File: psi4parser.py

package info (click to toggle)
cclib-data 1.6.2-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 87,912 kB
  • sloc: python: 16,440; sh: 131; makefile: 79; cpp: 31
file content (1121 lines) | stat: -rw-r--r-- 49,646 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
# -*- coding: utf-8 -*-
#
# Copyright (c) 2017, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.

"""Parser for Psi4 output files."""

from collections import namedtuple

import numpy

from cclib.parser import data
from cclib.parser import logfileparser
from cclib.parser import utils


class Psi4(logfileparser.Logfile):
    """A Psi4 log file."""

    def __init__(self, *args, **kwargs):

        # Call the __init__ method of the superclass
        super(Psi4, self).__init__(logname="Psi4", *args, **kwargs)

    def __str__(self):
        """Return a string representation of the object."""
        return "Psi4 log file %s" % (self.filename)

    def __repr__(self):
        """Return a representation of the object."""
        return 'Psi4("%s")' % (self.filename)

    def before_parsing(self):

        # Early beta versions of Psi4 normalize basis function
        # coefficients when printing.
        self.version_4_beta = False

        # This is just used to track which part of the output we are in for Psi4,
        # with changes triggered by ==> things like this <== (Psi3 does not have this)
        self.section = None

    def after_parsing(self):

        # Newer versions of Psi4 don't explicitly print the number of atoms.
        if not hasattr(self, 'natom'):
            if hasattr(self, 'atomnos'):
                self.set_attribute('natom', len(self.atomnos))

    def normalisesym(self, label):
        """Psi4 does not require normalizing symmetry labels."""
        return label

    # Match the number of skipped lines required based on the type of
    # gradient present (determined from the header), as otherwise the
    # parsing is identical.
    GradientInfo = namedtuple('GradientInfo', ['gradient_type', 'header', 'skip_lines'])
    GRADIENT_TYPES = {
        'analytic': GradientInfo('analytic',
                                 '-Total Gradient:',
                                 ['header', 'dash header']),
        'numerical': GradientInfo('numerical',
                                  '## F-D gradient (Symmetry 0) ##',
                                  ['Irrep num and total size', 'b', '123', 'b']),
    }
    GRADIENT_HEADERS = set([gradient_type.header
                            for gradient_type in GRADIENT_TYPES.values()])

    def extract(self, inputfile, line):
        """Extract information from the file object inputfile."""

        # Extract the version number and the version control
        # information, if it exists.
        if "Driver" in line:
            tokens = line.split()
            package_version = tokens[1].split("-")[-1]
            self.metadata["package_version"] = package_version
            # Keep track of early versions of Psi4.
            if "beta" in package_version:
                self.version_4_beta = True
        # Don't add revision information to the main package version for now.
        if "Git:" in line:
            tokens = line.split()
            revision = '-'.join(tokens[2:])

        # This will automatically change the section attribute for Psi4, when encountering
        # a line that <== looks like this ==>, to whatever is in between.
        if (line.strip()[:3] == "==>") and (line.strip()[-3:] == "<=="):
            self.section = line.strip()[4:-4]
            if self.section == "DFT Potential":
                self.metadata["methods"].append("DFT")

        # Determine whether or not the reference wavefunction is
        # restricted, unrestricted, or restricted open-shell.
        if line.strip() == "SCF":
            self.skip_line(inputfile, 'author list')
            line = next(inputfile)
            self.reference = line.split()[0]
            # Work with a complex reference as if it's real.
            if self.reference[0] == 'C':
                self.reference = self.reference[1:]

        # Parse the XC density functional
        # => Composite Functional: B3LYP <=
        if self.section == "DFT Potential" and "composite functional" in line.lower():
            chomp = line.split()
            functional = chomp[-2]
            self.metadata["functional"] = functional

        #  ==> Geometry <==
        #
        #    Molecular point group: c2h
        #    Full point group: C2h
        #
        #    Geometry (in Angstrom), charge = 0, multiplicity = 1:
        #
        #       Center              X                  Y                   Z
        #    ------------   -----------------  -----------------  -----------------
        #           C         -1.415253322400     0.230221785400     0.000000000000
        #           C          1.415253322400    -0.230221785400     0.000000000000
        # ...
        #
        if (self.section == "Geometry") and ("Geometry (in Angstrom), charge" in line):

            assert line.split()[3] == "charge"
            charge = int(line.split()[5].strip(','))
            self.set_attribute('charge', charge)

            assert line.split()[6] == "multiplicity"
            mult = int(line.split()[8].strip(':'))
            self.set_attribute('mult', mult)

            self.skip_line(inputfile, "blank")
            line = next(inputfile)

            # Usually there is the header and dashes, but, for example, the coordinates
            # printed when a geometry optimization finishes do not have it.
            if line.split()[0] == "Center":
                self.skip_line(inputfile, "dashes")
                line = next(inputfile)

            elements = []
            coords = []
            atommasses = []
            while line.strip():
                chomp = line.split()
                el, x, y, z = chomp[:4]
                if len(el) > 1:
                    el = el[0] + el[1:].lower()
                elements.append(el)
                coords.append([float(x), float(y), float(z)])
                # Newer versions of Psi4 print atomic masses.
                if len(chomp) == 5:
                    atommasses.append(float(chomp[4]))
                line = next(inputfile)

            # The 0 is to handle the presence of ghost atoms.
            self.set_attribute('atomnos', [self.table.number.get(el, 0) for el in elements])

            if not hasattr(self, 'atomcoords'):
                self.atomcoords = []

            # This condition discards any repeated coordinates that Psi print. For example,
            # geometry optimizations will print the coordinates at the beginning of and SCF
            # section and also at the start of the gradient calculation.
            if len(self.atomcoords) == 0 \
                or (self.atomcoords[-1] != coords and not hasattr(self, 'finite_difference')):
                self.atomcoords.append(coords)

            if len(atommasses) > 0:
                if not hasattr(self, 'atommasses'):
                    self.atommasses = atommasses

        # Psi4 repeats the charge and multiplicity after the geometry.
        if (self.section == "Geometry") and (line[2:16].lower() == "charge       ="):
            charge = int(line.split()[-1])
            self.set_attribute('charge', charge)
        if (self.section == "Geometry") and (line[2:16].lower() == "multiplicity ="):
            mult = int(line.split()[-1])
            self.set_attribute('mult', mult)

        # The printout for Psi4 has a more obvious trigger for the SCF parameter printout.
        if (self.section == "Algorithm") and (line.strip() == "==> Algorithm <==") \
            and not hasattr(self, 'finite_difference'):

            self.skip_line(inputfile, 'blank')

            line = next(inputfile)
            while line.strip():
                if "Energy threshold" in line:
                    etarget = float(line.split()[-1])
                if "Density threshold" in line:
                    dtarget = float(line.split()[-1])
                line = next(inputfile)

            if not hasattr(self, "scftargets"):
                self.scftargets = []
            self.scftargets.append([etarget, dtarget])

        # This section prints contraction information before the atomic basis set functions and
        # is a good place to parse atombasis indices as well as atomnos. However, the section this line
        # is in differs between HF and DFT outputs.
        #
        #  -Contraction Scheme:
        #    Atom   Type   All Primitives // Shells:
        #   ------ ------ --------------------------
        #       1     C     6s 3p // 2s 1p
        #       2     C     6s 3p // 2s 1p
        #       3     C     6s 3p // 2s 1p
        # ...
        if self.section == "Primary Basis":
            if line[2:12] == "Basis Set:":
                self.metadata["basis_set"] = line.split()[2]

        if (self.section == "Primary Basis" or self.section == "DFT Potential") and line.strip() == "-Contraction Scheme:":

            self.skip_lines(inputfile, ['headers', 'd'])

            atomnos = []
            atombasis = []
            atombasis_pos = 0
            line = next(inputfile)
            while line.strip():

                element = line.split()[1]
                if len(element) > 1:
                    element = element[0] + element[1:].lower()
                atomnos.append(self.table.number[element])

                # To count the number of atomic orbitals for the atom, sum up the orbitals
                # in each type of shell, times the numbers of shells. Currently, we assume
                # the multiplier is a single digit and that there are only s and p shells,
                # which will need to be extended later when considering larger basis sets,
                # with corrections for the cartesian/spherical cases.
                ao_count = 0
                shells = line.split('//')[1].split()
                for s in shells:
                    count, type = s
                    multiplier = 3*(type == 'p') or 1
                    ao_count += multiplier*int(count)

                if len(atombasis) > 0:
                    atombasis_pos = atombasis[-1][-1] + 1
                atombasis.append(list(range(atombasis_pos, atombasis_pos+ao_count)))

                line = next(inputfile)

            self.set_attribute('natom', len(atomnos))
            self.set_attribute('atomnos', atomnos)
            self.set_attribute('atombasis', atombasis)

        # The atomic basis set is straightforward to parse, but there are some complications
        # when symmetry is used, because in that case Psi4 only print the symmetry-unique atoms,
        # and the list of symmetry-equivalent ones is not printed. Therefore, for simplicity here
        # when an atomic is missing (atom indices are printed) assume the atomic orbitals of the
        # last atom of the same element before it. This might not work if a mixture of basis sets
        # is used somehow... but it should cover almost all cases for now.
        #
        # Note that Psi also print normalized coefficients (details below).
        #
        #  ==> AO Basis Functions <==
        #
        #    [ STO-3G ]
        #    spherical
        #    ****
        #    C   1
        #    S   3 1.00
        #                        71.61683700           2.70781445
        #                        13.04509600           2.61888016
        # ...
        if (self.section == "AO Basis Functions") and (line.strip() == "==> AO Basis Functions <=="):

            def get_symmetry_atom_basis(gbasis):
                """Get symmetry atom by replicating the last atom in gbasis of the same element."""

                missing_index = len(gbasis)
                missing_atomno = self.atomnos[missing_index]

                ngbasis = len(gbasis)
                last_same = ngbasis - self.atomnos[:ngbasis][::-1].index(missing_atomno) - 1
                return gbasis[last_same]

            dfact = lambda n: (n <= 0) or n * dfact(n-2)

            # Early beta versions of Psi4 normalize basis function
            # coefficients when printing.
            if self.version_4_beta:
                def get_normalization_factor(exp, lx, ly, lz):
                    norm_s = (2*exp/numpy.pi)**0.75
                    if lx + ly + lz > 0:
                        nom = (4*exp)**((lx+ly+lz)/2.0)
                        den = numpy.sqrt(dfact(2*lx-1) * dfact(2*ly-1) * dfact(2*lz-1))
                        return norm_s * nom / den
                    else:
                        return norm_s
            else:
                get_normalization_factor = lambda exp, lx, ly, lz: 1

            self.skip_lines(inputfile, ['b', 'basisname'])

            line = next(inputfile)
            spherical = line.strip() == "spherical"
            if hasattr(self, 'spherical_basis'):
                assert self.spherical_basis == spherical
            else:
                self.spherical_basis = spherical

            gbasis = []
            self.skip_line(inputfile, 'stars')
            line = next(inputfile)
            while line.strip():

                element, index = line.split()
                if len(element) > 1:
                    element = element[0] + element[1:].lower()
                index = int(index)

                # This is the code that adds missing atoms when symmetry atoms are excluded
                # from the basis set printout. Again, this will work only if all atoms of
                # the same element use the same basis set.
                while index > len(gbasis) + 1:
                    gbasis.append(get_symmetry_atom_basis(gbasis))

                gbasis.append([])
                line = next(inputfile)
                while line.find("*") == -1:

                    # The shell type and primitive count is in the first line.
                    shell_type, nprimitives, _ = line.split()
                    nprimitives = int(nprimitives)

                    # Get the angular momentum for this shell type.
                    momentum = {'S': 0, 'P': 1, 'D': 2, 'F': 3, 'G': 4, 'H': 5, 'I': 6}[shell_type.upper()]

                    # Read in the primitives.
                    primitives_lines = [next(inputfile) for i in range(nprimitives)]
                    primitives = [list(map(float, pl.split())) for pl in primitives_lines]

                    # Un-normalize the coefficients. Psi prints the normalized coefficient
                    # of the highest polynomial, namely XX for D orbitals, XXX for F, and so on.
                    for iprim, prim in enumerate(primitives):
                        exp, coef = prim
                        coef = coef / get_normalization_factor(exp, momentum, 0, 0)
                        primitives[iprim] = [exp, coef]

                    primitives = [tuple(p) for p in primitives]
                    shell = [shell_type, primitives]
                    gbasis[-1].append(shell)

                    line = next(inputfile)

                line = next(inputfile)

            # We will also need to add symmetry atoms that are missing from the input
            # at the end of this block, if the symmetry atoms are last.
            while len(gbasis) < self.natom:
                gbasis.append(get_symmetry_atom_basis(gbasis))

            self.gbasis = gbasis

        # A block called 'Calculation Information' prints these before starting the SCF.
        if (self.section == "Pre-Iterations") and ("Number of atoms" in line):
            natom = int(line.split()[-1])
            self.set_attribute('natom', natom)
        if (self.section == "Pre-Iterations") and ("Number of atomic orbitals" in line):
            nbasis = int(line.split()[-1])
            self.set_attribute('nbasis', nbasis)
        if (self.section == "Pre-Iterations") and ("Total" in line):
            chomp = line.split()
            nbasis = int(chomp[1])
            self.set_attribute('nbasis', nbasis)

        #  ==> Iterations <==

        # Psi4 converges both the SCF energy and density elements and reports both in the
        # iterations printout. However, the default convergence scheme involves a density-fitted
        # algorithm for efficiency, and this is often followed by a something with exact electron
        # repulsion integrals. In that case, there are actually two convergence cycles performed,
        # one for the density-fitted algorithm and one for the exact one, and the iterations are
        # printed in two blocks separated by some set-up information.
        if (self.section == "Iterations") and (line.strip() == "==> Iterations <==") \
            and not hasattr(self, 'finite_difference'):

            if not hasattr(self, 'scfvalues'):
                self.scfvalues = []
            scfvals = []

            self.skip_lines(inputfile, ['b', 'header', 'b'])
            line = next(inputfile)
            # Read each SCF iteration.
            while line.strip() != "==> Post-Iterations <==":
                if line.strip() and line.split()[0][0] == '@':
                    denergy = float(line.split()[4])
                    ddensity = float(line.split()[5])
                    scfvals.append([denergy, ddensity])
                try:
                    line = next(inputfile)
                except StopIteration:
                    self.logger.warning('File terminated before end of last SCF! Last density err: {}'.format(ddensity))
                    break
            self.section = "Post-Iterations"
            self.scfvalues.append(scfvals)

        # This section, from which we parse molecular orbital symmetries and
        # orbital energies, is quite similar for both Psi3 and Psi4, and in fact
        # the format for orbtials is the same, although the headers and spacers
        # are a bit different. Let's try to get both parsed with one code block.
        #
        # Here is how the block looks like for Psi4:
        #
        #	Orbital Energies (a.u.)
        #	-----------------------
        #
        #	Doubly Occupied:
        #
        #	   1Bu   -11.040586     1Ag   -11.040524     2Bu   -11.031589
        #	   2Ag   -11.031589     3Bu   -11.028950     3Ag   -11.028820
        # (...)
        #	  15Ag    -0.415620     1Bg    -0.376962     2Au    -0.315126
        #	   2Bg    -0.278361     3Bg    -0.222189
        #
        #	Virtual:
        #
        #	   3Au     0.198995     4Au     0.268517     4Bg     0.308826
        #	   5Au     0.397078     5Bg     0.521759    16Ag     0.565017
        # (...)
        #	  24Ag     0.990287    24Bu     1.027266    25Ag     1.107702
        #	  25Bu     1.124938
        #
        # The case is different in the trigger string.
        if ("orbital energies (a.u.)" in line.lower()  or "orbital energies [eh]" in line.lower()) \
            and not hasattr(self, 'finite_difference'):

            # If this is Psi4, we will be in the appropriate section.
            assert self.section == "Post-Iterations"

            self.moenergies = [[]]
            self.mosyms = [[]]

            # Psi4 has dashes under the trigger line, but Psi3 did not.
            self.skip_line(inputfile, 'dashes')
            self.skip_line(inputfile, 'blank')

            # Both versions have this case-insensitive substring.
            occupied = next(inputfile)
            if self.reference[0:2] == 'RO' or self.reference[0:1] == 'R':
                assert 'doubly occupied' in occupied.lower()
            elif self.reference[0:1] == 'U':
                assert 'alpha occupied' in occupied.lower()

            self.skip_line(inputfile, 'blank')

            # Parse the occupied MO symmetries and energies.
            self._parse_mosyms_moenergies(inputfile, 0)

            # The last orbital energy here represents the HOMO.
            self.homos = [len(self.moenergies[0])-1]
            # For a restricted open-shell calculation, this is the
            # beta HOMO, and we assume the singly-occupied orbitals
            # are all alpha, which are handled next.
            if self.reference[0:2] == 'RO':
                self.homos.append(self.homos[0])

            unoccupied = next(inputfile)
            if self.reference[0:2] == 'RO':
                assert unoccupied.strip() == 'Singly Occupied:'
            elif self.reference[0:1] == 'R':
                assert unoccupied.strip() == 'Virtual:'
            elif self.reference[0:1] == 'U':
                assert unoccupied.strip() == 'Alpha Virtual:'

            # Psi4 now has a blank line, Psi3 does not.
            self.skip_line(inputfile, 'blank')

            # Parse the unoccupied MO symmetries and energies.
            self._parse_mosyms_moenergies(inputfile, 0)

            # Here is where we handle the Beta or Singly occupied orbitals.
            if self.reference[0:1] == 'U':
                self.mosyms.append([])
                self.moenergies.append([])
                line = next(inputfile)
                assert line.strip() == 'Beta Occupied:'
                self.skip_line(inputfile, 'blank')
                self._parse_mosyms_moenergies(inputfile, 1)
                self.homos.append(len(self.moenergies[1])-1)
                line = next(inputfile)
                assert line.strip() == 'Beta Virtual:'
                self.skip_line(inputfile, 'blank')
                self._parse_mosyms_moenergies(inputfile, 1)
            elif self.reference[0:2] == 'RO':
                line = next(inputfile)
                assert line.strip() == 'Virtual:'
                self.skip_line(inputfile, 'blank')
                self._parse_mosyms_moenergies(inputfile, 0)

            line = next(inputfile)
            assert line.strip() == 'Final Occupation by Irrep:'
            line = next(inputfile)
            irreps = line.split()
            line = next(inputfile)
            tokens = line.split()
            assert tokens[0] == 'DOCC'
            docc = sum([int(x.replace(',', '')) for x in tokens[2:-1]])
            line = next(inputfile)
            if line.strip():
                tokens = line.split()
                assert tokens[0] in ('SOCC', 'NA')
                socc = sum([int(x.replace(',', '')) for x in tokens[2:-1]])
                # Fix up the restricted open-shell alpha HOMO.
                if self.reference[0:2] == 'RO':
                    self.homos[0] += socc

        # Both Psi3 and Psi4 print the final SCF energy right after the orbital energies,
        # but the label is different. Psi4 also does DFT, and the label is also different in that case.
        if self.section == "Post-Iterations" and "Final Energy:" in line \
            and not hasattr(self, 'finite_difference'):
            e = float(line.split()[3])
            if not hasattr(self, 'scfenergies'):
                self.scfenergies = []
            self.scfenergies.append(utils.convertor(e, 'hartree', 'eV'))

        #   ==> Molecular Orbitals <==
        #
        #                     1            2            3            4            5
        #
        # 1    H1 s0         0.1610392    0.1040990    0.0453848    0.0978665    1.0863246
        # 2    H1 s0         0.3066996    0.0742959    0.8227318    1.3460922   -1.6429494
        # 3    H1 s0         0.1669296    1.5494169   -0.8885631   -1.8689490    1.0473633
        # 4    H2 s0         0.1610392   -0.1040990    0.0453848   -0.0978665   -1.0863246
        # 5    H2 s0         0.3066996   -0.0742959    0.8227318   -1.3460922    1.6429494
        # 6    H2 s0         0.1669296   -1.5494169   -0.8885631    1.8689490   -1.0473633
        #
        #             Ene    -0.5279195    0.1235556    0.3277474    0.5523654    2.5371710
        #             Sym            Ag          B3u           Ag          B3u          B3u
        #             Occ             2            0            0            0            0
        #
        #
        #                         6
        #
        # 1    H1 s0         1.1331221
        # 2    H1 s0        -1.2163107
        # 3    H1 s0         0.4695317
        # 4    H2 s0         1.1331221
        # 5    H2 s0        -1.2163107
        # 6    H2 s0         0.4695317
        #
        #            Ene     2.6515637
        #            Sym            Ag
        #            Occ             0

        if (self.section) and ("Molecular Orbitals" in self.section) \
           and ("Molecular Orbitals" in line) and not hasattr(self, 'finite_difference'):

            self.skip_line(inputfile, 'blank')

            mocoeffs = []
            indices = next(inputfile)
            while indices.strip():

                if indices[:3] == '***':
                    break

                indices = [int(i) for i in indices.split()]

                if len(mocoeffs) < indices[-1]:
                    for i in range(len(indices)):
                        mocoeffs.append([])
                else:
                    assert len(mocoeffs) == indices[-1]

                self.skip_line(inputfile, 'blank')

                n = len(indices)
                line = next(inputfile)
                while line.strip():
                    chomp = line.split()
                    m = len(chomp)
                    iao = int(chomp[0])
                    coeffs = [float(c) for c in chomp[m - n:]]
                    for i, c in enumerate(coeffs):
                        mocoeffs[indices[i]-1].append(c)
                    line = next(inputfile)

                energies = next(inputfile)
                symmetries = next(inputfile)
                occupancies = next(inputfile)

                self.skip_lines(inputfile, ['b', 'b'])
                indices = next(inputfile)

            if not hasattr(self, 'mocoeffs'):
                self.mocoeffs = []
            self.mocoeffs.append(mocoeffs)

        # The formats for Mulliken and Lowdin atomic charges are the same, just with
        # the name changes, so use the same code for both.
        #
        # Properties computed using the SCF density density matrix
        #   Mulliken Charges: (a.u.)
        #    Center  Symbol    Alpha    Beta     Spin     Total
        #        1     C     2.99909  2.99909  0.00000  0.00182
        #        2     C     2.99909  2.99909  0.00000  0.00182
        # ...
        for pop_type in ["Mulliken", "Lowdin"]:
            if line.strip() == "%s Charges: (a.u.)" % pop_type:
                if not hasattr(self, 'atomcharges'):
                    self.atomcharges = {}
                header = next(inputfile)

                line = next(inputfile)
                while not line.strip():
                    line = next(inputfile)

                charges = []
                while line.strip():
                    ch = float(line.split()[-1])
                    charges.append(ch)
                    line = next(inputfile)
                self.atomcharges[pop_type.lower()] = charges

        # This is for the older conventional MP2 code in 4.0b5.
        mp_trigger = "MP2 Total Energy (a.u.)"
        if line.strip()[:len(mp_trigger)] == mp_trigger:
            self.metadata["methods"].append("MP2")
            mpenergy = utils.convertor(float(line.split()[-1]), 'hartree', 'eV')
            if not hasattr(self, 'mpenergies'):
                self.mpenergies = []
            self.mpenergies.append([mpenergy])
        # This is for the newer DF-MP2 code in 4.0.
        if 'DF-MP2 Energies' in line:
            self.metadata["methods"].append("DF-MP2")
            while 'Total Energy' not in line:
                line = next(inputfile)
            mpenergy = utils.convertor(float(line.split()[3]), 'hartree', 'eV')
            if not hasattr(self, 'mpenergies'):
                self.mpenergies = []
            self.mpenergies.append([mpenergy])

        # Note this is just a start and needs to be modified for CCSD(T), etc.
        ccsd_trigger = "* CCSD total energy"
        if line.strip()[:len(ccsd_trigger)] == ccsd_trigger:
            self.metadata["methods"].append("CCSD")
            ccsd_energy = utils.convertor(float(line.split()[-1]), 'hartree', 'eV')
            if not hasattr(self, "ccenergis"):
                self.ccenergies = []
            self.ccenergies.append(ccsd_energy)

        # The geometry convergence targets and values are printed in a table, with the legends
        # describing the convergence annotation. Probably exact slicing of the line needs
        # to be done in order to extract the numbers correctly. If there are no values for
        # a paritcular target it means they are not used (marked also with an 'o'), and in this case
        # we will set a value of numpy.inf so that any value will be smaller.
        #
        #  ==> Convergence Check <==
        #
        #  Measures of convergence in internal coordinates in au.
        #  Criteria marked as inactive (o), active & met (*), and active & unmet ( ).
        #  ---------------------------------------------------------------------------------------------
        #   Step     Total Energy     Delta E     MAX Force     RMS Force      MAX Disp      RMS Disp
        #  ---------------------------------------------------------------------------------------------
        #    Convergence Criteria    1.00e-06 *    3.00e-04 *             o    1.20e-03 *             o
        #  ---------------------------------------------------------------------------------------------
        #      2    -379.77675264   -7.79e-03      1.88e-02      4.37e-03 o    2.29e-02      6.76e-03 o  ~
        #  ---------------------------------------------------------------------------------------------
        #
        if (self.section == "Convergence Check") and line.strip() == "==> Convergence Check <==" \
            and not hasattr(self, 'finite_difference'):

            if not hasattr(self, "optstatus"):
                self.optstatus = []
            self.optstatus.append(data.ccData.OPT_UNKNOWN)

            self.skip_lines(inputfile, ['b', 'units', 'comment', 'dash+tilde', 'header', 'dash+tilde'])

            # These are the position in the line at which numbers should start.
            starts = [27, 41, 55, 69, 83]

            criteria = next(inputfile)
            geotargets = []
            for istart in starts:
                if criteria[istart:istart+9].strip():
                    geotargets.append(float(criteria[istart:istart+9]))
                else:
                    geotargets.append(numpy.inf)

            self.skip_line(inputfile, 'dashes')

            values = next(inputfile)
            step = int(values.split()[0])
            geovalues = []
            for istart in starts:
                if values[istart:istart+9].strip():
                    geovalues.append(float(values[istart:istart+9]))

            if step == 1:
                self.optstatus[-1] += data.ccData.OPT_NEW

            # This assertion may be too restrictive, but we haven't seen the geotargets change.
            # If such an example comes up, update the value since we're interested in the last ones.
            if not hasattr(self, 'geotargets'):
                self.geotargets = geotargets
            else:
                assert self.geotargets == geotargets

            if not hasattr(self, 'geovalues'):
                self.geovalues = []
            self.geovalues.append(geovalues)

        # This message signals a converged optimization, in which case we want
        # to append the index for this step to optdone, which should be equal
        # to the number of geovalues gathered so far.
        if "Optimization is complete!" in line:

            # This is a workaround for Psi4.0/sample_opt-irc-2.out;
            # IRC calculations currently aren't parsed properly for
            # optimization parameters.
            if hasattr(self, 'geovalues'):

                if not hasattr(self, 'optdone'):
                    self.optdone = []
                self.optdone.append(len(self.geovalues))

                assert hasattr(self, "optstatus") and len(self.optstatus) > 0
                self.optstatus[-1] += data.ccData.OPT_DONE

        # This message means that optimization has stopped for some reason, but we
        # still want optdone to exist in this case, although it will be an empty list.
        if line.strip() == "Optimizer: Did not converge!":
            if not hasattr(self, 'optdone'):
                self.optdone = []

            assert hasattr(self, "optstatus") and len(self.optstatus) > 0
            self.optstatus[-1] += data.ccData.OPT_UNCONVERGED

        # The reference point at which properties are evaluated in Psi4 is explicitely stated,
        # so we can save it for later. It is not, however, a part of the Properties section,
        # but it appears before it and also in other places where properies that might depend
        # on it are printed.
        #
        # Properties will be evaluated at   0.000000,   0.000000,   0.000000 Bohr
        #
        # OR
        #
        # Properties will be evaluated at   0.000000,   0.000000,   0.000000 [a0]
        #
        if "Properties will be evaluated at" in line.strip():
            self.origin = numpy.array([float(x.strip(',')) for x in line.split()[-4:-1]])
            assert line.split()[-1] in ["Bohr", "[a0]"]
            self.origin = utils.convertor(self.origin, 'bohr', 'Angstrom')

        # The properties section print the molecular dipole moment:
        #
        #  ==> Properties <==
        #
        #
        #Properties computed using the SCF density density matrix
        #  Nuclear Dipole Moment: (a.u.)
        #     X:     0.0000      Y:     0.0000      Z:     0.0000
        #
        #  Electronic Dipole Moment: (a.u.)
        #     X:     0.0000      Y:     0.0000      Z:     0.0000
        #
        #  Dipole Moment: (a.u.)
        #     X:     0.0000      Y:     0.0000      Z:     0.0000     Total:     0.0000
        #
        if (self.section == "Properties") and line.strip() == "Dipole Moment: (a.u.)":

            line = next(inputfile)
            dipole = numpy.array([float(line.split()[1]), float(line.split()[3]), float(line.split()[5])])
            dipole = utils.convertor(dipole, "ebohr", "Debye")

            if not hasattr(self, 'moments'):
                # Old versions of Psi4 don't print the origin; assume
                # it's at zero.
                if not hasattr(self, 'origin'):
                    self.origin = numpy.array([0.0, 0.0, 0.0])
                self.moments = [self.origin, dipole]
            else:
                try:
                    assert numpy.all(self.moments[1] == dipole)
                except AssertionError:
                    self.logger.warning('Overwriting previous multipole moments with new values')
                    self.logger.warning('This could be from post-HF properties or geometry optimization')
                    self.moments = [self.origin, dipole]

        # Higher multipole moments are printed separately, on demand, in lexicographical order.
        #
        # Multipole Moments:
        #
        # ------------------------------------------------------------------------------------
        #     Multipole             Electric (a.u.)       Nuclear  (a.u.)        Total (a.u.)
        # ------------------------------------------------------------------------------------
        #
        # L = 1.  Multiply by 2.5417462300 to convert to Debye
        # Dipole X            :          0.0000000            0.0000000            0.0000000
        # Dipole Y            :          0.0000000            0.0000000            0.0000000
        # Dipole Z            :          0.0000000            0.0000000            0.0000000
        #
        # L = 2.  Multiply by 1.3450341749 to convert to Debye.ang
        # Quadrupole XX       :      -1535.8888701         1496.8839996          -39.0048704
        # Quadrupole XY       :        -11.5262958           11.4580038           -0.0682920
        # ...
        #
        if line.strip() == "Multipole Moments:":

            self.skip_lines(inputfile, ['b', 'd', 'header', 'd', 'b'])

            # The reference used here should have been printed somewhere
            # before the properties and parsed above.
            moments = [self.origin]

            line = next(inputfile)
            while "----------" not in line.strip():

                rank = int(line.split()[2].strip('.'))

                multipole = []
                line = next(inputfile)
                while line.strip():

                    value = float(line.split()[-1])
                    fromunits = "ebohr" + (rank > 1)*("%i" % rank)
                    tounits = "Debye" + (rank > 1)*".ang" + (rank > 2)*("%i" % (rank-1))
                    value = utils.convertor(value, fromunits, tounits)
                    multipole.append(value)

                    line = next(inputfile)

                multipole = numpy.array(multipole)
                moments.append(multipole)
                line = next(inputfile)

            if not hasattr(self, 'moments'):
                self.moments = moments
            else:
                for im, m in enumerate(moments):
                    if len(self.moments) <= im:
                        self.moments.append(m)
                    else:
                        assert numpy.allclose(self.moments[im], m, atol=1.0e4)

        ## Analytic Gradient
        #        -Total Gradient:
        #   Atom            X                  Y                   Z
        #  ------   -----------------  -----------------  -----------------
        #     1       -0.000000000000     0.000000000000    -0.064527252292
        #     2        0.000000000000    -0.028380539652     0.032263626146
        #     3       -0.000000000000     0.028380539652     0.032263626146

        ## Finite Differences Gradient
        # -------------------------------------------------------------
        #   ## F-D gradient (Symmetry 0) ##
        #   Irrep: 1 Size: 3 x 3
        #
        #                  1                   2                   3
        #
        #     1     0.00000000000000     0.00000000000000    -0.02921303282515
        #     2     0.00000000000000    -0.00979709321487     0.01460651641258
        #     3     0.00000000000000     0.00979709321487     0.01460651641258
        if line.strip() in Psi4.GRADIENT_HEADERS:

            # Handle the different header lines between analytic and
            # numerical gradients.
            gradient_skip_lines = [
                info.skip_lines
                for info in Psi4.GRADIENT_TYPES.values()
                if info.header == line.strip()
            ][0]
            gradient = self.parse_gradient(inputfile, gradient_skip_lines)

            if not hasattr(self, 'grads'):
                self.grads = []
            self.grads.append(gradient)

        # OLD Normal mode output parser (PSI4 < 1)

        ## Harmonic frequencies.

        # -------------------------------------------------------------

        #   Computing second-derivative from gradients using projected,
        #   symmetry-adapted, cartesian coordinates (fd_freq_1).

        #   74 gradients passed in, including the reference geometry.
        #   Generating complete list of displacements from unique ones.

        #       Operation 2 takes plus displacements of irrep Bg to minus ones.
        #       Operation 3 takes plus displacements of irrep Au to minus ones.
        #       Operation 2 takes plus displacements of irrep Bu to minus ones.

        #         Irrep      Harmonic Frequency
        #                         (cm-1)
        #       -----------------------------------------------
        #            Au          137.2883
        if line.strip() == 'Irrep      Harmonic Frequency':

            vibsyms = []
            vibfreqs = []

            self.skip_lines(inputfile, ['(cm-1)', 'dashes'])

            ## The first section contains the symmetry of each normal
            ## mode and its frequency.
            line = next(inputfile)
            while '---' not in line:
                chomp = line.split()
                vibsym = chomp[0]
                vibfreq = Psi4.parse_vibfreq(chomp[1])
                vibsyms.append(vibsym)
                vibfreqs.append(vibfreq)
                line = next(inputfile)

            self.set_attribute('vibsyms', vibsyms)
            self.set_attribute('vibfreqs', vibfreqs)

            line = next(inputfile)
            assert line.strip() == ''
            line = next(inputfile)
            assert 'Normal Modes' in line
            line = next(inputfile)
            assert 'Molecular mass is' in line
            if hasattr(self, 'atommasses'):
                assert abs(float(line.split()[3]) - sum(self.atommasses)) < 1.0e-4
            line = next(inputfile)
            assert line.strip() == 'Frequencies in cm^-1; force constants in au.'
            line = next(inputfile)
            assert line.strip() == ''
            line = next(inputfile)

            ## The second section contains the frequency, force
            ## constant, and displacement for each normal mode, along
            ## with the atomic masses.

            #       Normal Modes (non-mass-weighted).
            #       Molecular mass is  130.07825 amu.
            #       Frequencies in cm^-1; force constants in au.

            #  Frequency:        137.29
            #  Force constant:   0.0007
            #            X       Y       Z           mass
            # C      0.000   0.000   0.050      12.000000
            # C      0.000   0.000   0.050      12.000000
            for vibfreq in self.vibfreqs:
                _vibfreq = Psi4.parse_vibfreq(line[13:].strip())
                assert abs(vibfreq - _vibfreq) < 1.0e-2
                line = next(inputfile)
                # Can't do anything with this for now.
                assert 'Force constant:' in line
                line = next(inputfile)
                assert 'X       Y       Z           mass' in line
                line = next(inputfile)
                if not hasattr(self, 'vibdisps'):
                    self.vibdisps = []
                normal_mode_disps = []
                # for k in range(self.natom):
                while line.strip():
                    chomp = line.split()
                    # Do nothing with this for now.
                    atomsym = chomp[0]
                    atomcoords = [float(x) for x in chomp[1:4]]
                    # Do nothing with this for now.
                    atommass = float(chomp[4])
                    normal_mode_disps.append(atomcoords)
                    line = next(inputfile)
                self.vibdisps.append(normal_mode_disps)
                line = next(inputfile)

        # NEW Normal mode output parser (PSI4 >= 1)

        #   ==> Harmonic Vibrational Analysis <==
        #   ...
        #   Vibration                       7                   8                   9
        #   ...
        #
        #   Vibration                       10                  11                  12
        #   ...

        if line.strip() == '==> Harmonic Vibrational Analysis <==':

            vibsyms = []
            vibfreqs = []
            vibdisps = []

            # Skip lines till the first Vibration block
            while not line.strip().startswith('Vibration'):
                line = next(inputfile)

            n_modes = 0
            # Parse all the Vibration blocks
            while line.strip().startswith('Vibration'):
                n = len(line.split()) - 1
                n_modes += n
                vibfreqs_, vibsyms_, vibdisps_ = self.parse_vibration(n, inputfile)
                vibfreqs.extend(vibfreqs_)
                vibsyms.extend(vibsyms_)
                vibdisps.extend(vibdisps_)
                line = next(inputfile)

            # It looks like the symmetry of the normal mode may be missing 
            # from some / most. Only include them if they are there for all

            if len(vibfreqs) == n_modes:
                self.set_attribute('vibfreqs', vibfreqs)

            if len(vibsyms) == n_modes:
                self.set_attribute('vibsyms', vibsyms)

            if len(vibdisps) == n_modes:
                self.set_attribute('vibdisps', vibdisps)

        # If finite difference is used to compute forces (i.e. by displacing
        # slightly all the atoms), a series of additional scf calculations is
        # performed. Orbitals, geometries, energies, etc. for these shouln't be
        # included in the parsed data.

        if line.strip().startswith('Using finite-differences of gradients'):
            self.set_attribute('finite_difference', True)

        if line[:54] == '*** Psi4 exiting successfully. Buy a developer a beer!'\
                or line[:54] == '*** PSI4 exiting successfully. Buy a developer a beer!':
            self.metadata['success'] = True

    def _parse_mosyms_moenergies(self, inputfile, spinidx):
        """Parse molecular orbital symmetries and energies from the
        'Post-Iterations' section.
        """
        line = next(inputfile)
        while line.strip():
            for i in range(len(line.split()) // 2):
                self.mosyms[spinidx].append(line.split()[i*2][-2:])
                moenergy = utils.convertor(float(line.split()[i*2+1]), "hartree", "eV")
                self.moenergies[spinidx].append(moenergy)
            line = next(inputfile)
        return

    def parse_gradient(self, inputfile, skip_lines):
        """Parse the nuclear gradient section into a list of lists with shape
        [natom, 3].
        """
        self.skip_lines(inputfile, skip_lines)
        line = next(inputfile)
        gradient = []

        while line.strip():
            idx, x, y, z = line.split()
            gradient.append((float(x), float(y), float(z)))
            line = next(inputfile)
        return gradient

    @staticmethod
    def parse_vibration(n, inputfile):

        #   Freq [cm^-1]                1501.9533           1501.9533           1501.9533
        #   Irrep
        #   Reduced mass [u]              1.1820              1.1820              1.1820
        #   Force const [mDyne/A]         1.5710              1.5710              1.5710
        #   Turning point v=0 [a0]        0.2604              0.2604              0.2604
        #   RMS dev v=0 [a0 u^1/2]        0.2002              0.2002              0.2002
        #   Char temp [K]               2160.9731           2160.9731           2160.9731
        #   ----------------------------------------------------------------------------------
        #       1   C               -0.00  0.01  0.13   -0.00 -0.13  0.01   -0.13  0.00 -0.00
        #       2   H                0.33 -0.03 -0.38    0.02  0.60 -0.02    0.14 -0.01 -0.32
        #       3   H               -0.32 -0.03 -0.37   -0.01  0.60 -0.01    0.15 -0.01  0.33
        #       4   H                0.02  0.32 -0.36    0.01  0.16 -0.34    0.60 -0.01  0.01
        #       5   H                0.02 -0.33 -0.39    0.01  0.13  0.31    0.60  0.01  0.01

        line = next(inputfile)
        assert 'Freq' in line
        chomp = line.split()
        vibfreqs = [Psi4.parse_vibfreq(x) for x in chomp[-n:]]

        line = next(inputfile)
        assert 'Irrep' in line
        chomp = line.split()
        vibsyms = [irrep for irrep in chomp[1:]]

        line = next(inputfile)
        assert 'Reduced mass' in line

        line = next(inputfile)
        assert 'Force const' in line

        line = next(inputfile)
        assert 'Turning point' in line

        line = next(inputfile)
        assert 'RMS dev' in line

        line = next(inputfile)
        assert 'Char temp' in line

        line = next(inputfile)
        assert '---' in line

        line = next(inputfile)
        vibdisps = [ [] for i in range(n)]
        while len(line.strip()) > 0:
            chomp = line.split()
            for i in range(n):
                start = len(chomp) - (n - i) * 3
                stop = start + 3
                mode_disps = [float(c) for c in chomp[start:stop]]
                vibdisps[i].append(mode_disps)

            line = next(inputfile)

        return vibfreqs, vibsyms, vibdisps

    @staticmethod
    def parse_vibfreq(vibfreq):
        """Imaginary frequencies are printed as '12.34i', rather than
        '-12.34'.
        """
        is_imag = vibfreq[-1] == 'i'
        if is_imag:
            return -float(vibfreq[:-1])
        else:
            return float(vibfreq)