1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
# -*- coding: utf-8 -*-
#
# Copyright (c) 2017, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.
"""Parser for Psi3 output files."""
import numpy
from cclib.parser import logfileparser
from cclib.parser import utils
class Psi3(logfileparser.Logfile):
"""A Psi3 log file."""
def __init__(self, *args, **kwargs):
# Call the __init__ method of the superclass
super(Psi3, self).__init__(logname="Psi3", *args, **kwargs)
def __str__(self):
"""Return a string representation of the object."""
return "Psi3 log file %s" % (self.filename)
def __repr__(self):
"""Return a representation of the object."""
return 'Psi3("%s")' % (self.filename)
def normalisesym(self, label):
"""Psi3 does not require normalizing symmetry labels."""
return label
def extract(self, inputfile, line):
"""Extract information from the file object inputfile."""
if "Version" in line:
self.metadata["package_version"] = ' '.join(line.split()[1:])
# Psi3 prints the coordinates in several configurations, and we will parse the
# the canonical coordinates system in Angstroms as the first coordinate set,
# although it is actually somewhere later in the input, after basis set, etc.
# We can also get or verify the number of atoms and atomic numbers from this block.
if line.strip() == "-Geometry in the canonical coordinate system (Angstrom):":
self.skip_lines(inputfile, ['header', 'd'])
coords = []
numbers = []
line = next(inputfile)
while line.strip():
tokens = line.split()
element = tokens[0]
numbers.append(self.table.number[element])
x = float(tokens[1])
y = float(tokens[2])
z = float(tokens[3])
coords.append([x, y, z])
line = next(inputfile)
self.set_attribute('natom', len(coords))
self.set_attribute('atomnos', numbers)
if not hasattr(self, 'atomcoords'):
self.atomcoords = []
self.atomcoords.append(coords)
if line.strip() == '-SYMMETRY INFORMATION:':
line = next(inputfile)
while line.strip():
if "Number of atoms" in line:
self.set_attribute('natom', int(line.split()[-1]))
line = next(inputfile)
if line.strip() == "-BASIS SET INFORMATION:":
line = next(inputfile)
while line.strip():
if "Number of SO" in line:
self.set_attribute('nbasis', int(line.split()[-1]))
line = next(inputfile)
# In Psi3, the section with the contraction scheme can be used to infer atombasis.
if line.strip() == "-Contraction Scheme:":
self.skip_lines(inputfile, ['header', 'd'])
indices = []
line = next(inputfile)
while line.strip():
shells = line.split('//')[-1]
expression = shells.strip().replace(' ', '+')
expression = expression.replace('s', '*1')
expression = expression.replace('p', '*3')
expression = expression.replace('d', '*6')
nfuncs = eval(expression)
if len(indices) == 0:
indices.append(range(nfuncs))
else:
start = indices[-1][-1] + 1
indices.append(range(start, start+nfuncs))
line = next(inputfile)
self.set_attribute('atombasis', indices)
if line.strip() == "CINTS: An integrals program written in C":
self.skip_lines(inputfile, ['authors', 'd', 'b', 'b'])
line = next(inputfile)
assert line.strip() == "-OPTIONS:"
while line.strip():
line = next(inputfile)
line = next(inputfile)
assert line.strip() == "-CALCULATION CONSTANTS:"
while line.strip():
if "Number of atoms" in line:
natom = int(line.split()[-1])
self.set_attribute('natom', natom)
if "Number of symmetry orbitals" in line:
nbasis = int(line.split()[-1])
self.set_attribute('nbasis', nbasis)
line = next(inputfile)
if line.strip() == "CSCF3.0: An SCF program written in C":
self.skip_lines(inputfile, ['b', 'authors', 'b', 'd', 'b',
'mult', 'mult_comment', 'b'])
line = next(inputfile)
while line.strip():
if line.split()[0] == "multiplicity":
mult = int(line.split()[-1])
self.set_attribute('mult', mult)
if line.split()[0] == "charge":
charge = int(line.split()[-1])
self.set_attribute('charge', charge)
if line.split()[0] == "convergence":
conv = float(line.split()[-1])
if line.split()[0] == "reference":
self.reference = line.split()[-1]
line = next(inputfile)
if not hasattr(self, 'scftargets'):
self.scftargets = []
self.scftargets.append([conv])
# ==> Iterations <==
# Psi3 converges just the density elements, although it reports in the iterations
# changes in the energy as well as the DIIS error.
psi3_iterations_header = "iter total energy delta E delta P diiser"
if line.strip() == psi3_iterations_header:
if not hasattr(self, 'scfvalues'):
self.scfvalues = []
self.scfvalues.append([])
line = next(inputfile)
while line.strip():
ddensity = float(line.split()[-2])
self.scfvalues[-1].append([ddensity])
line = next(inputfile)
# This section, from which we parse molecular orbital symmetries and
# orbital energies, is quite similar for both Psi3 and Psi4, and in fact
# the format for orbtials is the same, although the headers and spacers
# are a bit different. Let's try to get both parsed with one code block.
#
# Here is how the block looks like for Psi4:
#
# Orbital Energies (a.u.)
# -----------------------
#
# Doubly Occupied:
#
# 1Bu -11.040586 1Ag -11.040524 2Bu -11.031589
# 2Ag -11.031589 3Bu -11.028950 3Ag -11.028820
# (...)
# 15Ag -0.415620 1Bg -0.376962 2Au -0.315126
# 2Bg -0.278361 3Bg -0.222189
#
# Virtual:
#
# 3Au 0.198995 4Au 0.268517 4Bg 0.308826
# 5Au 0.397078 5Bg 0.521759 16Ag 0.565017
# (...)
# 24Ag 0.990287 24Bu 1.027266 25Ag 1.107702
# 25Bu 1.124938
#
# The case is different in the trigger string.
if "orbital energies (a.u.)" in line.lower():
self.moenergies = [[]]
self.mosyms = [[]]
self.skip_line(inputfile, 'blank')
occupied = next(inputfile)
if self.reference[0:2] == 'RO' or self.reference[0:1] == 'R':
assert 'doubly occupied' in occupied.lower()
elif self.reference[0:1] == 'U':
assert 'alpha occupied' in occupied.lower()
# Parse the occupied MO symmetries and energies.
self._parse_mosyms_moenergies(inputfile, 0)
# The last orbital energy here represents the HOMO.
self.homos = [len(self.moenergies[0])-1]
# For a restricted open-shell calculation, this is the
# beta HOMO, and we assume the singly-occupied orbitals
# are all alpha, which are handled next.
if self.reference[0:2] == 'RO':
self.homos.append(self.homos[0])
self.skip_line(inputfile, 'blank')
unoccupied = next(inputfile)
if self.reference[0:2] == 'RO':
assert unoccupied.strip() == 'Singly Occupied:'
elif self.reference[0:1] == 'R':
assert unoccupied.strip() == 'Unoccupied orbitals'
elif self.reference[0:1] == 'U':
assert unoccupied.strip() == 'Alpha Virtual:'
# Parse the unoccupied MO symmetries and energies.
self._parse_mosyms_moenergies(inputfile, 0)
# Here is where we handle the Beta or Singly occupied orbitals.
if self.reference[0:1] == 'U':
self.mosyms.append([])
self.moenergies.append([])
line = next(inputfile)
assert line.strip() == 'Beta Occupied:'
self.skip_line(inputfile, 'blank')
self._parse_mosyms_moenergies(inputfile, 1)
self.homos.append(len(self.moenergies[1])-1)
line = next(inputfile)
assert line.strip() == 'Beta Virtual:'
self.skip_line(inputfile, 'blank')
self._parse_mosyms_moenergies(inputfile, 1)
elif self.reference[0:2] == 'RO':
line = next(inputfile)
assert line.strip() == 'Virtual:'
self.skip_line(inputfile, 'blank')
self._parse_mosyms_moenergies(inputfile, 0)
# Both Psi3 and Psi4 print the final SCF energy right after
# the orbital energies, but the label is different. Psi4 also
# does DFT, and the label is also different in that case.
if "* SCF total energy" in line:
e = float(line.split()[-1])
if not hasattr(self, 'scfenergies'):
self.scfenergies = []
self.scfenergies.append(utils.convertor(e, 'hartree', 'eV'))
# We can also get some higher moments in Psi3, although here the dipole is not printed
# separately and the order is not lexicographical. However, the numbers seem
# kind of strange -- the quadrupole seems to be traceless, although I'm not sure
# whether the standard transformation has been used. So, until we know what kind
# of moment these are and how to make them raw again, we will only parse the dipole.
#
# --------------------------------------------------------------
# *** Electric multipole moments ***
# --------------------------------------------------------------
#
# CAUTION : The system has non-vanishing dipole moment, therefore
# quadrupole and higher moments depend on the reference point.
#
# -Coordinates of the reference point (a.u.) :
# x y z
# -------------------- -------------------- --------------------
# 0.0000000000 0.0000000000 0.0000000000
#
# -Electric dipole moment (expectation values) :
#
# mu(X) = -0.00000 D = -1.26132433e-43 C*m = -0.00000000 a.u.
# mu(Y) = 0.00000 D = 3.97987832e-44 C*m = 0.00000000 a.u.
# mu(Z) = 0.00000 D = 0.00000000e+00 C*m = 0.00000000 a.u.
# |mu| = 0.00000 D = 1.32262368e-43 C*m = 0.00000000 a.u.
#
# -Components of electric quadrupole moment (expectation values) (a.u.) :
#
# Q(XX) = 10.62340220 Q(YY) = 1.11816843 Q(ZZ) = -11.74157063
# Q(XY) = 3.64633112 Q(XZ) = 0.00000000 Q(YZ) = 0.00000000
#
if line.strip() == "*** Electric multipole moments ***":
self.skip_lines(inputfile, ['d', 'b', 'caution1', 'caution2', 'b'])
coordinates = next(inputfile)
assert coordinates.split()[-2] == "(a.u.)"
self.skip_lines(inputfile, ['xyz', 'd'])
line = next(inputfile)
self.origin = numpy.array([float(x) for x in line.split()])
self.origin = utils.convertor(self.origin, 'bohr', 'Angstrom')
self.skip_line(inputfile, "blank")
line = next(inputfile)
assert "Electric dipole moment" in line
self.skip_line(inputfile, "blank")
# Make sure to use the column that has the value in Debyes.
dipole = []
for i in range(3):
line = next(inputfile)
dipole.append(float(line.split()[2]))
if not hasattr(self, 'moments'):
self.moments = [self.origin, dipole]
else:
assert self.moments[1] == dipole
def _parse_mosyms_moenergies(self, inputfile, spinidx):
"""Parse molecular orbital symmetries and energies from the
'Post-Iterations' section.
"""
line = next(inputfile)
while line.strip():
for i in range(len(line.split()) // 2):
self.mosyms[spinidx].append(line.split()[i*2][-2:])
moenergy = utils.convertor(float(line.split()[i*2+1]), "hartree", "eV")
self.moenergies[spinidx].append(moenergy)
line = next(inputfile)
return
|