2        TX         TY        TZ
                   (cm-1)     (nm)                   (D**2)      (D)        (D)       (D)
------------------------------------------------------------------------------------------
  0( 0)-> 1( 0) 1   83163.2    120.2   0.088250385   2.25340   0.00000   0.00000   1.50113
"""
                    reg = r'(\d+)\( ?(\d+)\)-> ?(\d+)\( ?(\d+)\) (\d+)'+ '\s+(\d+\.\d+)'*4 + '\s+(-?\d+\.\d+)'*3
                    res = re.search(reg, line)
                    jstate, jblock, istate, iblock, mult, energy, wavelength, intensity, t2, tx, ty, tz = res.groups()
                    return energy, intensity

            name = line
            self.skip_lines(inputfile, header)

            if not hasattr(self, 'transprop'):
                self.transprop = {}

            etenergies = []
            etoscs = []
            line = next(inputfile)
            # The sections are occasionally ended with dashed lines
            # other times they are blank (other than a new line)
            while len(line.strip('-')) > 2:
                energy, intensity = energy_intensity(line)
                etenergies.append(float(energy))
                etoscs.append(float(intensity))

                line = next(inputfile)

            self.set_attribute('etenergies', etenergies)
            self.set_attribute('etoscs', etoscs)
            self.transprop[name] = (numpy.asarray(etenergies), numpy.asarray(etoscs))

        if line.strip() == "CD SPECTRUM":
            # -------------------------------------------------------------------
            #                              CD SPECTRUM
            # -------------------------------------------------------------------
            # State   Energy Wavelength       R         MX        MY        MZ   
            #         (cm-1)   (nm)       (1e40*cgs)   (au)      (au)      (au)  
            # -------------------------------------------------------------------
            #    1   43167.6    231.7      0.00000   0.00000  -0.00000   0.00000
            #
            etenergies = []
            etrotats = []
            self.skip_lines(inputfile, ["d", "State   Energy Wavelength", "(cm-1)   (nm)", "d"])
            line = next(inputfile)
            while line.strip():
                tokens = line.split()
                if "spin forbidden" in line:
                    etrotat, mx, my, mz = 0.0, 0.0, 0.0, 0.0
                else:
                    etrotat, mx, my, mz = [self.float(t) for t in tokens[3:]]
                etenergies.append(self.float(tokens[1]))
                etrotats.append(etrotat)
                line = next(inputfile)
            self.set_attribute("etrotats", etrotats)
            if not hasattr(self, "etenergies"):
                self.logger.warning("etenergies not parsed before ECD section, "
                                    "the output file may be malformed")
                self.set_attribute("etenergies", etenergies)

        if line[:23] == "VIBRATIONAL FREQUENCIES":
            self.skip_lines(inputfile, ['d', 'b'])

            # Starting with 4.1, a scaling factor for frequencies is printed
            if float(self.metadata["package_version"][:3]) > 4.0:
                self.skip_lines(inputfile, ['Scaling factor for frequencies', 'b'])

            vibfreqs = numpy.zeros(3 * self.natom)
            for i, line in zip(range(3 * self.natom), inputfile):
                vibfreqs[i] = float(line.split()[1])

            nonzero = numpy.nonzero(vibfreqs)[0]
            self.first_mode = nonzero[0]
            # Take all modes after first
            # Mode between imaginary and real modes could be 0
            self.num_modes = 3*self.natom - self.first_mode
            if self.num_modes > 3*self.natom - 6:
                msg = "Modes corresponding to rotations/translations may be non-zero."
                if self.num_modes == 3*self.natom - 5:
                    msg += '\n You can ignore this if the molecule is linear.'
            self.set_attribute('vibfreqs', vibfreqs[self.first_mode:])

        # NORMAL MODES
        # ------------
        #
        # These modes are the cartesian displacements weighted by the diagonal matrix
        # M(i,i)=1/sqrt(m[i]) where m[i] is the mass of the displaced atom
        # Thus, these vectors are normalized but *not* orthogonal
        #
        #                   0          1          2          3          4          5
        #       0       0.000000   0.000000   0.000000   0.000000   0.000000   0.000000
        #       1       0.000000   0.000000   0.000000   0.000000   0.000000   0.000000
        #       2       0.000000   0.000000   0.000000   0.000000   0.000000   0.000000
        # ...
        if line[:12] == "NORMAL MODES":
            all_vibdisps = numpy.zeros((3 * self.natom, self.natom, 3), "d")

            self.skip_lines(inputfile, ['d', 'b', 'text', 'text', 'text', 'b'])

            for mode in range(0, 3 * self.natom, 6):
                header = next(inputfile)
                for atom in range(self.natom):
                    all_vibdisps[mode:mode + 6, atom, 0] = next(inputfile).split()[1:]
                    all_vibdisps[mode:mode + 6, atom, 1] = next(inputfile).split()[1:]
                    all_vibdisps[mode:mode + 6, atom, 2] = next(inputfile).split()[1:]

            self.set_attribute('vibdisps', all_vibdisps[self.first_mode:])

        # -----------
        # IR SPECTRUM
        # -----------
        #
        #  Mode    freq (cm**-1)   T**2         TX         TY         TZ
        # -------------------------------------------------------------------
        #    6:      2069.36    1.674341  ( -0.000000   0.914970  -0.914970)
        #    7:      3978.81   76.856228  (  0.000000   6.199041  -6.199042)
        #    8:      4113.34   61.077784  ( -0.000000   5.526201   5.526200)
        if line[:11] == "IR SPECTRUM":
            self.skip_lines(inputfile, ['d', 'b', 'header', 'd'])

            all_vibirs = numpy.zeros((3 * self.natom,), "d")

            line = next(inputfile)
            while len(line) > 2:
                num = int(line[0:4])
                all_vibirs[num] = float(line.split()[2])
                line = next(inputfile)

            self.set_attribute('vibirs', all_vibirs[self.first_mode:])

        # --------------
        # RAMAN SPECTRUM
        # --------------
        #
        #  Mode    freq (cm**-1)   Activity   Depolarization
        # -------------------------------------------------------------------
        #    6:       296.23      5.291229      0.399982
        #    7:       356.70      0.000000      0.749764
        #    8:       368.27      0.000000      0.202068
        if line[:14] == "RAMAN SPECTRUM":
            self.skip_lines(inputfile, ['d', 'b', 'header', 'd'])

            all_vibramans = numpy.zeros(3 * self.natom)

            line = next(inputfile)
            while len(line) > 2:
                num = int(line[0:4])
                all_vibramans[num] = float(line.split()[2])
                line = next(inputfile)

            self.set_attribute('vibramans', all_vibramans[self.first_mode:])


        # ORCA will print atomic charges along with the spin populations,
        #   so care must be taken about choosing the proper column.
        # Population analyses are performed usually only at the end
        #   of a geometry optimization or other run, so we want to
        #   leave just the final atom charges.
        # Here is an example for Mulliken charges:
        # --------------------------------------------
        # MULLIKEN ATOMIC CHARGES AND SPIN POPULATIONS
        # --------------------------------------------
        #    0 H :    0.126447    0.002622
        #    1 C :   -0.613018   -0.029484
        #    2 H :    0.189146    0.015452
        #    3 H :    0.320041    0.037434
        # ...
        # Sum of atomic charges         :   -0.0000000
        # Sum of atomic spin populations:    1.0000000
        if line[:23] == "MULLIKEN ATOMIC CHARGES":
            self.parse_charge_section(line, inputfile, 'mulliken')
        # Things are the same for Lowdin populations, except that the sums
        #   are not printed (there is a blank line at the end).
        if line[:22] == "LOEWDIN ATOMIC CHARGES":
            self.parse_charge_section(line, inputfile, 'lowdin')
        #CHELPG Charges            
        #--------------------------------
        #  0   C   :       0.363939
        #  1   H   :       0.025695
        # ...
        #--------------------------------
        #Total charge:    -0.000000
        #--------------------------------
        if line.startswith('CHELPG Charges'):
            self.parse_charge_section(line, inputfile, 'chelpg')

        # It is not stated explicitely, but the dipole moment components printed by ORCA
        # seem to be in atomic units, so they will need to be converted. Also, they
        # are most probably calculated with respect to the origin .
        #
        # -------------
        # DIPOLE MOMENT
        # -------------
        #                                 X             Y             Z
        # Electronic contribution:      0.00000      -0.00000      -0.00000
        # Nuclear contribution   :      0.00000       0.00000       0.00000
        #                         -----------------------------------------
        # Total Dipole Moment    :      0.00000      -0.00000      -0.00000
        #                         -----------------------------------------
        # Magnitude (a.u.)       :      0.00000
        # Magnitude (Debye)      :      0.00000
        #
        if line.strip() == "DIPOLE MOMENT":

            self.skip_lines(inputfile, ['d', 'XYZ', 'electronic', 'nuclear', 'd'])
            total = next(inputfile)
            assert "Total Dipole Moment" in total

            reference = [0.0, 0.0, 0.0]
            dipole = numpy.array([float(d) for d in total.split()[-3:]])
            dipole = utils.convertor(dipole, "ebohr", "Debye")

            if not hasattr(self, 'moments'):
                self.set_attribute('moments', [reference, dipole])
            else:
                try:
                    assert numpy.all(self.moments[1] == dipole)
                except AssertionError:
                    self.logger.warning('Overwriting previous multipole moments with new values')
                    self.set_attribute('moments', [reference, dipole])

        if "Molecular Dynamics Iteration" in line:
            self.skip_lines(inputfile, ['d', 'ORCA MD', 'd', 'New Coordinates'])
            line = next(inputfile)
            tokens = line.split()
            assert tokens[0] == "time"
            time = utils.convertor(float(tokens[2]), "time_au", "fs")
            self.append_attribute('time', time)

        # Static polarizability.
        if line.strip() == "THE POLARIZABILITY TENSOR":
            if not hasattr(self, 'polarizabilities'):
                self.polarizabilities = []
            self.skip_lines(inputfile, ['d', 'b'])
            line = next(inputfile)
            assert line.strip() == "The raw cartesian tensor (atomic units):"
            polarizability = []
            for _ in range(3):
                line = next(inputfile)
                polarizability.append(line.split())
            self.polarizabilities.append(numpy.array(polarizability))

        if line.strip() == 'ORCA-CASSCF':
            # -------------------------------------------------------------------------------
            #                               ORCA-CASSCF
            # -------------------------------------------------------------------------------
            #
            # Symmetry handling      UseSym     ... ON
            # Point group                       ... C2
            # Used point group                  ... C2
            # Number of irreps                  ... 2
            #    Irrep    A has   10 SALCs (ofs=   0) #(closed)=   0 #(active)=   2
            #    Irrep    B has   10 SALCs (ofs=  10) #(closed)=   0 #(active)=   2
            #  Symmetries of active orbitals:
            #    MO =    0  IRREP= 0 (A)
            #    MO =    1  IRREP= 1 (B)
            self.skip_lines(inputfile, ['d', 'b'])
            vals = next(inputfile).split()
            # Symmetry section is only printed if symmetry is used.
            if vals[0] == 'Symmetry':
                assert vals[-1] == 'ON'
                point_group = next(inputfile).split()[-1]
                used_point_group = next(inputfile).split()[-1]
                num_irreps = int(next(inputfile).split()[-1])
                num_active = 0
                # Parse the irreps.
                for i, line in zip(range(num_irreps), inputfile):
                    reg = r'Irrep\s+(\w+) has\s+(\d+) SALCs \(ofs=\s*(\d+)\) #\(closed\)=\s*(\d+) #\(active\)=\s*(\d+)'
                    groups = re.search(reg, line).groups()
                    irrep = groups[0]
                    salcs, ofs, closed, active = map(int, groups[1:])
                    num_active += active
                self.skip_line(inputfile, 'Symmetries')
                # Parse the symmetries of the active orbitals.
                for i, line in zip(range(num_active), inputfile):
                    reg = r'(\d+)  IRREP= (\d+) \((\w+)\)'
                    groups = re.search(reg, line).groups()
                    mo, irrep_idx, irrep = groups

            # Skip until the system specific settings.
            # This will align the cases of symmetry on and off.
            line = next(inputfile)
            while line[:25] != 'SYSTEM-SPECIFIC SETTINGS:':
                line = next(inputfile)

            # SYSTEM-SPECIFIC SETTINGS:
            # Number of active electrons          ...    4
            # Number of active orbitals           ...    4
            # Total number of electrons           ...    4
            # Total number of orbitals            ...   20
            num_el = int(next(inputfile).split()[-1])
            num_orbs = int(next(inputfile).split()[-1])
            total_el = int(next(inputfile).split()[-1])
            total_orbs = int(next(inputfile).split()[-1])

            # Determined orbital ranges:
            #    Internal       0 -   -1 (   0 orbitals)
            #    Active         0 -    3 (   4 orbitals)
            #    External       4 -   19 (  16 orbitals)
            self.skip_lines(inputfile, ['b', 'Determined'])
            orbital_ranges = []
            # Parse the orbital ranges for: Internal, Active, and External orbitals.
            for i in range(3):
                vals = next(inputfile).split()
                start, end, num = int(vals[1]), int(vals[3]), int(vals[5])
                # Change from inclusive to exclusive in order to match python.
                end = end + 1
                assert end - start == num
                orbital_ranges.append((start, end, num))

            line = next(inputfile)
            while line[:8] != 'CI-STEP:':
                line = next(inputfile)

            # CI-STEP:
            # CI strategy                         ... General CI
            # Number of symmetry/multplity blocks ...    1
            # BLOCK  1 WEIGHT=   1.0000
            #   Multiplicity                      ...    1
            #   Irrep                             ...    0 (A)
            #   #(Configurations)                 ...   11
            #   #(CSFs)                           ...   12
            #   #(Roots)                          ...    1
            #     ROOT=0 WEIGHT=    1.000000
            self.skip_line(inputfile, 'CI strategy')
            num_blocks = int(next(inputfile).split()[-1])
            for b in range(1, num_blocks + 1):
                vals = next(inputfile).split()
                block = int(vals[1])
                weight = float(vals[3])
                assert b == block
                mult = int(next(inputfile).split()[-1])
                vals = next(inputfile).split()
                # The irrep will only be printed if using symmetry.
                if vals[0] == 'Irrep':
                    irrep_idx = int(vals[-2])
                    irrep = vals[-1].strip('()')
                    vals = next(inputfile).split()
                num_confs = int(vals[-1])
                num_csfs = int(next(inputfile).split()[-1])
                num_roots = int(next(inputfile).split()[-1])
                # Parse the roots.
                for r, line in zip(range(num_roots), inputfile):
                    reg = r'=(\d+) WEIGHT=\s*(\d\.\d+)'
                    groups = re.search(reg, line).groups()
                    root = int(groups[0])
                    weight = float(groups[1])
                    assert r == root

            # Skip additional setup printing and CASSCF iterations.
            line = next(inputfile).strip()
            while line != 'CASSCF RESULTS':
                line = next(inputfile).strip()

            # --------------
            # CASSCF RESULTS
            # --------------
            #
            # Final CASSCF energy       : -14.597120777 Eh    -397.2078 eV
            self.skip_lines(inputfile, ['d', 'b'])
            casscf_energy = float(next(inputfile).split()[4])

            # This is only printed for first and last step of geometry optimization.
            # ----------------
            # ORBITAL ENERGIES
            # ----------------
            #
            #   NO   OCC          E(Eh)            E(eV)    Irrep
            #    0   0.0868       0.257841         7.0162    1-A
            self.skip_lines(inputfile, ['b', 'd'])
            if next(inputfile).strip() == 'ORBITAL ENERGIES':
                self.skip_lines(inputfile, ['d', 'b', 'NO'])
                orbitals = []
                vals = next(inputfile).split()
                while vals:
                    occ, eh, ev = map(float, vals[1:4])
                    # The irrep will only be printed if using symmetry.
                    if len(vals) == 5:
                        idx, irrep = vals[4].split('-')
                        orbitals.append((occ, ev, int(idx), irrep))
                    else:
                        orbitals.append((occ, ev))
                    vals = next(inputfile).split()
                self.skip_lines(inputfile, ['b', 'd'])

            # Orbital Compositions
            # ---------------------------------------------
            # CAS-SCF STATES FOR BLOCK  1 MULT= 1 IRREP= Ag NROOTS= 2
            # ---------------------------------------------
            #
            # ROOT   0:  E=     -14.5950507665 Eh
            #       0.89724 [     0]: 2000
            for b in range(num_blocks):
                # Parse the block data.
                reg = r'BLOCK\s+(\d+) MULT=\s*(\d+) (IRREP=\s*\w+ )?(NROOTS=\s*(\d+))?'
                groups = re.search(reg, next(inputfile)).groups()
                block = int(groups[0])
                mult = int(groups[1])
                # The irrep will only be printed if using symmetry.
                if groups[2] is not None:
                    irrep = groups[2].split('=')[1].strip()
                nroots = int(groups[3].split('=')[1])

                self.skip_lines(inputfile, ['d', 'b'])

                line = next(inputfile).strip()
                while line:
                    if line[:4] == 'ROOT':
                        # Parse the root section.
                        reg = r'(\d+):\s*E=\s*(-?\d+.\d+) Eh(\s+\d+\.\d+ eV)?(\s+\d+\.\d+)?'
                        groups = re.search(reg, line).groups()
                        root = int(groups[0])
                        energy = float(groups[1])
                        # Excitation energies are only printed for excited state roots.
                        if groups[2] is not None:
                            excitation_energy_ev = float(groups[2].split()[0])
                            excitation_energy_cm = float(groups[3])
                    else:
                        # Parse the occupations section.
                        reg = r'(\d+\.\d+) \[\s*(\d+)\]: (\d+)'
                        groups = re.search(reg, line).groups()
                        coeff = float(groups[0])
                        number = float(groups[1])
                        occupations = list(map(int, groups[2]))

                    line = next(inputfile).strip()

            # Skip any extended wavefunction printing.
            while line != 'DENSITY MATRIX':
                line = next(inputfile).strip()

            self.skip_lines(inputfile, ['d', 'b'])
            # --------------
            # DENSITY MATRIX
            # --------------
            #
            #                    0          1          2          3
            #       0       0.897244   0.000000   0.000000   0.000000
            #       1       0.000000   0.533964   0.000000   0.000000
            density = numpy.zeros((num_orbs, num_orbs))
            for i in range(0, num_orbs, 6):
                next(inputfile)
                for j, line in zip(range(num_orbs), inputfile):
                    density[j][i:i + 6] = list(map(float, line.split()[1:]))
            self.skip_lines(inputfile, ['Trace', 'b', 'd'])

            # This is only printed for open-shells.
            # -------------------
            # SPIN-DENSITY MATRIX
            # -------------------
            #
            #                   0          1          2          3          4          5
            #       0      -0.003709   0.001410   0.000074  -0.000564  -0.007978   0.000735
            #       1       0.001410  -0.001750  -0.000544  -0.003815   0.008462  -0.004529
            if next(inputfile).strip() == 'SPIN-DENSITY MATRIX':
                self.skip_lines(inputfile, ['d', 'b'])
                spin_density = numpy.zeros((num_orbs, num_orbs))
                for i in range(0, num_orbs, 6):
                    next(inputfile)
                    for j, line in zip(range(num_orbs), inputfile):
                        spin_density[j][i:i + 6] = list(map(float, line.split()[1:]))
                self.skip_lines(inputfile, ['Trace', 'b', 'd', 'ENERGY'])
            self.skip_lines(inputfile, ['d', 'b'])

            # -----------------
            # ENERGY COMPONENTS
            # -----------------
            #
            # One electron energy          :    -18.811767801 Eh        -511.8942 eV
            # Two electron energy          :      4.367616074 Eh         118.8489 eV
            # Nuclear repuslion energy     :      0.000000000 Eh           0.0000 eV
            #                                ----------------
            #                                   -14.444151727
            #
            # Kinetic energy               :     14.371970266 Eh         391.0812 eV
            # Potential energy             :    -28.816121993 Eh        -784.1265 eV
            # Virial ratio                 :     -2.005022378
            #                                ----------------
            #                                   -14.444151727
            #
            # Core energy                  :    -13.604678408 Eh     -370.2021 eV
            one_el_energy = float(next(inputfile).split()[4])
            two_el_energy = float(next(inputfile).split()[4])
            nuclear_repulsion_energy = float(next(inputfile).split()[4])
            self.skip_line(inputfile, 'dashes')
            energy = float(next(inputfile).strip())
            self.skip_line(inputfile, 'blank')
            kinetic_energy = float(next(inputfile).split()[3])
            potential_energy = float(next(inputfile).split()[3])
            virial_ratio = float(next(inputfile).split()[3])
            self.skip_line(inputfile, 'dashes')
            energy = float(next(inputfile).strip())
            self.skip_line(inputfile, 'blank')
            core_energy = float(next(inputfile).split()[3])

        if line[:15] == 'TOTAL RUN TIME:':
            self.metadata['success'] = True

    def parse_charge_section(self, line, inputfile, chargestype):
        """Parse a charge section, modifies class in place

        Parameters
        ----------
        line : str
          the line which triggered entry here
        inputfile : file
          handle to file object
        chargestype : str
          what type of charge we're dealing with, must be one of
          'mulliken', 'lowdin' or 'chelpg'   
        """
        has_spins = 'AND SPIN POPULATIONS' in line

        if not hasattr(self, "atomcharges"):
            self.atomcharges = {}
        if has_spins and not hasattr(self, "atomspins"):
            self.atomspins = {}

        self.skip_line(inputfile, 'dashes')

        # depending on chargestype, decide when to stop parsing lines
        # start, stop - indices for slicing lines and grabbing values
        if chargestype == 'mulliken':
            should_stop = lambda x: x.startswith('Sum of atomic charges')
            start, stop = 8, 20
        elif chargestype == 'lowdin':
            # stops when blank line encountered
            should_stop = lambda x: not bool(x.strip())
            start, stop = 8, 20
        elif chargestype == 'chelpg':
            should_stop = lambda x: x.startswith('---')
            start, stop = 11, 26

        charges = []
        if has_spins:
            spins = []

        line = next(inputfile)
        while not should_stop(line):
            # Don't add point charges or embedding potentials.
            if "Q :" not in line:
                charges.append(float(line[start:stop]))
                if has_spins:
                    spins.append(float(line[stop:]))
            line = next(inputfile)

        self.atomcharges[chargestype] = charges
        if has_spins:
            self.atomspins[chargestype] = spins

    def parse_scf_condensed_format(self, inputfile, line):
        """ Parse the SCF convergence information in condensed format """

        # This is what it looks like
        # ITER       Energy         Delta-E        Max-DP      RMS-DP      [F,P]     Damp
        #                ***  Starting incremental Fock matrix formation  ***
        #   0   -384.5203638934   0.000000000000 0.03375012  0.00223249  0.1351565 0.7000
        #   1   -384.5792776162  -0.058913722842 0.02841696  0.00175952  0.0734529 0.7000
        #                                ***Turning on DIIS***
        #   2   -384.6074211837  -0.028143567475 0.04968025  0.00326114  0.0310435 0.0000
        #   3   -384.6479682063  -0.040547022616 0.02097477  0.00121132  0.0361982 0.0000
        #   4   -384.6571124353  -0.009144228947 0.00576471  0.00035160  0.0061205 0.0000
        #   5   -384.6574659959  -0.000353560584 0.00191156  0.00010160  0.0025838 0.0000
        #   6   -384.6574990782  -0.000033082375 0.00052492  0.00003800  0.0002061 0.0000
        #   7   -384.6575005762  -0.000001497987 0.00020257  0.00001146  0.0001652 0.0000
        #   8   -384.6575007321  -0.000000155848 0.00008572  0.00000435  0.0000745 0.0000
        #          **** Energy Check signals convergence ****

        assert line[2] == "Delta-E"
        assert line[3] == "Max-DP"

        if not hasattr(self, "scfvalues"):
            self.scfvalues = []

        self.scfvalues.append([])

        # Try to keep track of the converger (NR, DIIS, SOSCF, etc.).
        diis_active = True
        while line:

            maxDP = None
            if 'Newton-Raphson' in line:
                diis_active = False
            elif 'SOSCF' in line:
                diis_active = False
            elif line[0].isdigit():
                shim = 0
                try:
                    energy = float(line[1])
                    deltaE = float(line[2])
                    maxDP = float(line[3 + int(not diis_active)])
                    rmsDP = float(line[4 + int(not diis_active)])
                except ValueError as e:
                    # Someone in Orca forgot to properly add spaces in the scf printing
                    # code looks like:
                    # %3i %17.10f%12.12f%11.8f %11.8f
                    if line[1].count('.') == 2:
                        integer1, decimal1_integer2, decimal2 = line[1].split('.')
                        decimal1, integer2 = decimal1_integer2[:10], decimal1_integer2[10:]
                        energy = float(integer1 + '.' + decimal1)
                        deltaE = float(integer2 + '.' + decimal2)
                        maxDP = float(line[2 + int(not diis_active)])
                        rmsDP = float(line[3 + int(not diis_active)])
                    elif line[1].count('.') == 3:
                        integer1, decimal1_integer2, decimal2_integer3, decimal3 = line[1].split('.')
                        decimal1, integer2 = decimal1_integer2[:10], decimal1_integer2[10:]
                        decimal2, integer3 = decimal2_integer3[:12], decimal2_integer3[12:]
                        energy = float(integer1 + '.' + decimal1)
                        deltaE = float(integer2 + '.' + decimal2)
                        maxDP = float(integer3 + '.' + decimal3)
                        rmsDP = float(line[2 + int(not diis_active)])
                    elif line[2].count('.') == 2:
                        integer1, decimal1_integer2, decimal2 = line[2].split('.')
                        decimal1, integer2 = decimal1_integer2[:12], decimal1_integer2[12:]
                        deltaE = float(integer1 + '.' + decimal1)
                        maxDP = float(integer2 + '.' + decimal2)
                        rmsDP = float(line[3 + int(not diis_active)])
                    else:
                        raise e

                self.scfvalues[-1].append([deltaE, maxDP, rmsDP])

            try:
                line = next(inputfile).split()
            except StopIteration:
                self.logger.warning('File terminated before end of last SCF! Last Max-DP: {}'.format(maxDP))
                break

    def parse_scf_expanded_format(self, inputfile, line):
        """ Parse SCF convergence when in expanded format. """

        # The following is an example of the format
        # -----------------------------------------
        #
        #               ***  Starting incremental Fock matrix formation  ***
        #
        #                         ----------------------------
        #                         !        ITERATION     0   !
        #                         ----------------------------
        #   Total Energy        :    -377.960836651297 Eh
        #   Energy Change       :    -377.960836651297 Eh
        #   MAX-DP              :       0.100175793695
        #   RMS-DP              :       0.004437973661
        #   Actual Damping      :       0.7000
        #   Actual Level Shift  :       0.2500 Eh
        #   Int. Num. El.       :    43.99982197 (UP=   21.99991099 DN=   21.99991099)
        #   Exchange            :   -34.27550826
        #   Correlation         :    -2.02540957
        #
        #
        #                         ----------------------------
        #                         !        ITERATION     1   !
        #                         ----------------------------
        #   Total Energy        :    -378.118458080109 Eh
        #   Energy Change       :      -0.157621428812 Eh
        #   MAX-DP              :       0.053240648588
        #   RMS-DP              :       0.002375092508
        #   Actual Damping      :       0.7000
        #   Actual Level Shift  :       0.2500 Eh
        #   Int. Num. El.       :    43.99994143 (UP=   21.99997071 DN=   21.99997071)
        #   Exchange            :   -34.00291075
        #   Correlation         :    -2.01607243
        #
        #                               ***Turning on DIIS***
        #
        #                         ----------------------------
        #                         !        ITERATION     2   !
        #                         ----------------------------
        # ....
        #
        if not hasattr(self, "scfvalues"):
            self.scfvalues = []

        self.scfvalues.append([])

        line = "Foo"  # dummy argument to enter loop
        while line.find("******") < 0:
            try:
                line = next(inputfile)
            except StopIteration:
                self.logger.warning('File terminated before end of last SCF!')
                break
            info = line.split()
            if len(info) > 1 and info[1] == "ITERATION":
                dashes = next(inputfile)
                energy_line = next(inputfile).split()
                energy = float(energy_line[3])
                deltaE_line = next(inputfile).split()
                deltaE = float(deltaE_line[3])
                if energy == deltaE:
                    deltaE = 0
                maxDP_line = next(inputfile).split()
                maxDP = float(maxDP_line[2])
                rmsDP_line = next(inputfile).split()
                rmsDP = float(rmsDP_line[2])
                self.scfvalues[-1].append([deltaE, maxDP, rmsDP])

        return

    # end of parse_scf_expanded_format

    def _append_scfvalues_scftargets(self, inputfile, line):
        # The SCF convergence targets are always printed after this, but apparently
        # not all of them always -- for example the RMS Density is missing for geometry
        # optimization steps. So, assume the previous value is still valid if it is
        # not found. For additional certainty, assert that the other targets are unchanged.
        while not "Last Energy change" in line:
            line = next(inputfile)
        deltaE_value = float(line.split()[4])
        deltaE_target = float(line.split()[7])
        line = next(inputfile)
        if "Last MAX-Density change" in line:
            maxDP_value = float(line.split()[4])
            maxDP_target = float(line.split()[7])
            line = next(inputfile)
            if "Last RMS-Density change" in line:
                rmsDP_value = float(line.split()[4])
                rmsDP_target = float(line.split()[7])
            else:
                rmsDP_value = self.scfvalues[-1][-1][2]
                rmsDP_target = self.scftargets[-1][2]
                assert deltaE_target == self.scftargets[-1][0]
                assert maxDP_target == self.scftargets[-1][1]
            self.scfvalues[-1].append([deltaE_value, maxDP_value, rmsDP_value])
            self.scftargets.append([deltaE_target, maxDP_target, rmsDP_target])