1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
|
# -*- coding: utf-8 -*-
#
# Copyright (c) 2018, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.
"""Parser for Q-Chem output files"""
from __future__ import division
from __future__ import print_function
import itertools
import re
import numpy
from cclib.parser import logfileparser
from cclib.parser import utils
class QChem(logfileparser.Logfile):
"""A Q-Chem log file."""
def __init__(self, *args, **kwargs):
# Call the __init__ method of the superclass
super(QChem, self).__init__(logname="QChem", *args, **kwargs)
def __str__(self):
"""Return a string representation of the object."""
return "QChem log file %s" % (self.filename)
def __repr__(self):
"""Return a representation of the object."""
return 'QChem("%s")' % (self.filename)
def normalisesym(self, label):
"""Q-Chem does not require normalizing symmetry labels."""
return label
def before_parsing(self):
# Keep track of whether or not we're performing an
# (un)restricted calculation.
self.unrestricted = False
self.is_rohf = False
# Keep track of whether or not this is a fragment calculation,
# so that only the supersystem is parsed.
self.is_fragment_section = False
# These headers identify when a fragment section is
# entered/exited.
self.fragment_section_headers = (
'Guess MOs from converged MOs on fragments',
'CP correction for fragment',
)
self.supersystem_section_headers = (
'Done with SCF on isolated fragments',
'Done with counterpoise correction on fragments',
)
# Compile the dashes-and-or-spaces-only regex.
self.re_dashes_and_spaces = re.compile('^[\s-]+$')
# Compile the regex for extracting the atomic index from an
# aoname.
self.re_atomindex = re.compile('(\d+)_')
# A maximum of 6 columns per block when printing matrices. The
# Fock matrix is 4.
self.ncolsblock = 6
# By default, when asked to print orbitals via
# `scf_print`/`scf_final_print` and/or `print_orbitals`,
# Q-Chem will print all occupieds and the first 5 virtuals.
#
# When the number is set for `print_orbitals`, that section of
# the output will display (NOcc + that many virtual) MOs, but
# any other sections present due to
# `scf_print`/`scf_final_print` will still only display (NOcc
# + 5) MOs. It is the `print_orbitals` section that `aonames`
# is parsed from.
#
# Note that the (AO basis) density matrix is always (NBasis *
# NBasis)!
self.norbdisp_alpha = self.norbdisp_beta = 5
self.norbdisp_alpha_aonames = self.norbdisp_beta_aonames = 5
self.norbdisp_set = False
self.alpha_mo_coefficient_headers = (
'RESTRICTED (RHF) MOLECULAR ORBITAL COEFFICIENTS',
'ALPHA MOLECULAR ORBITAL COEFFICIENTS'
)
self.gradient_headers = (
'Full Analytical Gradient',
'Gradient of SCF Energy',
'Gradient of MP2 Energy',
)
self.hessian_headers = (
'Hessian of the SCF Energy',
'Final Hessian.',
)
self.wfn_method = [
'HF',
'MP2', 'RI-MP2', 'LOCAL_MP2', 'MP4',
'CCD', 'CCSD', 'CCSD(T)',
'QCISD', 'QCISD(T)'
]
def after_parsing(self):
# If parsing a fragment job, each of the geometries appended to
# `atomcoords` may be of different lengths, which will prevent
# conversion from a list to NumPy array.
# Take the length of the first geometry as correct, and remove
# all others with different lengths.
if len(self.atomcoords) > 1:
correctlen = len(self.atomcoords[0])
self.atomcoords[:] = [coords for coords in self.atomcoords
if len(coords) == correctlen]
# At the moment, there is no similar correction for other properties!
# QChem does not print all MO coefficients by default, but rather
# up to HOMO+5. So, fill up the missing values with NaNs. If there are
# other cases where coefficient are missing, but different ones, this
# general afterthought might not be appropriate and the fix will
# need to be done while parsing.
if hasattr(self, 'mocoeffs'):
for im in range(len(self.mocoeffs)):
_nmo, _nbasis = self.mocoeffs[im].shape
if (_nmo, _nbasis) != (self.nmo, self.nbasis):
coeffs = numpy.empty((self.nmo, self.nbasis))
coeffs[:] = numpy.nan
coeffs[0:_nmo, 0:_nbasis] = self.mocoeffs[im]
self.mocoeffs[im] = coeffs
# When parsing the 'MOLECULAR ORBITAL COEFFICIENTS' block for
# `aonames`, Q-Chem doesn't print the principal quantum number
# for each shell; this needs to be added.
if hasattr(self, 'aonames') and hasattr(self, 'atombasis'):
angmom = ('', 'S', 'P', 'D', 'F', 'G', 'H', 'I')
for atom in self.atombasis:
bfcounts = dict()
for bfindex in atom:
atomname, bfname = self.aonames[bfindex].split('_')
# Keep track of how many times each shell type has
# appeared.
if bfname in bfcounts:
bfcounts[bfname] += 1
else:
# Make sure the starting number for type of
# angular momentum begins at the appropriate
# principal quantum number (1S, 2P, 3D, 4F,
# ...).
bfcounts[bfname] = angmom.index(bfname[0])
newbfname = '{}{}'.format(bfcounts[bfname], bfname)
self.aonames[bfindex] = '_'.join([atomname, newbfname])
# Assign the number of core electrons replaced by ECPs.
if hasattr(self, 'user_input') and self.user_input.get('rem') is not None:
if self.user_input['rem'].get('ecp') is not None:
ecp_is_gen = (self.user_input['rem']['ecp'] == 'gen')
if ecp_is_gen:
assert 'ecp' in self.user_input
has_iprint = hasattr(self, 'possible_ecps')
if not ecp_is_gen and not has_iprint:
msg = """ECPs are present, but the number of core \
electrons isn't printed at all. Rerun with "iprint >= 100" to get \
coreelectrons."""
self.logger.warning(msg)
self.incorrect_coreelectrons = True
elif ecp_is_gen and not has_iprint:
nmissing = sum(ncore == 0
for (_, _, ncore) in self.user_input['ecp'])
if nmissing > 1:
msg = """ECPs are present, but coreelectrons can only \
be guessed for one element at most. Rerun with "iprint >= 100" to get \
coreelectrons."""
self.logger.warning(msg)
self.incorrect_coreelectrons = True
elif self.user_input['molecule'].get('charge') is None:
msg = """ECPs are present, but the total charge \
cannot be determined. Rerun without `$molecule read`."""
self.logger.warning(msg)
self.incorrect_coreelectrons = True
else:
user_charge = self.user_input['molecule']['charge']
# First, assign the entries given
# explicitly.
for entry in self.user_input['ecp']:
element, _, ncore = entry
if ncore > 0:
self._assign_coreelectrons_to_element(element, ncore)
# Because of how the charge is calculated
# during extract(), this is the number of
# remaining core electrons that need to be
# assigned ECP centers. Filter out the
# remaining entries, of which there should
# only be one.
core_sum = self.coreelectrons.sum() if hasattr(self, 'coreelectrons') else 0
remainder = self.charge - user_charge - core_sum
entries = [entry
for entry in self.user_input['ecp']
if entry[2] == 0]
if len(entries) != 0:
assert len(entries) == 1
element, _, ncore = entries[0]
assert ncore == 0
self._assign_coreelectrons_to_element(
element, remainder, ncore_is_total_count=True)
elif not ecp_is_gen and has_iprint:
atomsymbols = [self.table.element[atomno] for atomno in self.atomnos]
for i in range(self.natom):
if atomsymbols[i] in self.possible_ecps:
self.coreelectrons[i] = self.possible_ecps[atomsymbols[i]]
else:
assert ecp_is_gen and has_iprint
for entry in self.user_input['ecp']:
element, _, ncore = entry
# If ncore is non-zero, then it must be
# user-defined, and we take that
# value. Otherwise, look it up.
if ncore == 0:
ncore = self.possible_ecps[element]
self._assign_coreelectrons_to_element(element, ncore)
# Check to see if the charge is consistent with the input
# section. It may not be if using an ECP.
if hasattr(self, 'user_input'):
if self.user_input.get('molecule') is not None:
user_charge = self.user_input['molecule'].get('charge')
if user_charge is not None:
self.set_attribute('charge', user_charge)
def parse_charge_section(self, inputfile, chargetype):
"""Parse the population analysis charge block."""
self.skip_line(inputfile, 'blank')
line = next(inputfile)
has_spins = False
if 'Spin' in line:
if not hasattr(self, 'atomspins'):
self.atomspins = dict()
has_spins = True
spins = []
self.skip_line(inputfile, 'dashes')
if not hasattr(self, 'atomcharges'):
self.atomcharges = dict()
charges = []
line = next(inputfile)
while list(set(line.strip())) != ['-']:
elements = line.split()
charge = self.float(elements[2])
charges.append(charge)
if has_spins:
spin = self.float(elements[3])
spins.append(spin)
line = next(inputfile)
self.atomcharges[chargetype] = numpy.array(charges)
if has_spins:
self.atomspins[chargetype] = numpy.array(spins)
@staticmethod
def parse_matrix(inputfile, nrows, ncols, ncolsblock):
"""Q-Chem prints most matrices in a standard format; parse the matrix
into a NumPy array of the appropriate shape.
"""
nparray = numpy.empty(shape=(nrows, ncols))
line = next(inputfile)
assert len(line.split()) == min(ncolsblock, ncols)
colcounter = 0
while colcounter < ncols:
# If the line is just the column header (indices)...
if line[:5].strip() == '':
line = next(inputfile)
rowcounter = 0
while rowcounter < nrows:
row = list(map(float, line.split()[1:]))
assert len(row) == min(ncolsblock, (ncols - colcounter))
nparray[rowcounter][colcounter:colcounter + ncolsblock] = row
line = next(inputfile)
rowcounter += 1
colcounter += ncolsblock
return nparray
def parse_matrix_aonames(self, inputfile, nrows, ncols):
"""Q-Chem prints most matrices in a standard format; parse the matrix
into a preallocated NumPy array of the appropriate shape.
Rather than have one routine for parsing all general matrices
and the 'MOLECULAR ORBITAL COEFFICIENTS' block, use a second
which handles `aonames`.
"""
bigmom = ('d', 'f', 'g', 'h')
nparray = numpy.empty(shape=(nrows, ncols))
line = next(inputfile)
assert len(line.split()) == min(self.ncolsblock, ncols)
colcounter = 0
split_fixed = utils.WidthSplitter((4, 3, 5, 6, 10, 10, 10, 10, 10, 10))
while colcounter < ncols:
# If the line is just the column header (indices)...
if line[:5].strip() == '':
line = next(inputfile)
# Do nothing for now.
if 'eigenvalues' in line:
line = next(inputfile)
rowcounter = 0
while rowcounter < nrows:
row = split_fixed.split(line)
# Only take the AO names on the first time through.
if colcounter == 0:
if len(self.aonames) != self.nbasis:
# Apply the offset for rows where there is
# more than one atom of any element in the
# molecule.
offset = 1
if row[2] != '':
name = self.atommap.get(row[1] + str(row[2]))
else:
name = self.atommap.get(row[1] + '1')
# For l > 1, there is a space between l and
# m_l when using spherical functions.
shell = row[2 + offset]
if shell in bigmom:
shell = ''.join([shell, row[3 + offset]])
aoname = ''.join([name, '_', shell.upper()])
self.aonames.append(aoname)
row = list(map(float, row[-min(self.ncolsblock, (ncols - colcounter)):]))
nparray[rowcounter][colcounter:colcounter + self.ncolsblock] = row
line = next(inputfile)
rowcounter += 1
colcounter += self.ncolsblock
return nparray
def parse_orbital_energies_and_symmetries(self, inputfile):
"""Parse the 'Orbital Energies (a.u.)' block appearing after SCF converges,
which optionally includes MO symmetries. Based upon the
Occupied/Virtual labeling, the HOMO is also parsed.
"""
energies = []
symbols = []
line = next(inputfile)
# Sometimes Q-Chem gets a little confused...
while "MOs" not in line:
line = next(inputfile)
line = next(inputfile)
# The end of the block is either a blank line or only dashes.
while not self.re_dashes_and_spaces.search(line) \
and not 'Warning : Irrep of orbital' in line:
if 'Occupied' in line or 'Virtual' in line:
# A nice trick to find where the HOMO is.
if 'Virtual' in line:
homo = len(energies) - 1
line = next(inputfile)
tokens = line.split()
# If the line contains letters, it must be the MO
# symmetries. Otherwise, it's the energies.
if re.search("[a-zA-Z]", line):
symbols.extend(tokens[1::2])
else:
for e in tokens:
try:
energy = utils.convertor(self.float(e), 'hartree', 'eV')
except ValueError:
energy = numpy.nan
energies.append(energy)
line = next(inputfile)
# MO symmetries are either not present or there is one for each MO
# (energy).
assert len(symbols) in (0, len(energies))
return energies, symbols, homo
def generate_atom_map(self):
"""Generate the map to go from Q-Chem atom numbering:
'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'H1', 'H2', 'H3', 'H4', 'C7', ...
to cclib atom numbering:
'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'H7', 'H8', 'H9', 'H10', 'C11', ...
for later use.
"""
# Generate the desired order.
order_proper = [element + str(num)
for element, num in zip(self.atomelements,
itertools.count(start=1))]
# We need separate counters for each element.
element_counters = {element: itertools.count(start=1)
for element in set(self.atomelements)}
# Generate the Q-Chem printed order.
order_qchem = [element + str(next(element_counters[element]))
for element in self.atomelements]
# Combine the orders into a mapping.
atommap = {k: v for k, v, in zip(order_qchem, order_proper)}
return atommap
def generate_formula_histogram(self):
"""From the atomnos, generate a histogram that represents the
molecular formula.
"""
histogram = dict()
for element in self.atomelements:
if element in histogram.keys():
histogram[element] += 1
else:
histogram[element] = 1
return histogram
def extract(self, inputfile, line):
"""Extract information from the file object inputfile."""
# Extract the version number and optionally the version
# control info.
if "Q-Chem" in line:
match = re.search(r"Q-Chem\s([0-9\.]*)\sfor", line)
if match:
self.metadata["package_version"] = match.groups()[0]
# Don't add revision information to the main package version for now.
if "SVN revision" in line:
revision = line.split()[3]
# Disable/enable parsing for fragment sections.
if any(message in line for message in self.fragment_section_headers):
self.is_fragment_section = True
if any(message in line for message in self.supersystem_section_headers):
self.is_fragment_section = False
if not self.is_fragment_section:
# If the input section is repeated back, parse the $rem and
# $molecule sections.
if line[0:11] == 'User input:':
self.user_input = dict()
self.skip_line(inputfile, 'd')
while list(set(line.strip())) != ['-']:
if line.strip().lower() == '$rem':
self.user_input['rem'] = dict()
while line.strip().lower() != '$end':
line = next(inputfile).lower()
if line.strip() == '$end':
break
# Apparently calculations can run without
# a matching $end...this terminates the
# user input section no matter what.
if line.strip() == ('-' * 62):
break
tokens = line.split()
# Allow blank lines.
if len(tokens) == 0:
continue
# Entries may be separated by an equals
# sign, and can have comments, for example:
# ecp gen
# ecp = gen
# ecp gen ! only on first chlorine
# ecp = gen only on first chlorine
assert len(tokens) >= 2
keyword = tokens[0]
if tokens[1] == '=':
option = tokens[2]
else:
option = tokens[1]
self.user_input['rem'][keyword] = option
if keyword == 'method':
method = option.upper()
if method in self.wfn_method:
self.metadata["methods"].append(method)
else:
self.metadata["methods"].append('DFT')
self.metadata["functional"] = method
if keyword == 'exchange':
self.metadata["methods"].append('DFT')
self.metadata["functional"] = option
if keyword == 'print_orbitals':
# Stay with the default value if a number isn't
# specified.
if option in ('true', 'false'):
continue
else:
norbdisp_aonames = int(option)
self.norbdisp_alpha_aonames = norbdisp_aonames
self.norbdisp_beta_aonames = norbdisp_aonames
self.norbdisp_set = True
if line.strip().lower() == '$ecp':
self.user_input['ecp'] = []
line = next(inputfile)
while line.strip().lower() != '$end':
while list(set(line.strip())) != ['*']:
# Parse the element for this ECP
# entry. If only the element is on
# this line, or the 2nd token is 0, it
# applies to all atoms; if it's > 0,
# then it indexes (1-based) that
# specific atom in the whole molecule.
tokens = line.split()
assert len(tokens) > 0
element = tokens[0][0].upper() + tokens[0][1:].lower()
assert element in self.table.element
if len(tokens) > 1:
assert len(tokens) == 2
index = int(tokens[1]) - 1
else:
index = -1
line = next(inputfile)
# Next comes the ECP definition. If
# the line contains only a single
# item, it's a built-in ECP, otherwise
# it's a full definition.
tokens = line.split()
if len(tokens) == 1:
ncore = 0
line = next(inputfile)
else:
assert len(tokens) == 3
ncore = int(tokens[2])
# Don't parse the remainder of the
# ECP definition.
while list(set(line.strip())) != ['*']:
line = next(inputfile)
entry = (element, index, ncore)
self.user_input['ecp'].append(entry)
line = next(inputfile)
if line.strip().lower() == '$end':
break
if line.strip().lower() == '$molecule':
self.user_input['molecule'] = dict()
line = next(inputfile)
# Don't read the molecule, only the
# supersystem charge and multiplicity.
if line.split()[0].lower() == 'read':
pass
else:
charge, mult = [int(x) for x in line.split()]
self.user_input['molecule']['charge'] = charge
self.user_input['molecule']['mult'] = mult
line = next(inputfile).lower()
# Parse the basis set name
if 'Requested basis set' in line:
self.metadata["basis_set"] = line.split()[-1]
# Parse the general basis for `gbasis`, in the style used by
# Gaussian.
if 'Basis set in general basis input format:' in line:
self.skip_lines(inputfile, ['d', '$basis'])
line = next(inputfile)
if not hasattr(self, 'gbasis'):
self.gbasis = []
# The end of the general basis block.
while '$end' not in line:
atom = []
# 1. Contains element symbol and atomic index of
# basis functions; if 0, applies to all atoms of
# same element.
assert len(line.split()) == 2
line = next(inputfile)
# The end of each atomic block.
while '****' not in line:
# 2. Contains the type of basis function {S, SP,
# P, D, F, G, H, ...}, the number of primitives,
# and the weight of the final contracted function.
bfsplitline = line.split()
assert len(bfsplitline) == 3
bftype = bfsplitline[0]
nprim = int(bfsplitline[1])
line = next(inputfile)
# 3. The primitive basis functions that compose
# the contracted basis function; there are `nprim`
# of them. The first value is the exponent, and
# the second value is the contraction
# coefficient. If `bftype == 'SP'`, the primitives
# are for both S- and P-type basis functions but
# with separate contraction coefficients,
# resulting in three columns.
if bftype == 'SP':
primitives_S = []
primitives_P = []
else:
primitives = []
# For each primitive in the contracted basis
# function...
for iprim in range(nprim):
primsplitline = line.split()
exponent = float(primsplitline[0])
if bftype == 'SP':
assert len(primsplitline) == 3
coefficient_S = float(primsplitline[1])
coefficient_P = float(primsplitline[2])
primitives_S.append((exponent, coefficient_S))
primitives_P.append((exponent, coefficient_P))
else:
assert len(primsplitline) == 2
coefficient = float(primsplitline[1])
primitives.append((exponent, coefficient))
line = next(inputfile)
if bftype == 'SP':
bf_S = ('S', primitives_S)
bf_P = ('P', primitives_P)
atom.append(bf_S)
atom.append(bf_P)
else:
bf = (bftype, primitives)
atom.append(bf)
# Move to the next contracted basis function
# as long as we don't hit the '****' atom
# delimiter.
self.gbasis.append(atom)
line = next(inputfile)
if line.strip() == 'The following effective core potentials will be applied':
# Keep track of all elements that may have an ECP on
# them. *Which* centers have an ECP can't be
# determined here, so just take the number of valence
# electrons, then later later figure out the centers
# and do core = Z - valence.
self.possible_ecps = dict()
# This will fail if an element has more than one kind
# of ECP.
split_fixed = utils.WidthSplitter((4, 13, 20, 2, 14, 14))
self.skip_lines(inputfile, ['d', 'header', 'header', 'd'])
line = next(inputfile)
while list(set(line.strip())) != ['-']:
tokens = split_fixed.split(line)
if tokens[0] != '':
element = tokens[0]
valence = int(tokens[1])
ncore = self.table.number[element] - valence
self.possible_ecps[element] = ncore
line = next(inputfile)
if 'TIME STEP #' in line:
tokens = line.split()
self.append_attribute('time', float(tokens[8]))
# Extract the atomic numbers and coordinates of the atoms.
if 'Standard Nuclear Orientation (Angstroms)' in line:
if not hasattr(self, 'atomcoords'):
self.atomcoords = []
self.skip_lines(inputfile, ['cols', 'dashes'])
atomelements = []
atomcoords = []
line = next(inputfile)
while list(set(line.strip())) != ['-']:
entry = line.split()
atomelements.append(entry[1])
atomcoords.append(list(map(float, entry[2:])))
line = next(inputfile)
self.atomcoords.append(atomcoords)
# We calculate and handle atomnos no matter what, since in
# the case of fragment calculations the atoms may change,
# along with the charge and spin multiplicity.
self.atomnos = []
self.atomelements = []
for atomelement in atomelements:
self.atomelements.append(atomelement)
if atomelement == 'GH':
self.atomnos.append(0)
else:
self.atomnos.append(self.table.number[atomelement])
self.natom = len(self.atomnos)
self.atommap = self.generate_atom_map()
self.formula_histogram = self.generate_formula_histogram()
# Number of electrons.
# Useful for determining the number of occupied/virtual orbitals.
if 'Nuclear Repulsion Energy' in line:
line = next(inputfile)
nelec_re_string = 'There are(\s+[0-9]+) alpha and(\s+[0-9]+) beta electrons'
match = re.findall(nelec_re_string, line.strip())
self.set_attribute('nalpha', int(match[0][0].strip()))
self.set_attribute('nbeta', int(match[0][1].strip()))
self.norbdisp_alpha += self.nalpha
self.norbdisp_alpha_aonames += self.nalpha
self.norbdisp_beta += self.nbeta
self.norbdisp_beta_aonames += self.nbeta
# Calculate the spin multiplicity (2S + 1), where S is the
# total spin of the system.
S = (self.nalpha - self.nbeta) / 2
mult = int(2 * S + 1)
self.set_attribute('mult', mult)
# Calculate the molecular charge as the difference between
# the atomic numbers and the number of electrons.
if hasattr(self, 'atomnos'):
charge = sum(self.atomnos) - (self.nalpha + self.nbeta)
self.set_attribute('charge', charge)
# Number of basis functions.
if 'basis functions' in line:
if not hasattr(self, 'nbasis'):
self.set_attribute('nbasis', int(line.split()[-3]))
# In the case that there are fewer basis functions
# (and therefore MOs) than default number of MOs
# displayed, reset the display values.
self.norbdisp_alpha = min(self.norbdisp_alpha, self.nbasis)
self.norbdisp_alpha_aonames = min(self.norbdisp_alpha_aonames, self.nbasis)
self.norbdisp_beta = min(self.norbdisp_beta, self.nbasis)
self.norbdisp_beta_aonames = min(self.norbdisp_beta_aonames, self.nbasis)
# Check for whether or not we're peforming an
# (un)restricted calculation.
if 'calculation will be' in line:
if ' restricted' in line:
self.unrestricted = False
if 'unrestricted' in line:
self.unrestricted = True
if hasattr(self, 'nalpha') and hasattr(self, 'nbeta'):
if self.nalpha != self.nbeta:
self.unrestricted = True
self.is_rohf = True
# Section with SCF iterations goes like this:
#
# SCF converges when DIIS error is below 1.0E-05
# ---------------------------------------
# Cycle Energy DIIS Error
# ---------------------------------------
# 1 -381.9238072190 1.39E-01
# 2 -382.2937212775 3.10E-03
# 3 -382.2939780242 3.37E-03
# ...
#
scf_success_messages = (
'Convergence criterion met',
'corrected energy'
)
scf_failure_messages = (
'SCF failed to converge',
'Convergence failure'
)
if 'SCF converges when ' in line:
if not hasattr(self, 'scftargets'):
self.scftargets = []
target = float(line.split()[-1])
self.scftargets.append([target])
# We should have the header between dashes now,
# but sometimes there are lines before the first dashes.
while not 'Cycle Energy' in line:
line = next(inputfile)
self.skip_line(inputfile, 'd')
values = []
iter_counter = 1
line = next(inputfile)
while not any(message in line for message in scf_success_messages):
# Some trickery to avoid a lot of printing that can occur
# between each SCF iteration.
entry = line.split()
if len(entry) > 0:
if entry[0] == str(iter_counter):
# Q-Chem only outputs one error metric.
error = float(entry[2])
values.append([error])
iter_counter += 1
try:
line = next(inputfile)
# Is this the end of the file for some reason?
except StopIteration:
self.logger.warning('File terminated before end of last SCF! Last error: {}'.format(error))
break
# We've converged, but still need the last iteration.
if any(message in line for message in scf_success_messages):
entry = line.split()
error = float(entry[2])
values.append([error])
iter_counter += 1
# This is printed in regression QChem4.2/dvb_sp_unconverged.out
# so use it to bail out when convergence fails.
if any(message in line for message in scf_failure_messages):
break
if not hasattr(self, 'scfvalues'):
self.scfvalues = []
self.scfvalues.append(numpy.array(values))
# Molecular orbital coefficients.
# Try parsing them from this block (which comes from
# `scf_final_print = 2``) rather than the combined
# aonames/mocoeffs/moenergies block (which comes from
# `print_orbitals = true`).
if 'Final Alpha MO Coefficients' in line:
if not hasattr(self, 'mocoeffs'):
self.mocoeffs = []
mocoeffs = QChem.parse_matrix(inputfile, self.nbasis, self.norbdisp_alpha, self.ncolsblock)
self.mocoeffs.append(mocoeffs.transpose())
if 'Final Beta MO Coefficients' in line:
mocoeffs = QChem.parse_matrix(inputfile, self.nbasis, self.norbdisp_beta, self.ncolsblock)
self.mocoeffs.append(mocoeffs.transpose())
if 'Total energy in the final basis set' in line:
if not hasattr(self, 'scfenergies'):
self.scfenergies = []
scfenergy = float(line.split()[-1])
self.scfenergies.append(utils.convertor(scfenergy, 'hartree', 'eV'))
# Geometry optimization.
if 'Maximum Tolerance Cnvgd?' in line:
line_g = next(inputfile).split()[1:3]
line_d = next(inputfile).split()[1:3]
line_e = next(inputfile).split()[2:4]
if not hasattr(self, 'geotargets'):
self.geotargets = [line_g[1], line_d[1], self.float(line_e[1])]
if not hasattr(self, 'geovalues'):
self.geovalues = []
maxg = self.float(line_g[0])
maxd = self.float(line_d[0])
ediff = self.float(line_e[0])
geovalues = [maxg, maxd, ediff]
self.geovalues.append(geovalues)
if '** OPTIMIZATION CONVERGED **' in line:
if not hasattr(self, 'optdone'):
self.optdone = []
self.optdone.append(len(self.atomcoords))
if '** MAXIMUM OPTIMIZATION CYCLES REACHED **' in line:
if not hasattr(self, 'optdone'):
self.optdone = []
# Moller-Plesset corrections.
# There are multiple modules in Q-Chem for calculating MPn energies:
# cdman, ccman, and ccman2, all with different output.
#
# MP2, RI-MP2, and local MP2 all default to cdman, which has a simple
# block of output after the regular SCF iterations.
#
# MP3 is handled by ccman2.
#
# MP4 and variants are handled by ccman.
# This is the MP2/cdman case.
if 'MP2 total energy' in line:
if not hasattr(self, 'mpenergies'):
self.mpenergies = []
mp2energy = float(line.split()[4])
mp2energy = utils.convertor(mp2energy, 'hartree', 'eV')
self.mpenergies.append([mp2energy])
# This is the MP3/ccman2 case.
if line[1:11] == 'MP2 energy' and line[12:19] != 'read as':
if not hasattr(self, 'mpenergies'):
self.mpenergies = []
mpenergies = []
mp2energy = float(line.split()[3])
mpenergies.append(mp2energy)
line = next(inputfile)
line = next(inputfile)
# Just a safe check.
if 'MP3 energy' in line:
mp3energy = float(line.split()[3])
mpenergies.append(mp3energy)
mpenergies = [utils.convertor(mpe, 'hartree', 'eV')
for mpe in mpenergies]
self.mpenergies.append(mpenergies)
# This is the MP4/ccman case.
if 'EHF' in line:
if not hasattr(self, 'mpenergies'):
self.mpenergies = []
mpenergies = []
while list(set(line.strip())) != ['-']:
if 'EMP2' in line:
mp2energy = float(line.split()[2])
mpenergies.append(mp2energy)
if 'EMP3' in line:
mp3energy = float(line.split()[2])
mpenergies.append(mp3energy)
if 'EMP4SDQ' in line:
mp4sdqenergy = float(line.split()[2])
mpenergies.append(mp4sdqenergy)
# This is really MP4SD(T)Q.
if 'EMP4 ' in line:
mp4sdtqenergy = float(line.split()[2])
mpenergies.append(mp4sdtqenergy)
line = next(inputfile)
mpenergies = [utils.convertor(mpe, 'hartree', 'eV')
for mpe in mpenergies]
self.mpenergies.append(mpenergies)
# Coupled cluster corrections.
# Hopefully we only have to deal with ccman2 here.
if 'CCD total energy' in line:
if not hasattr(self, 'ccenergies'):
self.ccenergies = []
ccdenergy = float(line.split()[-1])
ccdenergy = utils.convertor(ccdenergy, 'hartree', 'eV')
self.ccenergies.append(ccdenergy)
if 'CCSD total energy' in line:
has_triples = False
if not hasattr(self, 'ccenergies'):
self.ccenergies = []
ccsdenergy = float(line.split()[-1])
# Make sure we aren't actually doing CCSD(T).
line = next(inputfile)
line = next(inputfile)
if 'CCSD(T) total energy' in line:
has_triples = True
ccsdtenergy = float(line.split()[-1])
ccsdtenergy = utils.convertor(ccsdtenergy, 'hartree', 'eV')
self.ccenergies.append(ccsdtenergy)
if not has_triples:
ccsdenergy = utils.convertor(ccsdenergy, 'hartree', 'eV')
self.ccenergies.append(ccsdenergy)
# Electronic transitions. Works for both CIS and TDDFT.
if 'Excitation Energies' in line:
# Restricted:
# ---------------------------------------------------
# TDDFT/TDA Excitation Energies
# ---------------------------------------------------
#
# Excited state 1: excitation energy (eV) = 3.6052
# Total energy for state 1: -382.167872200685
# Multiplicity: Triplet
# Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z
# Strength : 0.0000
# D( 33) --> V( 3) amplitude = 0.2618
# D( 34) --> V( 2) amplitude = 0.2125
# D( 35) --> V( 1) amplitude = 0.9266
#
# Unrestricted:
# Excited state 2: excitation energy (eV) = 2.3156
# Total energy for state 2: -381.980177630969
# <S**2> : 0.7674
# Trans. Mom.: -2.7680 X -0.1089 Y 0.0000 Z
# Strength : 0.4353
# S( 1) --> V( 1) amplitude = -0.3105 alpha
# D( 34) --> S( 1) amplitude = 0.9322 beta
self.skip_lines(inputfile, ['dashes', 'blank'])
line = next(inputfile)
etenergies = []
etsyms = []
etoscs = []
etsecs = []
spinmap = {'alpha': 0, 'beta': 1}
while list(set(line.strip())) != ['-']:
# Take the total energy for the state and subtract from the
# ground state energy, rather than just the EE;
# this will be more accurate.
if 'Total energy for state' in line:
energy = utils.convertor(float(line.split()[5]), 'hartree', 'wavenumber')
etenergy = energy - utils.convertor(self.scfenergies[-1], 'eV', 'wavenumber')
etenergies.append(etenergy)
# if 'excitation energy' in line:
# etenergy = utils.convertor(float(line.split()[-1]), 'eV', 'wavenumber')
# etenergies.append(etenergy)
if 'Multiplicity' in line:
etsym = line.split()[1]
etsyms.append(etsym)
if 'Strength' in line:
strength = float(line.split()[-1])
etoscs.append(strength)
# This is the list of transitions.
if 'amplitude' in line:
sec = []
while line.strip() != '':
if self.unrestricted:
spin = spinmap[line[42:47].strip()]
else:
spin = 0
# There is a subtle difference between TDA and RPA calcs,
# because in the latter case each transition line is
# preceeded by the type of vector: X or Y, name excitation
# or deexcitation (see #154 for details). For deexcitations,
# we will need to reverse the MO indices. Note also that Q-Chem
# starts reindexing virtual orbitals at 1.
if line[5] == '(':
ttype = 'X'
startidx = int(line[6:9]) - 1
endidx = int(line[17:20]) - 1 + self.nalpha
contrib = float(line[34:41].strip())
else:
assert line[5] == ":"
ttype = line[4]
startidx = int(line[9:12]) - 1
endidx = int(line[20:23]) - 1 + self.nalpha
contrib = float(line[37:44].strip())
start = (startidx, spin)
end = (endidx, spin)
if ttype == 'X':
sec.append([start, end, contrib])
elif ttype == 'Y':
sec.append([end, start, contrib])
else:
raise ValueError('Unknown transition type: %s' % ttype)
line = next(inputfile)
etsecs.append(sec)
line = next(inputfile)
self.set_attribute('etenergies', etenergies)
self.set_attribute('etsyms', etsyms)
self.set_attribute('etoscs', etoscs)
self.set_attribute('etsecs', etsecs)
# Static and dynamic polarizability from mopropman.
if 'Polarizability (a.u.)' in line:
if not hasattr(self, 'polarizabilities'):
self.polarizabilities = []
while 'Full Tensor' not in line:
line = next(inputfile)
self.skip_line(inputfile, 'blank')
polarizability = [next(inputfile).split() for _ in range(3)]
self.polarizabilities.append(numpy.array(polarizability))
# Static polarizability from finite difference or
# responseman.
if line.strip() in ('Static polarizability tensor [a.u.]',
'Polarizability tensor [a.u.]'):
if not hasattr(self, 'polarizabilities'):
self.polarizabilities = []
polarizability = [next(inputfile).split() for _ in range(3)]
self.polarizabilities.append(numpy.array(polarizability))
# Molecular orbital energies and symmetries.
if line.strip() == 'Orbital Energies (a.u.) and Symmetries':
# --------------------------------------------------------------
# Orbital Energies (a.u.) and Symmetries
# --------------------------------------------------------------
#
# Alpha MOs, Restricted
# -- Occupied --
# -10.018 -10.018 -10.008 -10.008 -10.007 -10.007 -10.006 -10.005
# 1 Bu 1 Ag 2 Bu 2 Ag 3 Bu 3 Ag 4 Bu 4 Ag
# -9.992 -9.992 -0.818 -0.755 -0.721 -0.704 -0.670 -0.585
# 5 Ag 5 Bu 6 Ag 6 Bu 7 Ag 7 Bu 8 Bu 8 Ag
# -0.561 -0.532 -0.512 -0.462 -0.439 -0.410 -0.400 -0.397
# 9 Ag 9 Bu 10 Ag 11 Ag 10 Bu 11 Bu 12 Bu 12 Ag
# -0.376 -0.358 -0.349 -0.330 -0.305 -0.295 -0.281 -0.263
# 13 Bu 14 Bu 13 Ag 1 Au 15 Bu 14 Ag 15 Ag 1 Bg
# -0.216 -0.198 -0.160
# 2 Au 2 Bg 3 Bg
# -- Virtual --
# 0.050 0.091 0.116 0.181 0.280 0.319 0.330 0.365
# 3 Au 4 Au 4 Bg 5 Au 5 Bg 16 Ag 16 Bu 17 Bu
# 0.370 0.413 0.416 0.422 0.446 0.469 0.496 0.539
# 17 Ag 18 Bu 18 Ag 19 Bu 19 Ag 20 Bu 20 Ag 21 Ag
# 0.571 0.587 0.610 0.627 0.646 0.693 0.743 0.806
# 21 Bu 22 Ag 22 Bu 23 Bu 23 Ag 24 Ag 24 Bu 25 Ag
# 0.816
# 25 Bu
#
# Beta MOs, Restricted
# -- Occupied --
# -10.018 -10.018 -10.008 -10.008 -10.007 -10.007 -10.006 -10.005
# 1 Bu 1 Ag 2 Bu 2 Ag 3 Bu 3 Ag 4 Bu 4 Ag
# -9.992 -9.992 -0.818 -0.755 -0.721 -0.704 -0.670 -0.585
# 5 Ag 5 Bu 6 Ag 6 Bu 7 Ag 7 Bu 8 Bu 8 Ag
# -0.561 -0.532 -0.512 -0.462 -0.439 -0.410 -0.400 -0.397
# 9 Ag 9 Bu 10 Ag 11 Ag 10 Bu 11 Bu 12 Bu 12 Ag
# -0.376 -0.358 -0.349 -0.330 -0.305 -0.295 -0.281 -0.263
# 13 Bu 14 Bu 13 Ag 1 Au 15 Bu 14 Ag 15 Ag 1 Bg
# -0.216 -0.198 -0.160
# 2 Au 2 Bg 3 Bg
# -- Virtual --
# 0.050 0.091 0.116 0.181 0.280 0.319 0.330 0.365
# 3 Au 4 Au 4 Bg 5 Au 5 Bg 16 Ag 16 Bu 17 Bu
# 0.370 0.413 0.416 0.422 0.446 0.469 0.496 0.539
# 17 Ag 18 Bu 18 Ag 19 Bu 19 Ag 20 Bu 20 Ag 21 Ag
# 0.571 0.587 0.610 0.627 0.646 0.693 0.743 0.806
# 21 Bu 22 Ag 22 Bu 23 Bu 23 Ag 24 Ag 24 Bu 25 Ag
# 0.816
# 25 Bu
# --------------------------------------------------------------
self.skip_line(inputfile, 'dashes')
line = next(inputfile)
energies_alpha, symbols_alpha, homo_alpha = self.parse_orbital_energies_and_symmetries(inputfile)
# Only look at the second block if doing an unrestricted calculation.
# This might be a problem for ROHF/ROKS.
if self.unrestricted:
energies_beta, symbols_beta, homo_beta = self.parse_orbital_energies_and_symmetries(inputfile)
# For now, only keep the last set of MO energies, even though it is
# printed at every step of geometry optimizations and fragment jobs.
self.set_attribute('moenergies', [numpy.array(energies_alpha)])
self.set_attribute('homos', [homo_alpha])
self.set_attribute('mosyms', [symbols_alpha])
if self.unrestricted:
self.moenergies.append(numpy.array(energies_beta))
self.homos.append(homo_beta)
self.mosyms.append(symbols_beta)
self.set_attribute('nmo', len(self.moenergies[0]))
# Molecular orbital energies, no symmetries.
if line.strip() == 'Orbital Energies (a.u.)':
# In the case of no orbital symmetries, the beta spin block is not
# present for restricted calculations.
# --------------------------------------------------------------
# Orbital Energies (a.u.)
# --------------------------------------------------------------
#
# Alpha MOs
# -- Occupied --
# ******* -38.595 -34.580 -34.579 -34.578 -19.372 -19.372 -19.364
# -19.363 -19.362 -19.362 -4.738 -3.252 -3.250 -3.250 -1.379
# -1.371 -1.369 -1.365 -1.364 -1.362 -0.859 -0.855 -0.849
# -0.846 -0.840 -0.836 -0.810 -0.759 -0.732 -0.729 -0.704
# -0.701 -0.621 -0.610 -0.595 -0.587 -0.584 -0.578 -0.411
# -0.403 -0.355 -0.354 -0.352
# -- Virtual --
# -0.201 -0.117 -0.099 -0.086 0.020 0.031 0.055 0.067
# 0.075 0.082 0.086 0.092 0.096 0.105 0.114 0.148
#
# Beta MOs
# -- Occupied --
# ******* -38.561 -34.550 -34.549 -34.549 -19.375 -19.375 -19.367
# -19.367 -19.365 -19.365 -4.605 -3.105 -3.103 -3.102 -1.385
# -1.376 -1.376 -1.371 -1.370 -1.368 -0.863 -0.858 -0.853
# -0.849 -0.843 -0.839 -0.818 -0.765 -0.738 -0.737 -0.706
# -0.702 -0.624 -0.613 -0.600 -0.591 -0.588 -0.585 -0.291
# -0.291 -0.288 -0.275
# -- Virtual --
# -0.139 -0.122 -0.103 0.003 0.014 0.049 0.049 0.059
# 0.061 0.070 0.076 0.081 0.086 0.090 0.098 0.106
# 0.138
# --------------------------------------------------------------
self.skip_line(inputfile, 'dashes')
line = next(inputfile)
energies_alpha, _, homo_alpha = self.parse_orbital_energies_and_symmetries(inputfile)
# Only look at the second block if doing an unrestricted calculation.
# This might be a problem for ROHF/ROKS.
if self.unrestricted:
energies_beta, _, homo_beta = self.parse_orbital_energies_and_symmetries(inputfile)
# For now, only keep the last set of MO energies, even though it is
# printed at every step of geometry optimizations and fragment jobs.
self.set_attribute('moenergies', [numpy.array(energies_alpha)])
self.set_attribute('homos', [homo_alpha])
if self.unrestricted:
self.moenergies.append(numpy.array(energies_beta))
self.homos.append(homo_beta)
self.set_attribute('nmo', len(self.moenergies[0]))
# Molecular orbital coefficients.
# This block comes from `print_orbitals = true/{int}`. Less
# precision than `scf_final_print >= 2` for `mocoeffs`, but
# important for `aonames` and `atombasis`.
if any(header in line
for header in self.alpha_mo_coefficient_headers):
# If we've asked to display more virtual orbitals than
# there are MOs present in the molecule, fix that now.
if hasattr(self, 'nmo') and hasattr(self, 'nalpha') and hasattr(self, 'nbeta'):
self.norbdisp_alpha_aonames = min(self.norbdisp_alpha_aonames, self.nmo)
self.norbdisp_beta_aonames = min(self.norbdisp_beta_aonames, self.nmo)
if not hasattr(self, 'mocoeffs'):
self.mocoeffs = []
if not hasattr(self, 'atombasis'):
self.atombasis = []
for n in range(self.natom):
self.atombasis.append([])
if not hasattr(self, 'aonames'):
self.aonames = []
# We could also attempt to parse `moenergies` here, but
# nothing is gained by it.
mocoeffs = self.parse_matrix_aonames(inputfile, self.nbasis, self.norbdisp_alpha_aonames)
# Only use these MO coefficients if we don't have them
# from `scf_final_print`.
if len(self.mocoeffs) == 0:
self.mocoeffs.append(mocoeffs.transpose())
# Go back through `aonames` to create `atombasis`.
assert len(self.aonames) == self.nbasis
for aoindex, aoname in enumerate(self.aonames):
atomindex = int(self.re_atomindex.search(aoname).groups()[0]) - 1
self.atombasis[atomindex].append(aoindex)
assert len(self.atombasis) == len(self.atomnos)
if 'BETA MOLECULAR ORBITAL COEFFICIENTS' in line:
mocoeffs = self.parse_matrix_aonames(inputfile, self.nbasis, self.norbdisp_beta_aonames)
if len(self.mocoeffs) == 1:
self.mocoeffs.append(mocoeffs.transpose())
# Population analysis.
if 'Ground-State Mulliken Net Atomic Charges' in line:
self.parse_charge_section(inputfile, 'mulliken')
if 'Hirshfeld Atomic Charges' in line:
self.parse_charge_section(inputfile, 'hirshfeld')
if 'Ground-State ChElPG Net Atomic Charges' in line:
self.parse_charge_section(inputfile, 'chelpg')
# Multipole moments are not printed in lexicographical order,
# so we need to parse and sort them. The units seem OK, but there
# is some uncertainty about the reference point and whether it
# can be changed.
#
# Notice how the letter/coordinate labels change to coordinate ranks
# after hexadecapole moments, and need to be translated. Additionally,
# after 9-th order moments the ranks are not necessarily single digits
# and so there are spaces between them.
#
# -----------------------------------------------------------------
# Cartesian Multipole Moments
# LMN = < X^L Y^M Z^N >
# -----------------------------------------------------------------
# Charge (ESU x 10^10)
# 0.0000
# Dipole Moment (Debye)
# X 0.0000 Y 0.0000 Z 0.0000
# Tot 0.0000
# Quadrupole Moments (Debye-Ang)
# XX -50.9647 XY -0.1100 YY -50.1441
# XZ 0.0000 YZ 0.0000 ZZ -58.5742
# ...
# 5th-Order Moments (Debye-Ang^4)
# 500 0.0159 410 -0.0010 320 0.0005
# 230 0.0000 140 0.0005 050 0.0012
# ...
# -----------------------------------------------------------------
#
if "Cartesian Multipole Moments" in line:
# This line appears not by default, but only when
# `multipole_order` > 4:
line = inputfile.next()
if 'LMN = < X^L Y^M Z^N >' in line:
line = inputfile.next()
# The reference point is always the origin, although normally the molecule
# is moved so that the center of charge is at the origin.
self.reference = [0.0, 0.0, 0.0]
self.moments = [self.reference]
# Watch out! This charge is in statcoulombs without the exponent!
# We should expect very good agreement, however Q-Chem prints
# the charge only with 5 digits, so expect 1e-4 accuracy.
charge_header = inputfile.next()
assert charge_header.split()[0] == "Charge"
charge = float(inputfile.next().strip())
charge = utils.convertor(charge, 'statcoulomb', 'e') * 1e-10
# Allow this to change until fragment jobs are properly implemented.
# assert abs(charge - self.charge) < 1e-4
# This will make sure Debyes are used (not sure if it can be changed).
line = inputfile.next()
assert line.strip() == "Dipole Moment (Debye)"
while "-----" not in line:
# The current multipole element will be gathered here.
multipole = []
line = inputfile.next()
while ("-----" not in line) and ("Moment" not in line):
cols = line.split()
# The total (norm) is printed for dipole but not other multipoles.
if cols[0] == 'Tot':
line = inputfile.next()
continue
# Find and replace any 'stars' with NaN before moving on.
for i in range(len(cols)):
if '***' in cols[i]:
cols[i] = numpy.nan
# The moments come in pairs (label followed by value) up to the 9-th order,
# although above hexadecapoles the labels are digits representing the rank
# in each coordinate. Above the 9-th order, ranks are not always single digits,
# so there are spaces between them, which means moments come in quartets.
if len(self.moments) < 5:
for i in range(len(cols)//2):
lbl = cols[2*i]
m = cols[2*i + 1]
multipole.append([lbl, m])
elif len(self.moments) < 10:
for i in range(len(cols)//2):
lbl = cols[2*i]
lbl = 'X'*int(lbl[0]) + 'Y'*int(lbl[1]) + 'Z'*int(lbl[2])
m = cols[2*i + 1]
multipole.append([lbl, m])
else:
for i in range(len(cols)//4):
lbl = 'X'*int(cols[4*i]) + 'Y'*int(cols[4*i + 1]) + 'Z'*int(cols[4*i + 2])
m = cols[4*i + 3]
multipole.append([lbl, m])
line = inputfile.next()
# Sort should use the first element when sorting lists,
# so this should simply work, and afterwards we just need
# to extract the second element in each list (the actual moment).
multipole.sort()
multipole = [m[1] for m in multipole]
self.moments.append(multipole)
# For `method = force` or geometry optimizations,
# the gradient is printed.
if any(header in line for header in self.gradient_headers):
if not hasattr(self, 'grads'):
self.grads = []
if 'SCF' in line:
ncolsblock = self.ncolsblock
else:
ncolsblock = 5
grad = QChem.parse_matrix(inputfile, 3, self.natom, ncolsblock)
self.grads.append(grad.T)
# (Static) polarizability from frequency calculations.
if 'Polarizability Matrix (a.u.)' in line:
if not hasattr(self, 'polarizabilities'):
self.polarizabilities = []
polarizability = []
self.skip_line(inputfile, 'index header')
for _ in range(3):
line = next(inputfile)
ss = line.strip()[1:]
polarizability.append([ss[0:12], ss[13:24], ss[25:36]])
# For some reason the sign is inverted.
self.polarizabilities.append(-numpy.array(polarizability, dtype=float))
# For IR-related jobs, the Hessian is printed (dim: 3*natom, 3*natom).
# Note that this is *not* the mass-weighted Hessian.
if any(header in line for header in self.hessian_headers):
if not hasattr(self, 'hessian'):
dim = 3*self.natom
self.hessian = QChem.parse_matrix(inputfile, dim, dim, self.ncolsblock)
# Start of the IR/Raman frequency section.
if 'VIBRATIONAL ANALYSIS' in line:
while 'STANDARD THERMODYNAMIC QUANTITIES' not in line:
## IR, optional Raman:
#
# **********************************************************************
# ** **
# ** VIBRATIONAL ANALYSIS **
# ** -------------------- **
# ** **
# ** VIBRATIONAL FREQUENCIES (CM**-1) AND NORMAL MODES **
# ** FORCE CONSTANTS (mDYN/ANGSTROM) AND REDUCED MASSES (AMU) **
# ** INFRARED INTENSITIES (KM/MOL) **
##** RAMAN SCATTERING ACTIVITIES (A**4/AMU) AND DEPOLARIZATION RATIOS **
# ** **
# **********************************************************************
#
#
# Mode: 1 2 3
# Frequency: -106.88 -102.91 161.77
# Force Cnst: 0.0185 0.0178 0.0380
# Red. Mass: 2.7502 2.8542 2.4660
# IR Active: NO YES YES
# IR Intens: 0.000 0.000 0.419
# Raman Active: YES NO NO
##Raman Intens: 2.048 0.000 0.000
##Depolar: 0.750 0.000 0.000
# X Y Z X Y Z X Y Z
# C 0.000 0.000 -0.100 -0.000 0.000 -0.070 -0.000 -0.000 -0.027
# C 0.000 0.000 0.045 -0.000 0.000 -0.074 0.000 -0.000 -0.109
# C 0.000 0.000 0.148 -0.000 -0.000 -0.074 0.000 0.000 -0.121
# (...)
# H -0.000 -0.000 0.422 -0.000 -0.000 0.499 0.000 0.000 -0.285
# TransDip 0.000 -0.000 -0.000 0.000 -0.000 -0.000 -0.000 0.000 0.021
#
# Mode: 4 5 6
# ...
#
# There isn't any symmetry information for normal modes present
# in Q-Chem.
# if not hasattr(self, 'vibsyms'):
# self.vibsyms = []
if 'Frequency:' in line:
if not hasattr(self, 'vibfreqs'):
self.vibfreqs = []
vibfreqs = map(float, line.split()[1:])
self.vibfreqs.extend(vibfreqs)
if 'IR Intens:' in line:
if not hasattr(self, 'vibirs'):
self.vibirs = []
vibirs = map(float, line.split()[2:])
self.vibirs.extend(vibirs)
if 'Raman Intens:' in line:
if not hasattr(self, 'vibramans'):
self.vibramans = []
vibramans = map(float, line.split()[2:])
self.vibramans.extend(vibramans)
# This is the start of the displacement block.
if line.split()[0:3] == ['X', 'Y', 'Z']:
if not hasattr(self, 'vibdisps'):
self.vibdisps = []
disps = []
for k in range(self.natom):
line = next(inputfile)
numbers = list(map(float, line.split()[1:]))
N = len(numbers) // 3
if not disps:
for n in range(N):
disps.append([])
for n in range(N):
disps[n].append(numbers[3*n:(3*n)+3])
self.vibdisps.extend(disps)
line = next(inputfile)
# Anharmonic vibrational analysis.
# Q-Chem includes 3 theories: VPT2, TOSH, and VCI.
# For now, just take the VPT2 results.
# if 'VIBRATIONAL ANHARMONIC ANALYSIS' in line:
# while list(set(line.strip())) != ['=']:
# if 'VPT2' in line:
# if not hasattr(self, 'vibanharms'):
# self.vibanharms = []
# self.vibanharms.append(float(line.split()[-1]))
# line = next(inputfile)
if 'STANDARD THERMODYNAMIC QUANTITIES AT' in line:
if not hasattr(self, 'temperature'):
self.temperature = float(line.split()[4])
# Not supported yet.
if not hasattr(self, 'pressure'):
self.pressure = float(line.split()[7])
self.skip_line(inputfile, 'blank')
line = next(inputfile)
if self.natom == 1:
assert 'Translational Enthalpy' in line
else:
assert 'Imaginary Frequencies' in line
line = next(inputfile)
# Not supported yet.
assert 'Zero point vibrational energy' in line
if not hasattr(self, 'zpe'):
# Convert from kcal/mol to Hartree/particle.
self.zpe = utils.convertor(float(line.split()[4]),
'kcal/mol', 'hartree')
atommasses = []
while 'Translational Enthalpy' not in line:
if 'Has Mass' in line:
atommass = float(line.split()[6])
atommasses.append(atommass)
line = next(inputfile)
if not hasattr(self, 'atommasses'):
self.atommasses = numpy.array(atommasses)
while line.strip():
line = next(inputfile)
line = next(inputfile)
assert 'Total Enthalpy' in line
if not hasattr(self, 'enthalpy'):
enthalpy = float(line.split()[2])
self.enthalpy = utils.convertor(enthalpy,
'kcal/mol', 'hartree')
line = next(inputfile)
assert 'Total Entropy' in line
if not hasattr(self, 'entropy'):
entropy = float(line.split()[2]) * self.temperature / 1000
# This is the *temperature dependent* entropy.
self.entropy = utils.convertor(entropy,
'kcal/mol', 'hartree')
if not hasattr(self, 'freeenergy'):
self.freeenergy = self.enthalpy - self.entropy
if line[:16] == ' Total job time:':
self.metadata['success'] = True
# TODO:
# 'enthalpy' (incorrect)
# 'entropy' (incorrect)
# 'freeenergy' (incorrect)
# 'nocoeffs'
# 'nooccnos'
# 'vibanharms'
|