1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
|
************************************************************************
*************** Dalton - An Electronic Structure Program ***************
************************************************************************
This is output from DALTON 2015.0
----------------------------------------------------------------------------
NOTE:
Dalton is an experimental code for the evaluation of molecular
properties using (MC)SCF, DFT, CI, and CC wave functions.
The authors accept no responsibility for the performance of
the code or for the correctness of the results.
The code (in whole or part) is provided under a licence and
is not to be reproduced for further distribution without
the written permission of the authors or their representatives.
See the home page "http://daltonprogram.org" for further information.
If results obtained with this code are published,
the appropriate citations would be both of:
K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast,
L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani,
J. Cukras, P. Dahle, E. K. Dalskov, U. Ekstroem,
T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernandez,
L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier,
C. Haettig, H. Heiberg, T. Helgaker, A. C. Hennum,
H. Hettema, E. Hjertenaes, S. Hoest, I.-M. Hoeyvik,
M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson,
P. Joergensen, M. Kaminski, J. Kauczor, S. Kirpekar,
T. Kjaergaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch,
J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue,
O. B. Lutnaes, J. I. Melo, K. V. Mikkelsen, R. H. Myhre,
C. Neiss, C. B. Nielsen, P. Norman, J. Olsen,
J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski,
T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius,
T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson,
A. Sanchez de Meras, T. Saue, S. P. A. Sauer,
B. Schimmelpfennig, K. Sneskov, A. H. Steindal,
K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale,
E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thoegersen,
O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski
and H. Agren,
"The Dalton quantum chemistry program system",
WIREs Comput. Mol. Sci. 2013. (doi: 10.1002/wcms.1172)
and
Dalton, a Molecular Electronic Structure Program,
Release DALTON2015.alpha (2015), see http://daltonprogram.org
----------------------------------------------------------------------------
Authors in alphabetical order (major contribution(s) in parenthesis):
Kestutis Aidas, Vilnius University, Lithuania (QM/MM)
Celestino Angeli, University of Ferrara, Italy (NEVPT2)
Keld L. Bak, UNI-C, Denmark (AOSOPPA, non-adiabatic coupling, magnetic properties)
Vebjoern Bakken, University of Oslo, Norway (DALTON; geometry optimizer, symmetry detection)
Radovan Bast, KTH Stockholm, Sweden (DALTON installation and execution frameworks)
Pablo Baudin, University of Valencia, Spain (Cholesky excitation energies)
Linus Boman, NTNU, Norway (Cholesky decomposition and subsystems)
Ove Christiansen, Aarhus University, Denmark (CC module)
Renzo Cimiraglia, University of Ferrara, Italy (NEVPT2)
Sonia Coriani, University of Trieste, Italy (CC module, MCD in RESPONS)
Janusz Cukras, University of Trieste, Italy (MChD in RESPONS)
Paal Dahle, University of Oslo, Norway (Parallelization)
Erik K. Dalskov, UNI-C, Denmark (SOPPA)
Thomas Enevoldsen, Univ. of Southern Denmark, Denmark (SOPPA)
Janus J. Eriksen, Aarhus University, Denmark (Polarizable embedding model, TDA)
Berta Fernandez, U. of Santiago de Compostela, Spain (doublet spin, ESR in RESPONS)
Lara Ferrighi, Aarhus University, Denmark (PCM Cubic response)
Heike Fliegl, University of Oslo, Norway (CCSD(R12))
Luca Frediani, UiT The Arctic U. of Norway, Norway (PCM)
Bin Gao, UiT The Arctic U. of Norway, Norway (Gen1Int library)
Christof Haettig, Ruhr-University Bochum, Germany (CC module)
Kasper Hald, Aarhus University, Denmark (CC module)
Asger Halkier, Aarhus University, Denmark (CC module)
Erik D. Hedegaard, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
Hanne Heiberg, University of Oslo, Norway (geometry analysis, selected one-electron integrals)
Trygve Helgaker, University of Oslo, Norway (DALTON; ABACUS, ERI, DFT modules, London, and much more)
Alf Christian Hennum, University of Oslo, Norway (Parity violation)
Hinne Hettema, University of Auckland, New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry)
Eirik Hjertenaes, NTNU, Norway (Cholesky decomposition)
Maria Francesca Iozzi, University of Oslo, Norway (RPA)
Brano Jansik Technical Univ. of Ostrava Czech Rep. (DFT cubic response)
Hans Joergen Aa. Jensen, Univ. of Southern Denmark, Denmark (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more)
Dan Jonsson, UiT The Arctic U. of Norway, Norway (cubic response in RESPONS module)
Poul Joergensen, Aarhus University, Denmark (RESPONS, ABACUS, and CC modules)
Maciej Kaminski, University of Warsaw, Poland (CPPh in RESPONS)
Joanna Kauczor, Linkoeping University, Sweden (Complex polarization propagator (CPP) module)
Sheela Kirpekar, Univ. of Southern Denmark, Denmark (Mass-velocity & Darwin integrals)
Wim Klopper, KIT Karlsruhe, Germany (R12 code in CC, SIRIUS, and ABACUS modules)
Stefan Knecht, ETH Zurich, Switzerland (Parallel CI and MCSCF)
Rika Kobayashi, Australian National Univ., Australia (DIIS in CC, London in MCSCF)
Henrik Koch, NTNU, Norway (CC module, Cholesky decomposition)
Jacob Kongsted, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
Andrea Ligabue, University of Modena, Italy (CTOCD, AOSOPPA)
Nanna H. List Univ. of Southern Denmark, Denmark (Polarizable embedding model)
Ola B. Lutnaes, University of Oslo, Norway (DFT Hessian)
Juan I. Melo, University of Buenos Aires, Argentina (LRESC, Relativistic Effects on NMR Shieldings)
Kurt V. Mikkelsen, University of Copenhagen, Denmark (MC-SCRF and QM/MM)
Rolf H. Myhre, NTNU, Norway (Cholesky, subsystems and ECC2)
Christian Neiss, Univ. Erlangen-Nuernberg, Germany (CCSD(R12))
Christian B. Nielsen, University of Copenhagen, Denmark (QM/MM)
Patrick Norman, Linkoeping University, Sweden (Cubic response and complex response in RESPONS)
Jeppe Olsen, Aarhus University, Denmark (SIRIUS CI/density modules)
Jogvan Magnus H. Olsen, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
Anders Osted, Copenhagen University, Denmark (QM/MM)
Martin J. Packer, University of Sheffield, UK (SOPPA)
Filip Pawlowski, Kazimierz Wielki University, Poland (CC3)
Morten N. Pedersen, Univ. of Southern Denmark, Denmark (Polarizable embedding model)
Thomas B. Pedersen, University of Oslo, Norway (Cholesky decomposition)
Patricio F. Provasi, University of Northeastern, Argentina (Analysis of coupling constants in localized orbitals)
Zilvinas Rinkevicius, KTH Stockholm, Sweden (open-shell DFT, ESR)
Elias Rudberg, KTH Stockholm, Sweden (DFT grid and basis info)
Torgeir A. Ruden, University of Oslo, Norway (Numerical derivatives in ABACUS)
Kenneth Ruud, UiT The Arctic U. of Norway, Norway (DALTON; ABACUS magnetic properties and much more)
Pawel Salek, KTH Stockholm, Sweden (DALTON; DFT code)
Claire C. M. Samson University of Karlsruhe Germany (Boys localization, r12 integrals in ERI)
Alfredo Sanchez de Meras, University of Valencia, Spain (CC module, Cholesky decomposition)
Trond Saue, Paul Sabatier University, France (direct Fock matrix construction)
Stephan P. A. Sauer, University of Copenhagen, Denmark (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors)
Bernd Schimmelpfennig, Forschungszentrum Karlsruhe, Germany (AMFI module)
Kristian Sneskov, Aarhus University, Denmark (Polarizable embedding model, QM/MM)
Arnfinn H. Steindal, UiT The Arctic U. of Norway, Norway (parallel QM/MM, Polarizable embedding model)
Casper Steinmann, Univ. of Southern Denmark, Denmark (QFIT, Polarizable embedding model)
K. O. Sylvester-Hvid, University of Copenhagen, Denmark (MC-SCRF)
Peter R. Taylor, VLSCI/Univ. of Melbourne, Australia (Symmetry handling ABACUS, integral transformation)
Andrew M. Teale, University of Nottingham, England (DFT-AC, DFT-D)
David P. Tew, University of Bristol, England (CCSD(R12))
Olav Vahtras, KTH Stockholm, Sweden (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT)
David J. Wilson, La Trobe University, Australia (DFT Hessian and DFT magnetizabilities)
Hans Agren, KTH Stockholm, Sweden (SIRIUS module, RESPONS, MC-SCRF solvation model)
--------------------------------------------------------------------------------
Date and time (Linux) : Mon Mar 2 08:08:03 2015
Host name : sparta
* Work memory size : 64000000 = 488.28 megabytes.
* Directories for basis set searches:
1) /home/cstein/Development/python/cclib/data/DALTON/basicDALTON-2015
2) /home/cstein/Development/fortran/dalton/build_master_gfortran_noblas_nolapack/basis
Compilation information
-----------------------
Who compiled | cstein
Host | sparta
System | Linux-3.13.0-27-generic
CMake generator | Unix Makefiles
Processor | x86_64
64-bit integers | OFF
MPI | OFF
Fortran compiler | /usr/bin/gfortran
Fortran compiler version | GNU Fortran (Ubuntu 4.8.2-19ubuntu1) 4.8.2
C compiler | /usr/bin/gcc
C compiler version | gcc (Ubuntu 4.8.2-19ubuntu1) 4.8.2
C++ compiler | /usr/bin/g++
C++ compiler version | g++ (Ubuntu 4.8.2-19ubuntu1) 4.8.2
Static linking | OFF
Last Git revision | 180cf85e83d00918fd66d77273b5a76226f083a0
Git branch | master
Configuration time | 2015-02-03 12:33:48.879456
Content of the .dal input file
----------------------------------
BASIS
STO-3G
Water
AtomTypes=2
Charge=8.0 Atoms=1
O 0.0 0.0 0.0
Charge=1.0 Atoms=2
H 0.99 0.0 0.0
H -0.272881 0.951649 0.0
**DALTON INPUT
.RUN WAVE FUNCTIONS
**WAVE FUNCTIONS
.HF
.MP2
**END OF DALTON INPUT
*******************************************************************
*********** Output from DALTON general input processing ***********
*******************************************************************
--------------------------------------------------------------------------------
Overall default print level: 0
Print level for DALTON.STAT: 1
HERMIT 1- and 2-electron integral sections will be executed
"Old" integral transformation used (limited to max 255 basis functions)
Wave function sections will be executed (SIRIUS module)
--------------------------------------------------------------------------------
****************************************************************************
*************** Output of molecule and basis set information ***************
****************************************************************************
The two title cards from your ".mol" input:
------------------------------------------------------------------------
1: Water
2:
------------------------------------------------------------------------
Atomic type no. 1
--------------------
Nuclear charge: 8.00000
Number of symmetry independent centers: 1
Number of basis sets to read; 2
Basis set file used for this atomic type with Z = 8 :
"/home/cstein/Development/fortran/dalton/build_master_gfortran_noblas_nolapack/basis/STO-3G"
Atomic type no. 2
--------------------
Nuclear charge: 1.00000
Number of symmetry independent centers: 2
Number of basis sets to read; 2
Basis set file used for this atomic type with Z = 1 :
"/home/cstein/Development/fortran/dalton/build_master_gfortran_noblas_nolapack/basis/STO-3G"
SYMADD: Requested addition of symmetry
--------------------------------------
Symmetry test threshold: 5.00E-06
@ The molecule is centered at center of mass and rotated
@ so principal axes of inertia are along coordinate axes.
Symmetry class found: C(2v)
Symmetry Independent Centres
----------------------------
8 : 0.00000000 0.00000000 -0.06667852 Isotope 1
1 : 0.00000000 0.79064922 0.52911825 Isotope 1
The following elements were found: X Y
SYMGRP: Point group information
-------------------------------
@ Full point group is: C(2v)
@ Represented as: C2v
@ * The irrep name for each symmetry: 1: A1 2: B1 3: B2 4: A2
* The point group was generated by:
Reflection in the yz-plane
Reflection in the xz-plane
* Group multiplication table
| E C2z Oxz Oyz
-----+--------------------
E | E C2z Oxz Oyz
C2z | C2z E Oyz Oxz
Oxz | Oxz Oyz E C2z
Oyz | Oyz Oxz C2z E
* Character table
| E C2z Oxz Oyz
-----+--------------------
A1 | 1 1 1 1
B1 | 1 -1 1 -1
B2 | 1 -1 -1 1
A2 | 1 1 -1 -1
* Direct product table
| A1 B1 B2 A2
-----+--------------------
A1 | A1 B1 B2 A2
B1 | B1 A1 A2 B2
B2 | B2 A2 A1 B1
A2 | A2 B2 B1 A1
Isotopic Masses
---------------
O 15.994915
H _1 1.007825
H _2 1.007825
Total mass: 18.010565 amu
Natural abundance: 99.730 %
Center-of-mass coordinates (a.u.): 0.000000 0.000000 -0.000000
Atoms and basis sets
--------------------
Number of atom types : 2
Total number of atoms: 3
Basis set used is "STO-3G" from the basis set library.
label atoms charge prim cont basis
----------------------------------------------------------------------
O 1 8.0000 15 5 [6s3p|2s1p]
H 2 1.0000 3 1 [3s|1s]
----------------------------------------------------------------------
total: 3 10.0000 21 7
----------------------------------------------------------------------
Threshold for neglecting AO integrals: 1.00D-12
Cartesian Coordinates (a.u.)
----------------------------
Total number of coordinates: 9
O : 1 x 0.0000000000 2 y 0.0000000000 3 z -0.0666785241
H / 1 : 4 x 0.0000000000 5 y 0.7906492179 6 z 0.5291182519
H / 2 : 7 x 0.0000000000 8 y -0.7906492179 9 z 0.5291182519
Symmetry Coordinates
--------------------
Number of coordinates in each symmetry: 3 2 3 1
Symmetry A1 ( 1)
1 O z 3
2 H y [ 5 - 8 ]/2
3 H z [ 6 + 9 ]/2
Symmetry B1 ( 2)
4 O x 1
5 H x [ 4 + 7 ]/2
Symmetry B2 ( 3)
6 O y 2
7 H y [ 5 + 8 ]/2
8 H z [ 6 - 9 ]/2
Symmetry A2 ( 4)
9 H x [ 4 - 7 ]/2
Interatomic separations (in Angstrom):
--------------------------------------
O H _1 H _2
------ ------ ------
O : 0.000000
H _1: 0.523885 0.000000
H _2: 0.523885 0.836787 0.000000
Max interatomic separation is 0.8368 Angstrom ( 1.5813 Bohr)
between atoms 3 and 2, "H _2" and "H _1".
Min HX interatomic separation is 0.5239 Angstrom ( 0.9900 Bohr)
@ WARNING: Number of short HX and YX bond lengths: 2 0
@ WARNING: If not intentional, maybe your coordinates were in Angstrom,
@ WARNING: but "Angstrom" was not specified in .mol file
Bond distances (Angstrom):
--------------------------
atom 1 atom 2 distance
------ ------ --------
bond distance: H _1 O 0.523885
bond distance: H _2 O 0.523885
bond distance: H _2 H _1 0.836787
Bond angles (degrees):
----------------------
atom 1 atom 2 atom 3 angle
------ ------ ------ -----
bond angle: H _1 O H _2 106.000
bond angle: O H _1 H _2 37.000
bond angle: O H _2 H _1 37.000
Principal moments of inertia (u*A**2) and principal axes
--------------------------------------------------------
IA 0.177938 0.000000 1.000000 0.000000
IB 0.352846 0.000000 0.000000 1.000000
IC 0.530784 1.000000 0.000000 0.000000
Rotational constants
--------------------
@ The molecule is planar.
A B C
2840199.9224 1432293.8163 952137.3312 MHz
94.738872 47.776179 31.759883 cm-1
@ Nuclear repulsion energy : 16.794007988674 Hartree
Symmetry Orbitals
-----------------
Number of orbitals in each symmetry: 4 1 2 0
Symmetry A1 ( 1)
1 O 1s 1
2 O 1s 2
3 O 2pz 5
4 H 1s 6 + 7
Symmetry B1 ( 2)
5 O 2px 3
Symmetry B2 ( 3)
6 O 2py 4
7 H 1s 6 - 7
No orbitals in symmetry A2 ( 4)
Symmetries of electric field: B1 (2) B2 (3) A1 (1)
Symmetries of magnetic field: B2 (3) B1 (2) A2 (4)
.---------------------------------------.
| Starting in Integral Section (HERMIT) |
`---------------------------------------'
***************************************************************************************
****************** Output from **INTEGRALS input processing (HERMIT) ******************
***************************************************************************************
- Using defaults, no **INTEGRALS input found
Default print level: 1
* Nuclear model: Point charge
Calculation of one- and two-electron Hamiltonian integrals.
Center of mass (bohr): 0.000000000000 0.000000000000 -0.000000006719
Operator center (bohr): 0.000000000000 0.000000000000 0.000000000000
Gauge origin (bohr): 0.000000000000 0.000000000000 -0.000000006719
Dipole origin (bohr): 0.000000000000 0.000000000000 -0.000000006719
************************************************************************
************************** Output from HERINT **************************
************************************************************************
Threshold for neglecting two-electron integrals: 1.00D-12
HERMIT - Number of two-electron integrals written: 138 ( 34.0% )
HERMIT - Megabytes written: 0.007
>>>> Total CPU time used in HERMIT: 0.00 seconds
>>>> Total wall time used in HERMIT: 0.00 seconds
.----------------------------------.
| End of Integral Section (HERMIT) |
`----------------------------------'
.--------------------------------------------.
| Starting in Wave Function Section (SIRIUS) |
`--------------------------------------------'
*** Output from Huckel module :
Using EWMO model: F
Using EHT model: T
Number of Huckel orbitals each symmetry: 4 1 2 0
Huckel EHT eigenvalues for symmetry : 1
-20.815540 -1.721112 -0.642474 -0.119190
Huckel EHT eigenvalues for symmetry : 2
-0.616200
Huckel EHT eigenvalues for symmetry : 3
-0.704737 -0.160647
**********************************************************************
*SIRIUS* a direct, restricted step, second order MCSCF program *
**********************************************************************
Date and time (Linux) : Mon Mar 2 08:08:03 2015
Host name : sparta
Title lines from ".mol" input file:
Water
Print level on unit LUPRI = 2 is 0
Print level on unit LUW4 = 2 is 5
@ MP2, closed-shell Moeller-Plesset second-order calculation.
@ This is a combination run starting with
@ a restricted, closed shell Hartree-Fock calculation
Initial molecular orbitals are obtained according to
".MOSTART EHT " input option
Wave function specification
============================
@ Wave function type >>> MP2 <<<
@ Number of closed shell electrons 10
@ Number of electrons in active shells 0
@ Total charge of the molecule 0
@ Spin multiplicity and 2 M_S 1 0
@ Total number of symmetries 4 (point group: C2v)
@ Reference state symmetry 1 (irrep name : A1 )
Orbital specifications
======================
@ Abelian symmetry species All | 1 2 3 4
@ | A1 B1 B2 A2
--- | --- --- --- ---
@ Total number of orbitals 7 | 4 1 2 0
@ Number of basis functions 7 | 4 1 2 0
** Automatic occupation of RHF orbitals **
-- Initial occupation of symmetries is determined from extended Huckel guess.
-- Initial occupation of symmetries is :
@ Occupied SCF orbitals 5 | 3 1 1 0
Maximum number of Fock iterations 0
Maximum number of DIIS iterations 60
Maximum number of QC-SCF iterations 60
Threshold for SCF convergence 1.00D-06
***********************************************
***** DIIS acceleration of SCF iterations *****
***********************************************
C1-DIIS algorithm; max error vectors = 4
Automatic occupation of symmetries with 10 electrons.
Iter Total energy Error norm Delta(E) SCF occupation
-----------------------------------------------------------------------------
(Precalculated two-electron integrals are transformed to P-supermatrix elements.
Threshold for discarding integrals : 1.00D-12 )
@ 1 -73.2273758179 2.90D+00 -7.32D+01 3 1 1 0
Virial theorem: -V/T = 1.963073
@ MULPOP O -0.21; H _1 0.10; H _2 0.10;
-----------------------------------------------------------------------------
@ 2 -73.4315094656 2.41D-01 -2.04D-01 3 1 1 0
Virial theorem: -V/T = 1.956319
@ MULPOP O -1.12; H _1 0.56; H _2 0.56;
-----------------------------------------------------------------------------
@ 3 -73.4345392129 2.85D-02 -3.03D-03 3 1 1 0
Virial theorem: -V/T = 1.955088
@ MULPOP O -1.19; H _1 0.59; H _2 0.59;
-----------------------------------------------------------------------------
@ 4 -73.4345878926 7.75D-04 -4.87D-05 3 1 1 0
Virial theorem: -V/T = 1.954969
@ MULPOP O -1.19; H _1 0.60; H _2 0.60;
-----------------------------------------------------------------------------
@ 5 -73.4345879508 1.61D-04 -5.82D-08 3 1 1 0
Virial theorem: -V/T = 1.954972
@ MULPOP O -1.19; H _1 0.60; H _2 0.60;
-----------------------------------------------------------------------------
@ 6 -73.4345879538 1.18D-05 -2.93D-09 3 1 1 0
Virial theorem: -V/T = 1.954972
@ MULPOP O -1.19; H _1 0.60; H _2 0.60;
-----------------------------------------------------------------------------
@ 7 -73.4345879538 2.40D-07 -1.50D-11 3 1 1 0
@ *** DIIS converged in 7 iterations !
@ Converged SCF energy, gradient: -73.434587953781 2.40D-07
- total time used in SIRFCK : 0.00 seconds
>>> Writing SIRIFC interface file
>>>> CPU and wall time for SCF : 0.003 0.003
>>>>> Output from SIRIUS MP2 module <<<<<
Reference: H.J.Aa.Jensen, P.Jorgensen, H.Agren, and J.Olsen,
J. Chem. Phys. 88, 3834 (1988); 89, 5354 (1988)
Checking that the closed shell orbitals are canonical Hartree-Fock orbitals
Number of electrons : 10
Closed shell orbitals: 3 1 1 0
Generating Fock matrix
Hartree-Fock electronic energy: -90.228595942455
Hartree-Fock total energy: -73.434587953781
Hartree-Fock orbital energies, symmetry 1 ( A1 ), 3 occupied SCF orbitals
-20.42778711 -1.65908297 -0.57144537 0.99627163
Hartree-Fock orbital energies, symmetry 2 ( B1 ), 1 occupied SCF orbitals
-0.53360987
Hartree-Fock orbital energies, symmetry 3 ( B2 ), 1 occupied SCF orbitals
-0.93412128 1.46415731
E(LUMO) : 0.99627163 (in symmetry 1)
- E(HOMO) : -0.53360987 (in symmetry 2)
--------------------------
gap : 1.52988150
Integral transformation: Total CPU and WALL times (sec) 0.001 0.002
MP2 move 0.005074 electrons to unoccupied HF orbitals
@ Hartree-Fock total energy : -73.4345879538
@ + MP2 contribution : -0.0117853127
@ = MP2 second order energy : -73.4463732665
Natural orbital occupation numbers, symmetry 1 (irrep A1 )
Sum = 6.00007720; RHF = 6.00000000; Difference = 0.00007720
1.99999501 1.99938634 1.99849846 0.00219739
Natural orbital occupation numbers, symmetry 2 (irrep B1 )
Sum = 1.99945252; RHF = 2.00000000; Difference = -0.00054748
1.99945252
Natural orbital occupation numbers, symmetry 3 (irrep B2 )
Sum = 2.00047029; RHF = 2.00000000; Difference = 0.00047029
1.99760004 0.00287024
Time used for MP2 natural orbitals : 0.002 CPU seconds, 0.002 wall seconds.
>>>> CPU and wall time for MP2 : 0.002 0.004
.-----------------------------------.
| >>> Final results from SIRIUS <<< |
`-----------------------------------'
@ Spin multiplicity: 1
@ Spatial symmetry: 1 ( irrep A1 in C2v )
@ Total charge of molecule: 0
@ Final HF energy: -73.434587953781
@ Nuclear repulsion: 16.794007988674
@ Electronic energy: -90.228595942455
@ Final gradient norm: 0.000000240039
Date and time (Linux) : Mon Mar 2 08:08:03 2015
Host name : sparta
File label for MO orbitals: 2Mar15 MP2SAVE
(Only coefficients >0.0100 are printed.)
Molecular orbitals for symmetry species 1 (A1 )
------------------------------------------------
Orbital 1 2 3 4
1 O :1s 0.9968 0.1443 -0.1998 0.1467
2 O :1s 0.0265 -0.7233 0.6287 -2.3382
3 O :2pz 0.0463 0.7188 0.6488 -0.8310
4 H :1s -0.0135 0.0082 0.0731 1.4607
Molecular orbitals for symmetry species 2 (B1 )
------------------------------------------------
Orbital 1
1 O :2px 1.0000
Molecular orbitals for symmetry species 3 (B2 )
------------------------------------------------
Orbital 1 2
1 O :2py 0.7058 -1.5198
2 H :1s 0.3794 1.8278
>>>> Total CPU time used in SIRIUS : 0.01 seconds
>>>> Total wall time used in SIRIUS : 0.01 seconds
Date and time (Linux) : Mon Mar 2 08:08:03 2015
Host name : sparta
NOTE: 1 warnings have been issued.
Check output, result, and error files for "WARNING".
.---------------------------------------.
| End of Wave Function Section (SIRIUS) |
`---------------------------------------'
>>>> Total CPU time used in DALTON: 0.02 seconds
>>>> Total wall time used in DALTON: 0.02 seconds
Date and time (Linux) : Mon Mar 2 08:08:03 2015
Host name : sparta
|