1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
|
# -*- coding: utf-8 -*-
#
# Copyright (c) 2017, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.
"""Parser for Psi4 output files."""
from collections import namedtuple
import numpy
from cclib.parser import data
from cclib.parser import logfileparser
from cclib.parser import utils
class Psi4(logfileparser.Logfile):
"""A Psi4 log file."""
def __init__(self, *args, **kwargs):
# Call the __init__ method of the superclass
super(Psi4, self).__init__(logname="Psi4", *args, **kwargs)
def __str__(self):
"""Return a string representation of the object."""
return "Psi4 log file %s" % (self.filename)
def __repr__(self):
"""Return a representation of the object."""
return 'Psi4("%s")' % (self.filename)
def before_parsing(self):
# Early beta versions of Psi4 normalize basis function
# coefficients when printing.
self.version_4_beta = False
# This is just used to track which part of the output we are in for Psi4,
# with changes triggered by ==> things like this <== (Psi3 does not have this)
self.section = None
def after_parsing(self):
# Newer versions of Psi4 don't explicitly print the number of atoms.
if not hasattr(self, 'natom'):
if hasattr(self, 'atomnos'):
self.set_attribute('natom', len(self.atomnos))
def normalisesym(self, label):
"""Psi4 does not require normalizing symmetry labels."""
return label
# Match the number of skipped lines required based on the type of
# gradient present (determined from the header), as otherwise the
# parsing is identical.
GradientInfo = namedtuple('GradientInfo', ['gradient_type', 'header', 'skip_lines'])
GRADIENT_TYPES = {
'analytic': GradientInfo('analytic',
'-Total Gradient:',
['header', 'dash header']),
'numerical': GradientInfo('numerical',
'## F-D gradient (Symmetry 0) ##',
['Irrep num and total size', 'b', '123', 'b']),
}
GRADIENT_HEADERS = set([gradient_type.header
for gradient_type in GRADIENT_TYPES.values()])
def extract(self, inputfile, line):
"""Extract information from the file object inputfile."""
# Extract the version number and the version control
# information, if it exists.
if "Driver" in line:
tokens = line.split()
package_version = tokens[1].split("-")[-1]
self.metadata["package_version"] = package_version
# Keep track of early versions of Psi4.
if "beta" in package_version:
self.version_4_beta = True
# Don't add revision information to the main package version for now.
if "Git:" in line:
tokens = line.split()
revision = '-'.join(tokens[2:])
# This will automatically change the section attribute for Psi4, when encountering
# a line that <== looks like this ==>, to whatever is in between.
if (line.strip()[:3] == "==>") and (line.strip()[-3:] == "<=="):
self.section = line.strip()[4:-4]
if self.section == "DFT Potential":
self.metadata["methods"].append("DFT")
# Determine whether or not the reference wavefunction is
# restricted, unrestricted, or restricted open-shell.
if line.strip() == "SCF":
self.skip_line(inputfile, 'author list')
line = next(inputfile)
self.reference = line.split()[0]
# Work with a complex reference as if it's real.
if self.reference[0] == 'C':
self.reference = self.reference[1:]
# Parse the XC density functional
# => Composite Functional: B3LYP <=
if self.section == "DFT Potential" and "composite functional" in line.lower():
chomp = line.split()
functional = chomp[-2]
self.metadata["functional"] = functional
# ==> Geometry <==
#
# Molecular point group: c2h
# Full point group: C2h
#
# Geometry (in Angstrom), charge = 0, multiplicity = 1:
#
# Center X Y Z
# ------------ ----------------- ----------------- -----------------
# C -1.415253322400 0.230221785400 0.000000000000
# C 1.415253322400 -0.230221785400 0.000000000000
# ...
#
if (self.section == "Geometry") and ("Geometry (in Angstrom), charge" in line):
assert line.split()[3] == "charge"
charge = int(line.split()[5].strip(','))
self.set_attribute('charge', charge)
assert line.split()[6] == "multiplicity"
mult = int(line.split()[8].strip(':'))
self.set_attribute('mult', mult)
self.skip_line(inputfile, "blank")
line = next(inputfile)
# Usually there is the header and dashes, but, for example, the coordinates
# printed when a geometry optimization finishes do not have it.
if line.split()[0] == "Center":
self.skip_line(inputfile, "dashes")
line = next(inputfile)
elements = []
coords = []
atommasses = []
while line.strip():
chomp = line.split()
el, x, y, z = chomp[:4]
if len(el) > 1:
el = el[0] + el[1:].lower()
elements.append(el)
coords.append([float(x), float(y), float(z)])
# Newer versions of Psi4 print atomic masses.
if len(chomp) == 5:
atommasses.append(float(chomp[4]))
line = next(inputfile)
# The 0 is to handle the presence of ghost atoms.
self.set_attribute('atomnos', [self.table.number.get(el, 0) for el in elements])
if not hasattr(self, 'atomcoords'):
self.atomcoords = []
# This condition discards any repeated coordinates that Psi print. For example,
# geometry optimizations will print the coordinates at the beginning of and SCF
# section and also at the start of the gradient calculation.
if len(self.atomcoords) == 0 \
or (self.atomcoords[-1] != coords and not hasattr(self, 'finite_difference')):
self.atomcoords.append(coords)
if len(atommasses) > 0:
if not hasattr(self, 'atommasses'):
self.atommasses = atommasses
# Psi4 repeats the charge and multiplicity after the geometry.
if (self.section == "Geometry") and (line[2:16].lower() == "charge ="):
charge = int(line.split()[-1])
self.set_attribute('charge', charge)
if (self.section == "Geometry") and (line[2:16].lower() == "multiplicity ="):
mult = int(line.split()[-1])
self.set_attribute('mult', mult)
# The printout for Psi4 has a more obvious trigger for the SCF parameter printout.
if (self.section == "Algorithm") and (line.strip() == "==> Algorithm <==") \
and not hasattr(self, 'finite_difference'):
self.skip_line(inputfile, 'blank')
line = next(inputfile)
while line.strip():
if "Energy threshold" in line:
etarget = float(line.split()[-1])
if "Density threshold" in line:
dtarget = float(line.split()[-1])
line = next(inputfile)
if not hasattr(self, "scftargets"):
self.scftargets = []
self.scftargets.append([etarget, dtarget])
# This section prints contraction information before the atomic basis set functions and
# is a good place to parse atombasis indices as well as atomnos. However, the section this line
# is in differs between HF and DFT outputs.
#
# -Contraction Scheme:
# Atom Type All Primitives // Shells:
# ------ ------ --------------------------
# 1 C 6s 3p // 2s 1p
# 2 C 6s 3p // 2s 1p
# 3 C 6s 3p // 2s 1p
# ...
if self.section == "Primary Basis":
if line[2:12] == "Basis Set:":
self.metadata["basis_set"] = line.split()[2]
if (self.section == "Primary Basis" or self.section == "DFT Potential") and line.strip() == "-Contraction Scheme:":
self.skip_lines(inputfile, ['headers', 'd'])
atomnos = []
atombasis = []
atombasis_pos = 0
line = next(inputfile)
while line.strip():
element = line.split()[1]
if len(element) > 1:
element = element[0] + element[1:].lower()
atomnos.append(self.table.number[element])
# To count the number of atomic orbitals for the atom, sum up the orbitals
# in each type of shell, times the numbers of shells. Currently, we assume
# the multiplier is a single digit and that there are only s and p shells,
# which will need to be extended later when considering larger basis sets,
# with corrections for the cartesian/spherical cases.
ao_count = 0
shells = line.split('//')[1].split()
for s in shells:
count, type = s
multiplier = 3*(type == 'p') or 1
ao_count += multiplier*int(count)
if len(atombasis) > 0:
atombasis_pos = atombasis[-1][-1] + 1
atombasis.append(list(range(atombasis_pos, atombasis_pos+ao_count)))
line = next(inputfile)
self.set_attribute('natom', len(atomnos))
self.set_attribute('atomnos', atomnos)
self.set_attribute('atombasis', atombasis)
# The atomic basis set is straightforward to parse, but there are some complications
# when symmetry is used, because in that case Psi4 only print the symmetry-unique atoms,
# and the list of symmetry-equivalent ones is not printed. Therefore, for simplicity here
# when an atomic is missing (atom indices are printed) assume the atomic orbitals of the
# last atom of the same element before it. This might not work if a mixture of basis sets
# is used somehow... but it should cover almost all cases for now.
#
# Note that Psi also print normalized coefficients (details below).
#
# ==> AO Basis Functions <==
#
# [ STO-3G ]
# spherical
# ****
# C 1
# S 3 1.00
# 71.61683700 2.70781445
# 13.04509600 2.61888016
# ...
if (self.section == "AO Basis Functions") and (line.strip() == "==> AO Basis Functions <=="):
def get_symmetry_atom_basis(gbasis):
"""Get symmetry atom by replicating the last atom in gbasis of the same element."""
missing_index = len(gbasis)
missing_atomno = self.atomnos[missing_index]
ngbasis = len(gbasis)
last_same = ngbasis - self.atomnos[:ngbasis][::-1].index(missing_atomno) - 1
return gbasis[last_same]
dfact = lambda n: (n <= 0) or n * dfact(n-2)
# Early beta versions of Psi4 normalize basis function
# coefficients when printing.
if self.version_4_beta:
def get_normalization_factor(exp, lx, ly, lz):
norm_s = (2*exp/numpy.pi)**0.75
if lx + ly + lz > 0:
nom = (4*exp)**((lx+ly+lz)/2.0)
den = numpy.sqrt(dfact(2*lx-1) * dfact(2*ly-1) * dfact(2*lz-1))
return norm_s * nom / den
else:
return norm_s
else:
get_normalization_factor = lambda exp, lx, ly, lz: 1
self.skip_lines(inputfile, ['b', 'basisname'])
line = next(inputfile)
spherical = line.strip() == "spherical"
if hasattr(self, 'spherical_basis'):
assert self.spherical_basis == spherical
else:
self.spherical_basis = spherical
gbasis = []
self.skip_line(inputfile, 'stars')
line = next(inputfile)
while line.strip():
element, index = line.split()
if len(element) > 1:
element = element[0] + element[1:].lower()
index = int(index)
# This is the code that adds missing atoms when symmetry atoms are excluded
# from the basis set printout. Again, this will work only if all atoms of
# the same element use the same basis set.
while index > len(gbasis) + 1:
gbasis.append(get_symmetry_atom_basis(gbasis))
gbasis.append([])
line = next(inputfile)
while line.find("*") == -1:
# The shell type and primitive count is in the first line.
shell_type, nprimitives, _ = line.split()
nprimitives = int(nprimitives)
# Get the angular momentum for this shell type.
momentum = {'S': 0, 'P': 1, 'D': 2, 'F': 3, 'G': 4, 'H': 5, 'I': 6}[shell_type.upper()]
# Read in the primitives.
primitives_lines = [next(inputfile) for i in range(nprimitives)]
primitives = [list(map(float, pl.split())) for pl in primitives_lines]
# Un-normalize the coefficients. Psi prints the normalized coefficient
# of the highest polynomial, namely XX for D orbitals, XXX for F, and so on.
for iprim, prim in enumerate(primitives):
exp, coef = prim
coef = coef / get_normalization_factor(exp, momentum, 0, 0)
primitives[iprim] = [exp, coef]
primitives = [tuple(p) for p in primitives]
shell = [shell_type, primitives]
gbasis[-1].append(shell)
line = next(inputfile)
line = next(inputfile)
# We will also need to add symmetry atoms that are missing from the input
# at the end of this block, if the symmetry atoms are last.
while len(gbasis) < self.natom:
gbasis.append(get_symmetry_atom_basis(gbasis))
self.gbasis = gbasis
# A block called 'Calculation Information' prints these before starting the SCF.
if (self.section == "Pre-Iterations") and ("Number of atoms" in line):
natom = int(line.split()[-1])
self.set_attribute('natom', natom)
if (self.section == "Pre-Iterations") and ("Number of atomic orbitals" in line):
nbasis = int(line.split()[-1])
self.set_attribute('nbasis', nbasis)
if (self.section == "Pre-Iterations") and ("Total" in line):
chomp = line.split()
nbasis = int(chomp[1])
self.set_attribute('nbasis', nbasis)
# ==> Iterations <==
# Psi4 converges both the SCF energy and density elements and reports both in the
# iterations printout. However, the default convergence scheme involves a density-fitted
# algorithm for efficiency, and this is often followed by a something with exact electron
# repulsion integrals. In that case, there are actually two convergence cycles performed,
# one for the density-fitted algorithm and one for the exact one, and the iterations are
# printed in two blocks separated by some set-up information.
if (self.section == "Iterations") and (line.strip() == "==> Iterations <==") \
and not hasattr(self, 'finite_difference'):
if not hasattr(self, 'scfvalues'):
self.scfvalues = []
scfvals = []
self.skip_lines(inputfile, ['b', 'header', 'b'])
line = next(inputfile)
# Read each SCF iteration.
while line.strip() != "==> Post-Iterations <==":
if line.strip() and line.split()[0][0] == '@':
denergy = float(line.split()[4])
ddensity = float(line.split()[5])
scfvals.append([denergy, ddensity])
try:
line = next(inputfile)
except StopIteration:
self.logger.warning('File terminated before end of last SCF! Last density err: {}'.format(ddensity))
break
self.section = "Post-Iterations"
self.scfvalues.append(scfvals)
# This section, from which we parse molecular orbital symmetries and
# orbital energies, is quite similar for both Psi3 and Psi4, and in fact
# the format for orbtials is the same, although the headers and spacers
# are a bit different. Let's try to get both parsed with one code block.
#
# Here is how the block looks like for Psi4:
#
# Orbital Energies (a.u.)
# -----------------------
#
# Doubly Occupied:
#
# 1Bu -11.040586 1Ag -11.040524 2Bu -11.031589
# 2Ag -11.031589 3Bu -11.028950 3Ag -11.028820
# (...)
# 15Ag -0.415620 1Bg -0.376962 2Au -0.315126
# 2Bg -0.278361 3Bg -0.222189
#
# Virtual:
#
# 3Au 0.198995 4Au 0.268517 4Bg 0.308826
# 5Au 0.397078 5Bg 0.521759 16Ag 0.565017
# (...)
# 24Ag 0.990287 24Bu 1.027266 25Ag 1.107702
# 25Bu 1.124938
#
# The case is different in the trigger string.
if ("orbital energies (a.u.)" in line.lower() or "orbital energies [eh]" in line.lower()) \
and not hasattr(self, 'finite_difference'):
# If this is Psi4, we will be in the appropriate section.
assert self.section == "Post-Iterations"
self.moenergies = [[]]
self.mosyms = [[]]
# Psi4 has dashes under the trigger line, but Psi3 did not.
self.skip_line(inputfile, 'dashes')
self.skip_line(inputfile, 'blank')
# Both versions have this case-insensitive substring.
occupied = next(inputfile)
if self.reference[0:2] == 'RO' or self.reference[0:1] == 'R':
assert 'doubly occupied' in occupied.lower()
elif self.reference[0:1] == 'U':
assert 'alpha occupied' in occupied.lower()
self.skip_line(inputfile, 'blank')
# Parse the occupied MO symmetries and energies.
self._parse_mosyms_moenergies(inputfile, 0)
# The last orbital energy here represents the HOMO.
self.homos = [len(self.moenergies[0])-1]
# For a restricted open-shell calculation, this is the
# beta HOMO, and we assume the singly-occupied orbitals
# are all alpha, which are handled next.
if self.reference[0:2] == 'RO':
self.homos.append(self.homos[0])
unoccupied = next(inputfile)
if self.reference[0:2] == 'RO':
assert unoccupied.strip() == 'Singly Occupied:'
elif self.reference[0:1] == 'R':
assert unoccupied.strip() == 'Virtual:'
elif self.reference[0:1] == 'U':
assert unoccupied.strip() == 'Alpha Virtual:'
# Psi4 now has a blank line, Psi3 does not.
self.skip_line(inputfile, 'blank')
# Parse the unoccupied MO symmetries and energies.
self._parse_mosyms_moenergies(inputfile, 0)
# Here is where we handle the Beta or Singly occupied orbitals.
if self.reference[0:1] == 'U':
self.mosyms.append([])
self.moenergies.append([])
line = next(inputfile)
assert line.strip() == 'Beta Occupied:'
self.skip_line(inputfile, 'blank')
self._parse_mosyms_moenergies(inputfile, 1)
self.homos.append(len(self.moenergies[1])-1)
line = next(inputfile)
assert line.strip() == 'Beta Virtual:'
self.skip_line(inputfile, 'blank')
self._parse_mosyms_moenergies(inputfile, 1)
elif self.reference[0:2] == 'RO':
line = next(inputfile)
assert line.strip() == 'Virtual:'
self.skip_line(inputfile, 'blank')
self._parse_mosyms_moenergies(inputfile, 0)
line = next(inputfile)
assert line.strip() == 'Final Occupation by Irrep:'
line = next(inputfile)
irreps = line.split()
line = next(inputfile)
tokens = line.split()
assert tokens[0] == 'DOCC'
docc = sum([int(x.replace(',', '')) for x in tokens[2:-1]])
line = next(inputfile)
if line.strip():
tokens = line.split()
assert tokens[0] in ('SOCC', 'NA')
socc = sum([int(x.replace(',', '')) for x in tokens[2:-1]])
# Fix up the restricted open-shell alpha HOMO.
if self.reference[0:2] == 'RO':
self.homos[0] += socc
# Both Psi3 and Psi4 print the final SCF energy right after the orbital energies,
# but the label is different. Psi4 also does DFT, and the label is also different in that case.
if self.section == "Post-Iterations" and "Final Energy:" in line \
and not hasattr(self, 'finite_difference'):
e = float(line.split()[3])
if not hasattr(self, 'scfenergies'):
self.scfenergies = []
self.scfenergies.append(utils.convertor(e, 'hartree', 'eV'))
# ==> Molecular Orbitals <==
#
# 1 2 3 4 5
#
# 1 H1 s0 0.1610392 0.1040990 0.0453848 0.0978665 1.0863246
# 2 H1 s0 0.3066996 0.0742959 0.8227318 1.3460922 -1.6429494
# 3 H1 s0 0.1669296 1.5494169 -0.8885631 -1.8689490 1.0473633
# 4 H2 s0 0.1610392 -0.1040990 0.0453848 -0.0978665 -1.0863246
# 5 H2 s0 0.3066996 -0.0742959 0.8227318 -1.3460922 1.6429494
# 6 H2 s0 0.1669296 -1.5494169 -0.8885631 1.8689490 -1.0473633
#
# Ene -0.5279195 0.1235556 0.3277474 0.5523654 2.5371710
# Sym Ag B3u Ag B3u B3u
# Occ 2 0 0 0 0
#
#
# 6
#
# 1 H1 s0 1.1331221
# 2 H1 s0 -1.2163107
# 3 H1 s0 0.4695317
# 4 H2 s0 1.1331221
# 5 H2 s0 -1.2163107
# 6 H2 s0 0.4695317
#
# Ene 2.6515637
# Sym Ag
# Occ 0
if (self.section) and ("Molecular Orbitals" in self.section) \
and ("Molecular Orbitals" in line) and not hasattr(self, 'finite_difference'):
self.skip_line(inputfile, 'blank')
mocoeffs = []
indices = next(inputfile)
while indices.strip():
if indices[:3] == '***':
break
indices = [int(i) for i in indices.split()]
if len(mocoeffs) < indices[-1]:
for i in range(len(indices)):
mocoeffs.append([])
else:
assert len(mocoeffs) == indices[-1]
self.skip_line(inputfile, 'blank')
n = len(indices)
line = next(inputfile)
while line.strip():
chomp = line.split()
m = len(chomp)
iao = int(chomp[0])
coeffs = [float(c) for c in chomp[m - n:]]
for i, c in enumerate(coeffs):
mocoeffs[indices[i]-1].append(c)
line = next(inputfile)
energies = next(inputfile)
symmetries = next(inputfile)
occupancies = next(inputfile)
self.skip_lines(inputfile, ['b', 'b'])
indices = next(inputfile)
if not hasattr(self, 'mocoeffs'):
self.mocoeffs = []
self.mocoeffs.append(mocoeffs)
# The formats for Mulliken and Lowdin atomic charges are the same, just with
# the name changes, so use the same code for both.
#
# Properties computed using the SCF density density matrix
# Mulliken Charges: (a.u.)
# Center Symbol Alpha Beta Spin Total
# 1 C 2.99909 2.99909 0.00000 0.00182
# 2 C 2.99909 2.99909 0.00000 0.00182
# ...
for pop_type in ["Mulliken", "Lowdin"]:
if line.strip() == "%s Charges: (a.u.)" % pop_type:
if not hasattr(self, 'atomcharges'):
self.atomcharges = {}
header = next(inputfile)
line = next(inputfile)
while not line.strip():
line = next(inputfile)
charges = []
while line.strip():
ch = float(line.split()[-1])
charges.append(ch)
line = next(inputfile)
self.atomcharges[pop_type.lower()] = charges
# This is for the older conventional MP2 code in 4.0b5.
mp_trigger = "MP2 Total Energy (a.u.)"
if line.strip()[:len(mp_trigger)] == mp_trigger:
self.metadata["methods"].append("MP2")
mpenergy = utils.convertor(float(line.split()[-1]), 'hartree', 'eV')
if not hasattr(self, 'mpenergies'):
self.mpenergies = []
self.mpenergies.append([mpenergy])
# This is for the newer DF-MP2 code in 4.0.
if 'DF-MP2 Energies' in line:
self.metadata["methods"].append("DF-MP2")
while 'Total Energy' not in line:
line = next(inputfile)
mpenergy = utils.convertor(float(line.split()[3]), 'hartree', 'eV')
if not hasattr(self, 'mpenergies'):
self.mpenergies = []
self.mpenergies.append([mpenergy])
# Note this is just a start and needs to be modified for CCSD(T), etc.
ccsd_trigger = "* CCSD total energy"
if line.strip()[:len(ccsd_trigger)] == ccsd_trigger:
self.metadata["methods"].append("CCSD")
ccsd_energy = utils.convertor(float(line.split()[-1]), 'hartree', 'eV')
if not hasattr(self, "ccenergis"):
self.ccenergies = []
self.ccenergies.append(ccsd_energy)
# The geometry convergence targets and values are printed in a table, with the legends
# describing the convergence annotation. Probably exact slicing of the line needs
# to be done in order to extract the numbers correctly. If there are no values for
# a paritcular target it means they are not used (marked also with an 'o'), and in this case
# we will set a value of numpy.inf so that any value will be smaller.
#
# ==> Convergence Check <==
#
# Measures of convergence in internal coordinates in au.
# Criteria marked as inactive (o), active & met (*), and active & unmet ( ).
# ---------------------------------------------------------------------------------------------
# Step Total Energy Delta E MAX Force RMS Force MAX Disp RMS Disp
# ---------------------------------------------------------------------------------------------
# Convergence Criteria 1.00e-06 * 3.00e-04 * o 1.20e-03 * o
# ---------------------------------------------------------------------------------------------
# 2 -379.77675264 -7.79e-03 1.88e-02 4.37e-03 o 2.29e-02 6.76e-03 o ~
# ---------------------------------------------------------------------------------------------
#
if (self.section == "Convergence Check") and line.strip() == "==> Convergence Check <==" \
and not hasattr(self, 'finite_difference'):
if not hasattr(self, "optstatus"):
self.optstatus = []
self.optstatus.append(data.ccData.OPT_UNKNOWN)
self.skip_lines(inputfile, ['b', 'units', 'comment', 'dash+tilde', 'header', 'dash+tilde'])
# These are the position in the line at which numbers should start.
starts = [27, 41, 55, 69, 83]
criteria = next(inputfile)
geotargets = []
for istart in starts:
if criteria[istart:istart+9].strip():
geotargets.append(float(criteria[istart:istart+9]))
else:
geotargets.append(numpy.inf)
self.skip_line(inputfile, 'dashes')
values = next(inputfile)
step = int(values.split()[0])
geovalues = []
for istart in starts:
if values[istart:istart+9].strip():
geovalues.append(float(values[istart:istart+9]))
if step == 1:
self.optstatus[-1] += data.ccData.OPT_NEW
# This assertion may be too restrictive, but we haven't seen the geotargets change.
# If such an example comes up, update the value since we're interested in the last ones.
if not hasattr(self, 'geotargets'):
self.geotargets = geotargets
else:
assert self.geotargets == geotargets
if not hasattr(self, 'geovalues'):
self.geovalues = []
self.geovalues.append(geovalues)
# This message signals a converged optimization, in which case we want
# to append the index for this step to optdone, which should be equal
# to the number of geovalues gathered so far.
if "Optimization is complete!" in line:
# This is a workaround for Psi4.0/sample_opt-irc-2.out;
# IRC calculations currently aren't parsed properly for
# optimization parameters.
if hasattr(self, 'geovalues'):
if not hasattr(self, 'optdone'):
self.optdone = []
self.optdone.append(len(self.geovalues))
assert hasattr(self, "optstatus") and len(self.optstatus) > 0
self.optstatus[-1] += data.ccData.OPT_DONE
# This message means that optimization has stopped for some reason, but we
# still want optdone to exist in this case, although it will be an empty list.
if line.strip() == "Optimizer: Did not converge!":
if not hasattr(self, 'optdone'):
self.optdone = []
assert hasattr(self, "optstatus") and len(self.optstatus) > 0
self.optstatus[-1] += data.ccData.OPT_UNCONVERGED
# The reference point at which properties are evaluated in Psi4 is explicitely stated,
# so we can save it for later. It is not, however, a part of the Properties section,
# but it appears before it and also in other places where properies that might depend
# on it are printed.
#
# Properties will be evaluated at 0.000000, 0.000000, 0.000000 Bohr
#
# OR
#
# Properties will be evaluated at 0.000000, 0.000000, 0.000000 [a0]
#
if "Properties will be evaluated at" in line.strip():
self.origin = numpy.array([float(x.strip(',')) for x in line.split()[-4:-1]])
assert line.split()[-1] in ["Bohr", "[a0]"]
self.origin = utils.convertor(self.origin, 'bohr', 'Angstrom')
# The properties section print the molecular dipole moment:
#
# ==> Properties <==
#
#
#Properties computed using the SCF density density matrix
# Nuclear Dipole Moment: (a.u.)
# X: 0.0000 Y: 0.0000 Z: 0.0000
#
# Electronic Dipole Moment: (a.u.)
# X: 0.0000 Y: 0.0000 Z: 0.0000
#
# Dipole Moment: (a.u.)
# X: 0.0000 Y: 0.0000 Z: 0.0000 Total: 0.0000
#
if (self.section == "Properties") and line.strip() == "Dipole Moment: (a.u.)":
line = next(inputfile)
dipole = numpy.array([float(line.split()[1]), float(line.split()[3]), float(line.split()[5])])
dipole = utils.convertor(dipole, "ebohr", "Debye")
if not hasattr(self, 'moments'):
# Old versions of Psi4 don't print the origin; assume
# it's at zero.
if not hasattr(self, 'origin'):
self.origin = numpy.array([0.0, 0.0, 0.0])
self.moments = [self.origin, dipole]
else:
try:
assert numpy.all(self.moments[1] == dipole)
except AssertionError:
self.logger.warning('Overwriting previous multipole moments with new values')
self.logger.warning('This could be from post-HF properties or geometry optimization')
self.moments = [self.origin, dipole]
# Higher multipole moments are printed separately, on demand, in lexicographical order.
#
# Multipole Moments:
#
# ------------------------------------------------------------------------------------
# Multipole Electric (a.u.) Nuclear (a.u.) Total (a.u.)
# ------------------------------------------------------------------------------------
#
# L = 1. Multiply by 2.5417462300 to convert to Debye
# Dipole X : 0.0000000 0.0000000 0.0000000
# Dipole Y : 0.0000000 0.0000000 0.0000000
# Dipole Z : 0.0000000 0.0000000 0.0000000
#
# L = 2. Multiply by 1.3450341749 to convert to Debye.ang
# Quadrupole XX : -1535.8888701 1496.8839996 -39.0048704
# Quadrupole XY : -11.5262958 11.4580038 -0.0682920
# ...
#
if line.strip() == "Multipole Moments:":
self.skip_lines(inputfile, ['b', 'd', 'header', 'd', 'b'])
# The reference used here should have been printed somewhere
# before the properties and parsed above.
moments = [self.origin]
line = next(inputfile)
while "----------" not in line.strip():
rank = int(line.split()[2].strip('.'))
multipole = []
line = next(inputfile)
while line.strip():
value = float(line.split()[-1])
fromunits = "ebohr" + (rank > 1)*("%i" % rank)
tounits = "Debye" + (rank > 1)*".ang" + (rank > 2)*("%i" % (rank-1))
value = utils.convertor(value, fromunits, tounits)
multipole.append(value)
line = next(inputfile)
multipole = numpy.array(multipole)
moments.append(multipole)
line = next(inputfile)
if not hasattr(self, 'moments'):
self.moments = moments
else:
for im, m in enumerate(moments):
if len(self.moments) <= im:
self.moments.append(m)
else:
assert numpy.allclose(self.moments[im], m, atol=1.0e4)
## Analytic Gradient
# -Total Gradient:
# Atom X Y Z
# ------ ----------------- ----------------- -----------------
# 1 -0.000000000000 0.000000000000 -0.064527252292
# 2 0.000000000000 -0.028380539652 0.032263626146
# 3 -0.000000000000 0.028380539652 0.032263626146
## Finite Differences Gradient
# -------------------------------------------------------------
# ## F-D gradient (Symmetry 0) ##
# Irrep: 1 Size: 3 x 3
#
# 1 2 3
#
# 1 0.00000000000000 0.00000000000000 -0.02921303282515
# 2 0.00000000000000 -0.00979709321487 0.01460651641258
# 3 0.00000000000000 0.00979709321487 0.01460651641258
if line.strip() in Psi4.GRADIENT_HEADERS:
# Handle the different header lines between analytic and
# numerical gradients.
gradient_skip_lines = [
info.skip_lines
for info in Psi4.GRADIENT_TYPES.values()
if info.header == line.strip()
][0]
gradient = self.parse_gradient(inputfile, gradient_skip_lines)
if not hasattr(self, 'grads'):
self.grads = []
self.grads.append(gradient)
# OLD Normal mode output parser (PSI4 < 1)
## Harmonic frequencies.
# -------------------------------------------------------------
# Computing second-derivative from gradients using projected,
# symmetry-adapted, cartesian coordinates (fd_freq_1).
# 74 gradients passed in, including the reference geometry.
# Generating complete list of displacements from unique ones.
# Operation 2 takes plus displacements of irrep Bg to minus ones.
# Operation 3 takes plus displacements of irrep Au to minus ones.
# Operation 2 takes plus displacements of irrep Bu to minus ones.
# Irrep Harmonic Frequency
# (cm-1)
# -----------------------------------------------
# Au 137.2883
if line.strip() == 'Irrep Harmonic Frequency':
vibsyms = []
vibfreqs = []
self.skip_lines(inputfile, ['(cm-1)', 'dashes'])
## The first section contains the symmetry of each normal
## mode and its frequency.
line = next(inputfile)
while '---' not in line:
chomp = line.split()
vibsym = chomp[0]
vibfreq = Psi4.parse_vibfreq(chomp[1])
vibsyms.append(vibsym)
vibfreqs.append(vibfreq)
line = next(inputfile)
self.set_attribute('vibsyms', vibsyms)
self.set_attribute('vibfreqs', vibfreqs)
line = next(inputfile)
assert line.strip() == ''
line = next(inputfile)
assert 'Normal Modes' in line
line = next(inputfile)
assert 'Molecular mass is' in line
if hasattr(self, 'atommasses'):
assert abs(float(line.split()[3]) - sum(self.atommasses)) < 1.0e-4
line = next(inputfile)
assert line.strip() == 'Frequencies in cm^-1; force constants in au.'
line = next(inputfile)
assert line.strip() == ''
line = next(inputfile)
## The second section contains the frequency, force
## constant, and displacement for each normal mode, along
## with the atomic masses.
# Normal Modes (non-mass-weighted).
# Molecular mass is 130.07825 amu.
# Frequencies in cm^-1; force constants in au.
# Frequency: 137.29
# Force constant: 0.0007
# X Y Z mass
# C 0.000 0.000 0.050 12.000000
# C 0.000 0.000 0.050 12.000000
for vibfreq in self.vibfreqs:
_vibfreq = Psi4.parse_vibfreq(line[13:].strip())
assert abs(vibfreq - _vibfreq) < 1.0e-2
line = next(inputfile)
# Can't do anything with this for now.
assert 'Force constant:' in line
line = next(inputfile)
assert 'X Y Z mass' in line
line = next(inputfile)
if not hasattr(self, 'vibdisps'):
self.vibdisps = []
normal_mode_disps = []
# for k in range(self.natom):
while line.strip():
chomp = line.split()
# Do nothing with this for now.
atomsym = chomp[0]
atomcoords = [float(x) for x in chomp[1:4]]
# Do nothing with this for now.
atommass = float(chomp[4])
normal_mode_disps.append(atomcoords)
line = next(inputfile)
self.vibdisps.append(normal_mode_disps)
line = next(inputfile)
# NEW Normal mode output parser (PSI4 >= 1)
# ==> Harmonic Vibrational Analysis <==
# ...
# Vibration 7 8 9
# ...
#
# Vibration 10 11 12
# ...
if line.strip() == '==> Harmonic Vibrational Analysis <==':
vibsyms = []
vibfreqs = []
vibdisps = []
# Skip lines till the first Vibration block
while not line.strip().startswith('Vibration'):
line = next(inputfile)
n_modes = 0
# Parse all the Vibration blocks
while line.strip().startswith('Vibration'):
n = len(line.split()) - 1
n_modes += n
vibfreqs_, vibsyms_, vibdisps_ = self.parse_vibration(n, inputfile)
vibfreqs.extend(vibfreqs_)
vibsyms.extend(vibsyms_)
vibdisps.extend(vibdisps_)
line = next(inputfile)
# It looks like the symmetry of the normal mode may be missing
# from some / most. Only include them if they are there for all
if len(vibfreqs) == n_modes:
self.set_attribute('vibfreqs', vibfreqs)
if len(vibsyms) == n_modes:
self.set_attribute('vibsyms', vibsyms)
if len(vibdisps) == n_modes:
self.set_attribute('vibdisps', vibdisps)
# If finite difference is used to compute forces (i.e. by displacing
# slightly all the atoms), a series of additional scf calculations is
# performed. Orbitals, geometries, energies, etc. for these shouln't be
# included in the parsed data.
if line.strip().startswith('Using finite-differences of gradients'):
self.set_attribute('finite_difference', True)
if line[:54] == '*** Psi4 exiting successfully. Buy a developer a beer!'\
or line[:54] == '*** PSI4 exiting successfully. Buy a developer a beer!':
self.metadata['success'] = True
def _parse_mosyms_moenergies(self, inputfile, spinidx):
"""Parse molecular orbital symmetries and energies from the
'Post-Iterations' section.
"""
line = next(inputfile)
while line.strip():
for i in range(len(line.split()) // 2):
self.mosyms[spinidx].append(line.split()[i*2][-2:])
moenergy = utils.convertor(float(line.split()[i*2+1]), "hartree", "eV")
self.moenergies[spinidx].append(moenergy)
line = next(inputfile)
return
def parse_gradient(self, inputfile, skip_lines):
"""Parse the nuclear gradient section into a list of lists with shape
[natom, 3].
"""
self.skip_lines(inputfile, skip_lines)
line = next(inputfile)
gradient = []
while line.strip():
idx, x, y, z = line.split()
gradient.append((float(x), float(y), float(z)))
line = next(inputfile)
return gradient
@staticmethod
def parse_vibration(n, inputfile):
# Freq [cm^-1] 1501.9533 1501.9533 1501.9533
# Irrep
# Reduced mass [u] 1.1820 1.1820 1.1820
# Force const [mDyne/A] 1.5710 1.5710 1.5710
# Turning point v=0 [a0] 0.2604 0.2604 0.2604
# RMS dev v=0 [a0 u^1/2] 0.2002 0.2002 0.2002
# Char temp [K] 2160.9731 2160.9731 2160.9731
# ----------------------------------------------------------------------------------
# 1 C -0.00 0.01 0.13 -0.00 -0.13 0.01 -0.13 0.00 -0.00
# 2 H 0.33 -0.03 -0.38 0.02 0.60 -0.02 0.14 -0.01 -0.32
# 3 H -0.32 -0.03 -0.37 -0.01 0.60 -0.01 0.15 -0.01 0.33
# 4 H 0.02 0.32 -0.36 0.01 0.16 -0.34 0.60 -0.01 0.01
# 5 H 0.02 -0.33 -0.39 0.01 0.13 0.31 0.60 0.01 0.01
line = next(inputfile)
assert 'Freq' in line
chomp = line.split()
vibfreqs = [Psi4.parse_vibfreq(x) for x in chomp[-n:]]
line = next(inputfile)
assert 'Irrep' in line
chomp = line.split()
vibsyms = [irrep for irrep in chomp[1:]]
line = next(inputfile)
assert 'Reduced mass' in line
line = next(inputfile)
assert 'Force const' in line
line = next(inputfile)
assert 'Turning point' in line
line = next(inputfile)
assert 'RMS dev' in line
line = next(inputfile)
assert 'Char temp' in line
line = next(inputfile)
assert '---' in line
line = next(inputfile)
vibdisps = [ [] for i in range(n)]
while len(line.strip()) > 0:
chomp = line.split()
for i in range(n):
start = len(chomp) - (n - i) * 3
stop = start + 3
mode_disps = [float(c) for c in chomp[start:stop]]
vibdisps[i].append(mode_disps)
line = next(inputfile)
return vibfreqs, vibsyms, vibdisps
@staticmethod
def parse_vibfreq(vibfreq):
"""Imaginary frequencies are printed as '12.34i', rather than
'-12.34'.
"""
is_imag = vibfreq[-1] == 'i'
if is_imag:
return -float(vibfreq[:-1])
else:
return float(vibfreq)
|