File: water_ccsdt.out

package info (click to toggle)
cclib-data 1.6.2-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 87,912 kB
  • sloc: python: 16,440; sh: 131; makefile: 79; cpp: 31
file content (818 lines) | stat: -rw-r--r-- 34,555 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818


     ************************************************************************
     *************** Dalton - An Electronic Structure Program ***************
     ************************************************************************

    This is output from DALTON (Release Dalton2013 patch 0)
   ----------------------------------------------------------------------------
    NOTE:
     
    Dalton is an experimental code for the evaluation of molecular
    properties using (MC)SCF, DFT, CI, and CC wave functions.
    The authors accept no responsibility for the performance of
    the code or for the correctness of the results.
     
    The code (in whole or part) is provided under a licence and
    is not to be reproduced for further distribution without
    the written permission of the authors or their representatives.
     
    See the home page "http://daltonprogram.org" for further information.
     
    If results obtained with this code are published,
    the appropriate citations would be both of:
     
       K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast,
       L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani,
       P. Dahle, E. K. Dalskov, U. Ekstroem, T. Enevoldsen,
       J. J. Eriksen, P. Ettenhuber, B. Fernandez, L. Ferrighi,
       H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Haettig,
       H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema,
       E. Hjertenaes, S. Hoest, I.-M. Hoeyvik, M. F. Iozzi,
       B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Joergensen,
       J. Kauczor, S. Kirpekar, T. Kjaergaard, W. Klopper,
       S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp,
       K. Kristensen, A. Ligabue, O. B. Lutnaes, J. I. Melo,
       K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen,
       P. Norman, J. Olsen, J. M. H. Olsen, A. Osted,
       M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi,
       S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. Rybkin,
       P. Salek, C. C. M. Samson, A. Sanchez de Meras, T. Saue,
       S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov,
       A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor,
       A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen,
       L. Thoegersen, O. Vahtras, M. A. Watson, D. J. D. Wilson,
       M. Ziolkowski and H. Aagren,
       "The Dalton quantum chemistry program system",
       WIREs Comput. Mol. Sci. 2013. (doi: 10.1002/wcms.1172)
    
    and
    
       Dalton, a Molecular Electronic Structure Program,
       Release DALTON2013.1 (2013), see http://daltonprogram.org
   ----------------------------------------------------------------------------

    Authors in alphabetical order (major contribution(s) in parenthesis):

  Kestutis Aidas,           Vilnius University,           Lithuania   (QM/MM)
  Celestino Angeli,         University of Ferrara,        Italy       (NEVPT2)
  Keld L. Bak,              UNI-C,                        Denmark     (AOSOPPA, non-adiabatic coupling, magnetic properties)
  Vebjoern Bakken,          University of Oslo,           Norway      (DALTON; geometry optimizer, symmetry detection)
  Radovan Bast,             KTH Stockholm,                Sweden      (DALTON installation and execution frameworks)
  Linus Boman,              NTNU,                         Norway      (Cholesky decomposition and subsystems)
  Ove Christiansen,         Aarhus University,            Denmark     (CC module)
  Renzo Cimiraglia,         University of Ferrara,        Italy       (NEVPT2)
  Sonia Coriani,            University of Trieste,        Italy       (CC module, MCD in RESPONS)
  Paal Dahle,               University of Oslo,           Norway      (Parallelization)
  Erik K. Dalskov,          UNI-C,                        Denmark     (SOPPA)
  Thomas Enevoldsen,        Univ. of Southern Denmark,    Denmark     (SOPPA)
  Janus J. Eriksen,         Aarhus University,            Denmark     (PE-MP2/SOPPA, TDA)
  Berta Fernandez,          U. of Santiago de Compostela, Spain       (doublet spin, ESR in RESPONS)
  Lara Ferrighi,            Aarhus University,            Denmark     (PCM Cubic response)
  Heike Fliegl,             University of Oslo,           Norway      (CCSD(R12))
  Luca Frediani,            UiT The Arctic U. of Norway,  Norway      (PCM)
  Bin Gao,                  UiT The Arctic U. of Norway,  Norway      (Gen1Int library)
  Christof Haettig,         Ruhr-University Bochum,       Germany     (CC module)
  Kasper Hald,              Aarhus University,            Denmark     (CC module)
  Asger Halkier,            Aarhus University,            Denmark     (CC module)
  Hanne Heiberg,            University of Oslo,           Norway      (geometry analysis, selected one-electron integrals)
  Trygve Helgaker,          University of Oslo,           Norway      (DALTON; ABACUS, ERI, DFT modules, London, and much more)
  Alf Christian Hennum,     University of Oslo,           Norway      (Parity violation)
  Hinne Hettema,            University of Auckland,       New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry)
  Eirik Hjertenaes,         NTNU,                         Norway      (Cholesky decomposition)
  Maria Francesca Iozzi,    University of Oslo,           Norway      (RPA)
  Brano Jansik              Technical Univ. of Ostrava    Czech Rep.  (DFT cubic response)
  Hans Joergen Aa. Jensen,  Univ. of Southern Denmark,    Denmark     (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more)
  Dan Jonsson,              UiT The Arctic U. of Norway,  Norway      (cubic response in RESPONS module)
  Poul Joergensen,          Aarhus University,            Denmark     (RESPONS, ABACUS, and CC modules)
  Joanna Kauczor,           Linkoeping University,        Sweden      (Complex polarization propagator (CPP) module)
  Sheela Kirpekar,          Univ. of Southern Denmark,    Denmark     (Mass-velocity & Darwin integrals)
  Wim Klopper,              KIT Karlsruhe,                Germany     (R12 code in CC, SIRIUS, and ABACUS modules)
  Stefan Knecht,            ETH Zurich,                   Switzerland (Parallel CI and MCSCF)
  Rika Kobayashi,           Australian National Univ.,    Australia   (DIIS in CC, London in MCSCF)
  Henrik Koch,              NTNU,                         Norway      (CC module, Cholesky decomposition)
  Jacob Kongsted,           Univ. of Southern Denmark,    Denmark     (Polarizable embedding, QM/MM)
  Andrea Ligabue,           University of Modena,         Italy       (CTOCD, AOSOPPA)
  Ola B. Lutnaes,           University of Oslo,           Norway      (DFT Hessian)
  Juan I. Melo,             University of Buenos Aires,   Argentina   (LRESC, Relativistic Effects on NMR Shieldings)
  Kurt V. Mikkelsen,        University of Copenhagen,     Denmark     (MC-SCRF and QM/MM)
  Rolf H. Myhre,            NTNU,                         Norway      (Cholesky, subsystems and ECC2)
  Christian Neiss,          Univ. Erlangen-Nuernberg,     Germany     (CCSD(R12))
  Christian B. Nielsen,     University of Copenhagen,     Denmark     (QM/MM)
  Patrick Norman,           Linkoeping University,        Sweden      (Cubic response and complex response in RESPONS)
  Jeppe Olsen,              Aarhus University,            Denmark     (SIRIUS CI/density modules)
  Jogvan Magnus H. Olsen,   Univ. of Southern Denmark,    Denmark     (Polarizable embedding, PE library, QM/MM)
  Anders Osted,             Copenhagen University,        Denmark     (QM/MM)
  Martin J. Packer,         University of Sheffield,      UK          (SOPPA)
  Filip Pawlowski,          Kazimierz Wielki University,  Poland      (CC3)
  Thomas B. Pedersen,       University of Oslo,           Norway      (Cholesky decomposition)
  Patricio F. Provasi,      University of Northeastern,   Argentina   (Analysis of coupling constants in localized orbitals)
  Zilvinas Rinkevicius,     KTH Stockholm,                Sweden      (open-shell DFT, ESR)
  Elias Rudberg,            KTH Stockholm,                Sweden      (DFT grid and basis info)
  Torgeir A. Ruden,         University of Oslo,           Norway      (Numerical derivatives in ABACUS)
  Kenneth Ruud,             UiT The Arctic U. of Norway,  Norway      (DALTON; ABACUS magnetic properties and  much more)
  Pawel Salek,              KTH Stockholm,                Sweden      (DALTON; DFT code)
  Claire C. M. Samson       University of Karlsruhe       Germany     (Boys localization, r12 integrals in ERI)
  Alfredo Sanchez de Meras, University of Valencia,       Spain       (CC module, Cholesky decomposition)
  Trond Saue,               Paul Sabatier University,     France      (direct Fock matrix construction)
  Stephan P. A. Sauer,      University of Copenhagen,     Denmark     (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors)
  Bernd Schimmelpfennig,    Forschungszentrum Karlsruhe,  Germany     (AMFI module)
  Kristian Sneskov,         Aarhus University,            Denmark     (QM/MM, PE-CC)
  Arnfinn H. Steindal,      UiT The Arctic U. of Norway,  Norway      (parallel QM/MM)
  K. O. Sylvester-Hvid,     University of Copenhagen,     Denmark     (MC-SCRF)
  Peter R. Taylor,          VLSCI/Univ. of Melbourne,     Australia   (Symmetry handling ABACUS, integral transformation)
  Andrew M. Teale,          University of Nottingham,     England     (DFT-AC, DFT-D)
  David P. Tew,             University of Bristol,        England     (CCSD(R12))
  Olav Vahtras,             KTH Stockholm,                Sweden      (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT)
  David J. Wilson,          La Trobe University,          Australia   (DFT Hessian and DFT magnetizabilities)
  Hans Agren,               KTH Stockholm,                Sweden      (SIRIUS module, RESPONS, MC-SCRF solvation model)
 --------------------------------------------------------------------------------

     Date and time (Linux)  : Fri Feb 27 06:11:17 2015
     Host name              : wn701                                   

 * Work memory size             :   207360000 =  1.545 gigabytes.

 * Directories for basis set searches:
   1) /home/langner
   2) /usr/local/dalton/intel-13.1/2013/dalton/basis


Compilation information
-----------------------

 Who compiled             | root
 Host                     | supernova.services.kdm.wcss.pl
 System                   | Linux-2.6.18-348.3.1.el5
 CMake generator          | Unix Makefiles
 Processor                | x86_64
 64-bit integers          | OFF
 MPI                      | ON
 Fortran compiler         | /usr/local/openmpi/intel-13.1/1.6.5/bin/mpif90
 C compiler               | /usr/local/openmpi/intel-13.1/1.6.5/bin/mpicc
 C++ compiler             | /usr/local/openmpi/intel-13.1/1.6.5/bin/mpicxx
 C++ compiler version     | unknown
 Static linking           | OFF
 Last Git revision        | 653a3c9fdcde6b463c7e208ddf10abd66f7c54f6
 Configuration time       | 2014-01-15 11:00:36.908921

 * Sequential calculation using 1 CPU


   Content of the .dal input file
 ----------------------------------

BASIS                                             
STO-3G                                            
Water                                             
                                                  
AtomTypes=2                                       
Charge=8.0 Atoms=1                                
O   0.0     0.0     0.0                           
Charge=1.0 Atoms=2                                
H   0.99        0.0         0.0                   
H   -0.272881   0.951649    0.0                   
                                                  
**DALTON INPUT                                    
.RUN WAVE FUNCTIONS                               
**WAVE FUNCTIONS                                  
.CC                                               
*CC INPUT                                         
.CC(T)                                            
**END OF DALTON INPUT                             


       *******************************************************************
       *********** Output from DALTON general input processing ***********
       *******************************************************************

 --------------------------------------------------------------------------------
   Overall default print level:    0
   Print level for DALTON.STAT:    1

    HERMIT 1- and 2-electron integral sections will be executed
    "Old" integral transformation used (limited to max 255 basis functions)
    Wave function sections will be executed (SIRIUS module)
 --------------------------------------------------------------------------------


   ****************************************************************************
   *************** Output of molecule and basis set information ***************
   ****************************************************************************


    The two title cards from your ".mol" input:
    ------------------------------------------------------------------------
 1: Water                                                                   
 2:                                                                         
    ------------------------------------------------------------------------

  Atomic type no.    1
  --------------------
  Nuclear charge:   8.00000
  Number of symmetry independent centers:    1
  Number of basis sets to read;    2
  Basis set file used for this atomic type with Z =   8 :
     "/usr/local/dalton/intel-13.1/2013/dalton/basis/STO-3G"

  Atomic type no.    2
  --------------------
  Nuclear charge:   1.00000
  Number of symmetry independent centers:    2
  Number of basis sets to read;    2
  Basis set file used for this atomic type with Z =   1 :
     "/usr/local/dalton/intel-13.1/2013/dalton/basis/STO-3G"


                      SYMADD: Requested addition of symmetry
                      --------------------------------------

 Symmetry test threshold:  5.00E-06

 - molecule centered at center of mass and rotated so
   principal axes of inertia are along coordinate axes.

 Symmetry class found: C(2v)          

 Symmetry Independent Centres             
 ----------------------------
       8 :      0.00000000     0.00000000    -0.06667852  Isotope  1
       1 :      0.00000000     0.79064922     0.52911825  Isotope  1

 The following elements were found:   X  Y     


                         SYMGRP: Point group information
                         -------------------------------

Full point group is: C(2v)          
Represented as:      C2v

   * The point group was generated by:

      Reflection in the yz-plane
      Reflection in the xz-plane

   * Group multiplication table

        |  E   C2z  Oxz  Oyz
   -----+--------------------
     E  |  E   C2z  Oxz  Oyz
    C2z | C2z   E   Oyz  Oxz
    Oxz | Oxz  Oyz   E   C2z
    Oyz | Oyz  Oxz  C2z   E 

   * Character table

        |  E   C2z  Oxz  Oyz
   -----+--------------------
    A1  |   1    1    1    1
    B1  |   1   -1    1   -1
    B2  |   1   -1   -1    1
    A2  |   1    1   -1   -1

   * Direct product table

        | A1   B1   B2   A2 
   -----+--------------------
    A1  | A1   B1   B2   A2 
    B1  | B1   A1   A2   B2 
    B2  | B2   A2   A1   B1 
    A2  | A2   B2   B1   A1 


                                 Isotopic Masses
                                 ---------------

                           O          15.994915
                           H   _1      1.007825
                           H   _2      1.007825

                       Total mass:    18.010565 amu
                       Natural abundance:  99.730 %

 Center-of-mass coordinates (a.u.):    0.000000    0.000000   -0.000000


  Atoms and basis sets
  --------------------

  Number of atom types :    2
  Total number of atoms:    3

  Basis set used is "STO-3G" from the basis set library.

  label    atoms   charge   prim   cont     basis
  ----------------------------------------------------------------------
  O           1    8.0000    15     5      [6s3p|2s1p]                                        
  H           2    1.0000     3     1      [3s|1s]                                            
  ----------------------------------------------------------------------
  total:      3   10.0000    21     7
  ----------------------------------------------------------------------

  Threshold for neglecting AO integrals:  1.00D-12


  Cartesian Coordinates (a.u.)
  ----------------------------

  Total number of coordinates:    9
  O       :     1  x   0.0000000000    2  y   0.0000000000    3  z  -0.0666785241
  H   / 1 :     4  x   0.0000000000    5  y   0.7906492179    6  z   0.5291182519
  H   / 2 :     7  x   0.0000000000    8  y  -0.7906492179    9  z   0.5291182519


  Symmetry Coordinates
  --------------------

  Number of coordinates in each symmetry:     3    2    3    1

  Symmetry  A1  ( 1)

    1   O     z    3
    2   H     y    [  5  -    8 ]/2
    3   H     z    [  6  +    9 ]/2

  Symmetry  B1  ( 2)

    4   O     x    1
    5   H     x    [  4  +    7 ]/2

  Symmetry  B2  ( 3)

    6   O     y    2
    7   H     y    [  5  +    8 ]/2
    8   H     z    [  6  -    9 ]/2

  Symmetry  A2  ( 4)

    9   H     x    [  4  -    7 ]/2


   Interatomic separations (in Angstrom):
   --------------------------------------

            O           H   _1      H   _2
            ------      ------      ------
 O     :    0.000000
 H   _1:    0.523885    0.000000
 H   _2:    0.523885    0.836787    0.000000


  Max    interatomic separation is    0.8368 Angstrom (    1.5813 Bohr)
  between atoms    3 and    2, "H   _2" and "H   _1".

  Min HX interatomic separation is    0.5239 Angstrom (    0.9900 Bohr)

WARNING: Number of short HX and YX bond lengths:    2    0
WARNING: If not intentional, maybe your coordinates were in Angstrom,
WARNING: but "Angstrom" was not specified in .mol file


  Bond distances (Angstrom):
  --------------------------

                  atom 1     atom 2       distance
                  ------     ------       --------
  bond distance:  H   _1     O            0.523885
  bond distance:  H   _2     O            0.523885
  bond distance:  H   _2     H   _1       0.836787


  Bond angles (degrees):
  ----------------------

                  atom 1     atom 2     atom 3         angle
                  ------     ------     ------         -----
  bond angle:     H   _1     O          H   _2       106.000
  bond angle:     O          H   _1     H   _2        37.000
  bond angle:     O          H   _2     H   _1        37.000




 Principal moments of inertia (u*A**2) and principal axes
 --------------------------------------------------------

   IA       0.177938          0.000000    1.000000    0.000000
   IB       0.352846          0.000000    0.000000    1.000000
   IC       0.530784          1.000000    0.000000    0.000000


 Rotational constants
 --------------------

 The molecule is planar.

               A                   B                   C

        2840199.9224        1432293.8163         952137.3312 MHz
           94.738872           47.776179           31.759883 cm-1


@  Nuclear repulsion energy :   16.794007988674 Hartree


  Symmetry Orbitals
  -----------------

  Number of orbitals in each symmetry:           4    1    2    0


  Symmetry  A1 ( 1)

    1     O        1s         1
    2     O        1s         2
    3     O        2pz        5
    4     H        1s         6 +    7


  Symmetry  B1 ( 2)

    5     O        2px        3


  Symmetry  B2 ( 3)

    6     O        2py        4
    7     H        1s         6 -    7


  No orbitals in symmetry  A2 ( 4)

  Symmetries of electric field:  B1 (2)  B2 (3)  A1 (1)

  Symmetries of magnetic field:  B2 (3)  B1 (2)  A2 (4)


                     .---------------------------------------.
                     | Starting in Integral Section (HERMIT) |
                     `---------------------------------------'



    *************************************************************************
    ****************** Output from HERMIT input processing ******************
    *************************************************************************



     ************************************************************************
     ************************** Output from HERINT **************************
     ************************************************************************


 Threshold for neglecting two-electron integrals:  1.00D-12
 Number of two-electron integrals written:         138 ( 34.0% )
 Megabytes written:                              0.007

 >>>> Total CPU  time used in HERMIT:   0.01 seconds
 >>>> Total wall time used in HERMIT:   0.05 seconds


                        .----------------------------------.
                        | End of Integral Section (HERMIT) |
                        `----------------------------------'



                   .--------------------------------------------.
                   | Starting in Wave Function Section (SIRIUS) |
                   `--------------------------------------------'


 *** Output from Huckel module :

     Using EWMO model:          F
     Using EHT  model:          T
     Number of Huckel orbitals each symmetry:    4    1    2    0

 Huckel EHT eigenvalues for symmetry :  1
          -20.815540      -1.721112      -0.642474      -0.119190

 Huckel EHT eigenvalues for symmetry :  2
           -0.616200

 Huckel EHT eigenvalues for symmetry :  3
           -0.704737      -0.160647

 **********************************************************************
 *SIRIUS* a direct, restricted step, second order MCSCF program       *
 **********************************************************************

 
     Date and time (Linux)  : Fri Feb 27 06:11:17 2015
     Host name              : wn701                                   

 Title lines from ".mol" input file:
     Water                                                                   
                                                                             

 Print level on unit LUPRI =   2 is   0
 Print level on unit LUW4  =   2 is   5

@    (Integral direct) CC calculation.

@    This is a combination run starting with
@              a restricted, closed shell Hartree-Fock calculation


 Initial molecular orbitals are obtained according to
 ".MOSTART EHT   " input option

     Wave function specification
     ============================

     For the specification of the Coupled Cluster: see later.

@    For the wave function of type :      >>> CC <<<
@    Number of closed shell electrons          10
@    Number of electrons in active shells       0
@    Total charge of the molecule               0

@    Spin multiplicity and 2 M_S                1         0
     Total number of symmetries                 4
@    Reference state symmetry                   1

     Orbital specifications
     ======================
     Abelian symmetry species          All |    1    2    3    4
                                       --- |  ---  ---  ---  ---
     Total number of orbitals            7 |    4    1    2    0
     Number of basis functions           7 |    4    1    2    0

      ** Automatic occupation of RHF orbitals **

      -- Initial occupation of symmetries is determined from extended Huckel guess.           
      -- Initial occupation of symmetries is :
@    Occupied SCF orbitals               5 |    3    1    1    0

     Maximum number of Fock   iterations      0
     Maximum number of DIIS   iterations     60
     Maximum number of QC-SCF iterations     60
     Threshold for SCF convergence     1.00D-06


 Changes of defaults for CC:
 ---------------------------

  


 >>>>> DIIS optimization of Hartree-Fock <<<<<

 C1-DIIS algorithm; max error vectors =    4

 Automatic occupation of symmetries with  10 electrons.

 Iter     Total energy    Error norm  Delta(E)    SCF occupation
 -----------------------------------------------------------------------------
     (Precalculated two-electron integrals are transformed to P-supermatrix elements.
      Threshold for discarding integrals :  1.00D-12 )
@  1  -73.2273758179       2.90D+00  -7.32D+01     3   1   1   0
      Virial theorem: -V/T =      1.963073
@      MULPOP O      -0.21; H   _1  0.10; H   _2  0.10; 
 -----------------------------------------------------------------------------
@  2  -73.4315094723       2.41D-01  -2.04D-01     3   1   1   0
      Virial theorem: -V/T =      1.956319
@      MULPOP O      -1.12; H   _1  0.56; H   _2  0.56; 
 -----------------------------------------------------------------------------
@  3  -73.4345390541       2.85D-02  -3.03D-03     3   1   1   0
      Virial theorem: -V/T =      1.955089
@      MULPOP O      -1.19; H   _1  0.59; H   _2  0.59; 
 -----------------------------------------------------------------------------
@  4  -73.4345878930       7.71D-04  -4.88D-05     3   1   1   0
      Virial theorem: -V/T =      1.954969
@      MULPOP O      -1.19; H   _1  0.60; H   _2  0.60; 
 -----------------------------------------------------------------------------
@  5  -73.4345879508       1.61D-04  -5.78D-08     3   1   1   0
      Virial theorem: -V/T =      1.954972
@      MULPOP O      -1.19; H   _1  0.60; H   _2  0.60; 
 -----------------------------------------------------------------------------
@  6  -73.4345879538       1.15D-05  -2.93D-09     3   1   1   0
      Virial theorem: -V/T =      1.954972
@      MULPOP O      -1.19; H   _1  0.60; H   _2  0.60; 
 -----------------------------------------------------------------------------
@  7  -73.4345879538       9.23D-09  -1.40D-11     3   1   1   0

@ *** DIIS converged in   7 iterations !
@     Converged SCF energy, gradient:    -73.434587953781    9.23D-09
    - total time used in SIRFCK :              0.00 seconds


 *** SCF orbital energy analysis ***

 Only the five lowest virtual orbital energies printed in each symmetry.

 Number of electrons :   10
 Orbital occupations :    3    1    1    0

 Sym       Hartree-Fock orbital energies

  1    -20.42778715    -1.65908298    -0.57144538     0.99627162

  2     -0.53360989

  3     -0.93412130     1.46415730

    E(LUMO) :     0.99627162 au (symmetry 1)
  - E(HOMO) :    -0.53360989 au (symmetry 2)
  ------------------------------------------
    gap     :     1.52988151 au

 >>> Writing SIRIFC interface file <<<

 >>>> CPU and wall time for SCF :       0.017       0.044


                       .-----------------------------------.
                       | >>> Final results from SIRIUS <<< |
                       `-----------------------------------'


@    Spin multiplicity:           1
@    Spatial symmetry:            1
@    Total charge of molecule:    0

@    Final HF energy:             -73.434587953781                 
@    Nuclear repulsion:            16.794007988674
@    Electronic energy:           -90.228595942455

@    Final gradient norm:           0.000000009227

 
     Date and time (Linux)  : Fri Feb 27 06:11:17 2015
     Host name              : wn701                                   

 (Only coefficients >0.0100 are printed.)

 Molecular orbitals for symmetry species  1
 ------------------------------------------

    Orbital         1        2        3        4
   1 O   :1s     0.9931  -0.2395   0.1032   0.1464
   2 O   :1s     0.0454   0.8469  -0.4521  -2.3372
   3 O   :2pz    0.0113   0.3537   0.9032  -0.8302
   4 H   :1s    -0.0146   0.0636   0.0325   1.4608

 Molecular orbitals for symmetry species  2
 ------------------------------------------

    Orbital         1
   1 O   :2px    1.0000

 Molecular orbitals for symmetry species  3
 ------------------------------------------

    Orbital         1        2
   1 O   :2py    0.7075  -1.5190
   2 H   :1s     0.3774   1.8283



 >>>> Total CPU  time used in SIRIUS :      0.03 seconds
 >>>> Total wall time used in SIRIUS :      0.06 seconds

 
     Date and time (Linux)  : Fri Feb 27 06:11:17 2015
     Host name              : wn701                                   


                     .---------------------------------------.
                     | End of Wave Function Section (SIRIUS) |
                     `---------------------------------------'



                    .------------------------------------------.
                    | Starting in Coupled Cluster Section (CC) |
                    `------------------------------------------'

  

 *******************************************************************************
 *******************************************************************************
 *                                                                             *
 *                                                                             *
 *                    START OF COUPLED CLUSTER CALCULATION                     *
 *                                                                             *
 *                                                                             *
 *******************************************************************************
 *******************************************************************************



 CCR12 ANSATZ =   0

 CCR12 APPROX =   0

   

 *******************************************************************
 *                                                                 *
 *<<<<<<<<<<                                             >>>>>>>>>>*
 *<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM  >>>>>>>>>>*
 *<<<<<<<<<<                                             >>>>>>>>>>*
 *                                                                 *
 *******************************************************************

 
             The Direct Coupled Cluster Energy Program
             -----------------------------------------


          Number of t1 amplitudes                 :         4
          Number of t2 amplitudes                 :        22
          Total number of amplitudes in ccsd      :        26
 
 Iter.  1: Coupled cluster MP2   energy :     -73.4463732668616984
 Iter.  1: Coupled cluster CCSD  energy :     -73.4485237988900792
 Iter.  2: Coupled cluster CCSD  energy :     -73.4490946600287629
 Iter.  3: Coupled cluster CCSD  energy :     -73.4490970435479653
 Iter.  4: Coupled cluster CCSD  energy :     -73.4490966774766463
 Iter.  5: Coupled cluster CCSD  energy :     -73.4490966984833307
 Iter.  6: Coupled cluster CCSD  energy :     -73.4490967046535701

 CCSD  energy converged to within   0.10D-07 is          -73.449096704654
 Final 2-norm of the CC vector function:  1.75572243D-06





             +-------------------------------------------------------+
             ! Final results from the Coupled Cluster energy program !
             +-------------------------------------------------------+



            Total SCF   energy:                   -73.4345879538

            Total MP2   energy:                   -73.4463732669

            Total CCSD  energy:                   -73.4490967047


                     Perturbative triples corrections
                     --------------------------------

            The E4 doubles and triples:            -0.0000178781
            The E5 singles and triples:             0.0000008570

            Total energy CCSD(T):                 -73.4491137258
  

 *******************************************************************************
 *******************************************************************************
 *                                                                             *
 *                                                                             *
 *                   SUMMARY OF COUPLED CLUSTER CALCULATION                    *
 *                                                                             *
 *                                                                             *
 *******************************************************************************
 *******************************************************************************

                                                                                
                                                                                
            Total SCF   energy:                   -73.4345879538                
            Total MP2   energy:                   -73.4463732669                
            Total CCSD  energy:                   -73.4490967047                
                                                                                
                                                                                
                     Perturbative triples corrections                           
                     --------------------------------                           
                                                                                
            The E4 doubles and triples:            -0.0000178781                
            The E5 singles and triples:             0.0000008570                
                                                                                
            Total energy CCSD(T):                 -73.4491137258                
  

 *******************************************************************************
 *******************************************************************************
 *                                                                             *
 *                                                                             *
 *                      END OF COUPLED CLUSTER CALCULATION                     *
 *                                                                             *
 *                                                                             *
 *******************************************************************************
 *******************************************************************************


 >>>> CPU and wall time for CC :       0.055       0.121

 
     Date and time (Linux)  : Fri Feb 27 06:11:17 2015
     Host name              : wn701                                   


                      .-------------------------------------.
                      | End of Coupled Cluster Section (CC) |
                      `-------------------------------------'

 >>>> Total CPU  time used in DALTON:   0.12 seconds
 >>>> Total wall time used in DALTON:   0.40 seconds

 
     Date and time (Linux)  : Fri Feb 27 06:11:17 2015
     Host name              : wn701