File: water_cis_saps.out

package info (click to toggle)
cclib-data 1.6.2-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 87,912 kB
  • sloc: python: 16,440; sh: 131; makefile: 79; cpp: 31
file content (937 lines) | stat: -rw-r--r-- 42,018 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
----- GAMESS execution script 'rungms' -----
This job is running on host firzens
under operating system Linux at Mon Aug 14 12:30:37 IST 2017
Available scratch disk space (Kbyte units) at beginning of the job is
Filesystem     1K-blocks      Used Available Use% Mounted on
/dev/sda11     254243428 112975212 128330336  47% /
GAMESS temporary binary files will be written to /scr/sagar
GAMESS supplementary output files will be written to /home/sagar/gamess/scratch
Copying input file water_cis_saps.inp to your run's scratch directory...
 
Assuming a single but multicore node.
 

 Distributed Data Interface kickoff program.
 Initiating 4 compute processes on 1 nodes to run the following command:
 /home/sagar/gamess/gamess.02.x water_cis_saps 

          ******************************************************
          *         GAMESS VERSION = 20 APR 2017 (R1)          *
          *             FROM IOWA STATE UNIVERSITY             *
          * M.W.SCHMIDT, K.K.BALDRIDGE, J.A.BOATZ, S.T.ELBERT, *
          *   M.S.GORDON, J.H.JENSEN, S.KOSEKI, N.MATSUNAGA,   *
          *          K.A.NGUYEN, S.J.SU, T.L.WINDUS,           *
          *       TOGETHER WITH M.DUPUIS, J.A.MONTGOMERY       *
          *         J.COMPUT.CHEM.  14, 1347-1363(1993)        *
          **************** 64 BIT LINUX VERSION ****************

  SINCE 1993, STUDENTS AND POSTDOCS WORKING AT IOWA STATE UNIVERSITY
  AND ALSO IN THEIR VARIOUS JOBS AFTER LEAVING ISU HAVE MADE IMPORTANT
  CONTRIBUTIONS TO THE CODE:
     IVANA ADAMOVIC, CHRISTINE AIKENS, YURI ALEXEEV, POOJA ARORA,
     ANDREY ASADCHEV, ROB BELL, PRADIPTA BANDYOPADHYAY, JONATHAN BENTZ,
     BRETT BODE, KURT BRORSEN, CALEB CARLIN, GALINA CHABAN, WEI CHEN,
     CHEOL HO CHOI, PAUL DAY, ALBERT DEFUSCO, NUWAN DESILVA, TIM DUDLEY,
     DMITRI FEDOROV, GRAHAM FLETCHER, MARK FREITAG, KURT GLAESEMANN,
     DAN KEMP, GRANT MERRILL, NORIYUKI MINEZAWA, JONATHAN MULLIN,
     TAKESHI NAGATA, SEAN NEDD, HEATHER NETZLOFF, BOSILJKA NJEGIC, RYAN OLSON,
     MIKE PAK, SPENCER PRUITT, LUKE ROSKOP, JIM SHOEMAKER, LYUDMILA SLIPCHENKO,
     TONY SMITH, SAROM SOK LEANG, JIE SONG, TETSUYA TAKETSUGU, SIMON WEBB,
     PENG XU, SOOHAENG YOO, FEDERICO ZAHARIEV

  ADDITIONAL CODE HAS BEEN PROVIDED BY COLLABORATORS IN OTHER GROUPS:
     IOWA STATE UNIVERSITY:
          JOE IVANIC, AARON WEST, LAIMUTIS BYTAUTAS, KLAUS RUEDENBERG
     UNIVERSITY OF TOKYO: KIMIHIKO HIRAO, TAKAHITO NAKAJIMA,
          TAKAO TSUNEDA, MUNEAKI KAMIYA, SUSUMU YANAGISAWA,
          KIYOSHI YAGI, MAHITO CHIBA, SEIKEN TOKURA, NAOAKI KAWAKAMI
     UNIVERSITY OF AARHUS: FRANK JENSEN
     UNIVERSITY OF IOWA: VISVALDAS KAIRYS, HUI LI
     NATIONAL INST. OF STANDARDS AND TECHNOLOGY: WALT STEVENS, DAVID GARMER
     UNIVERSITY OF PISA: BENEDETTA MENNUCCI, JACOPO TOMASI
     UNIVERSITY OF MEMPHIS: HENRY KURTZ, PRAKASHAN KORAMBATH
     UNIVERSITY OF ALBERTA: TOBY ZENG, MARIUSZ KLOBUKOWSKI
     UNIVERSITY OF NEW ENGLAND: MARK SPACKMAN
     MIE UNIVERSITY: HIROAKI UMEDA
     NAT. INST. OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY: KAZUO KITAURA
     MICHIGAN STATE UNIVERSITY:
          KAROL KOWALSKI, MARTA WLOCH, JEFFREY GOUR, JESSE LUTZ,
          WEI LI, PIOTR PIECUCH
     UNIVERSITY OF SILESIA: MONIKA MUSIAL, STANISLAW KUCHARSKI
     FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX:
          OLIVIER QUINET, BENOIT CHAMPAGNE
     UNIVERSITY OF CALIFORNIA - SANTA BARBARA: BERNARD KIRTMAN
     INSTITUTE FOR MOLECULAR SCIENCE:
          KAZUYA ISHIMURA, MICHIO KATOUDA, AND SHIGERU NAGASE
     UNIVERSITY OF NOTRE DAME: ANNA POMOGAEVA, DAN CHIPMAN
     KYUSHU UNIVERSITY:
          HARUYUKI NAKANO,
          FENG LONG GU, JACEK KORCHOWIEC, MARCIN MAKOWSKI, AND YURIKO AOKI,
          HIROTOSHI MORI AND EISAKU MIYOSHI
     PENNSYLVANIA STATE UNIVERSITY:
          TZVETELIN IORDANOV, CHET SWALINA, JONATHAN SKONE,
          SHARON HAMMES-SCHIFFER
     WASEDA UNIVERSITY:
          MASATO KOBAYASHI, TOMOKO AKAMA, TSUGUKI TOUMA,
          TAKESHI YOSHIKAWA, YASUHIRO IKABATA, JUNJI SEINO,
          YUYA NAKAJIMA, HIROMI NAKAI
     NANJING UNIVERSITY: SHUHUA LI
     UNIVERSITY OF NEBRASKA:
          PEIFENG SU, DEJUN SI, NANDUN THELLAMUREGE, YALI WANG, HUI LI
     UNIVERSITY OF ZURICH: ROBERTO PEVERATI, KIM BALDRIDGE
     N. COPERNICUS UNIVERSITY AND JACKSON STATE UNIVERSITY:
          MARIA BARYSZ
     UNIVERSITY OF COPENHAGEN: Jimmy Kromann, CASPER STEINMANN
     TOKYO INSTITUTE OF TECHNOLOGY: HIROYA NAKATA
     NAGOYA UNIVERSITY: YOSHIO NISHIMOTO, STEPHAN IRLE
     MOSCOW STATE UNIVERSITY: VLADIMIR MIRONOV


 PARALLEL VERSION RUNNING ON        4 PROCESSORS IN        1 NODES.

 EXECUTION OF GAMESS BEGUN Mon Aug 14 12:30:37 2017

            ECHO OF THE FIRST FEW INPUT CARDS -
 INPUT CARD> $contrl scftyp=rhf cityp=cis runtyp=energy exetyp=run                          
 INPUT CARD>         units=angs coord=cart AIMPAC=.t. $end                                  
 INPUT CARD> $basis  gbasis=sto ngauss=3 $end                                               
 INPUT CARD> $cis    hamtyp=saps nstate=5 $end                                              
 INPUT CARD> $data                                                                          
 INPUT CARD>water                                                                           
 INPUT CARD>C1                                                                              
 INPUT CARD> O  8   0.000000    0.000000    0.000000                                        
 INPUT CARD> H  1   0.990000    0.000000    0.000000                                        
 INPUT CARD> H  1  -0.272881    0.951649    0.000000                                        
 INPUT CARD> $end                                                                           
 INPUT CARD>                                                                                
    1000000 WORDS OF MEMORY AVAILABLE


                    * * * WARNING * * *
 OLD KEYWORD COORD=CART SELECTED, AUTOMATICALLY CHANGED TO COORD=PRINAXIS.
 YOUR MOLECULE'S COORDINATES WILL BE CHANGED TO PRINCIPAL AXES BY
   A) TRANSLATION TO THE CENTER OF MASS, THEN
   B) ROTATION TO HAVE A DIAGONAL MOMENT OF INERTIA TENSOR.

 HOWEVER, NOTHING ELSE IN YOUR INPUT WILL BE ROTATED IN THE SAME WAY,
 SO IF YOU HAVE A $VEC, $VIB, $GRAD, $HESS, EFP PARTICLE COORDINATES,
 OR ANYTHING ELSE THAT DEPENDS ON THE INITIAL ORIENTATION, THAT DATA
 WILL NOT BE USED CORRECTLY IN THIS RUN.

 THE PURPOSE OF COORD=PRINAXIS IS TO BE USED ONCE, ONLY AT THE VERY
 BEGINNING OF A SERIES OF COMPUTATIONS, PERHAPS TO FIND THE SYMMETRY
 UNIQUE ATOMS FROM AN ARBITRARY INITIAL ORIENTATION.

 AFTER THE FIRST RUN, YOU SHOULD USE ONLY COORD=UNIQUE, TO ENSURE THAT
 THE COORDINATES WHICH YOU READ IN ARE THE COORDINATES THAT ARE USED.


     BASIS OPTIONS
     -------------
     GBASIS=STO          IGAUSS=       3      POLAR=NONE    
     NDFUNC=       0     NFFUNC=       0     DIFFSP=       F
     NPFUNC=       0      DIFFS=       F     BASNAM=        


     RUN TITLE
     ---------
 water                                                                           

 THE POINT GROUP OF THE MOLECULE IS C1      
 THE ORDER OF THE PRINCIPAL AXIS IS     0

 THE MOMENTS OF INERTIA ARE (AMU-ANGSTROM**2)
 IXX=     0.635   IYY=     1.260   IZZ=     1.895

 ATOM      ATOMIC                      COORDINATES (BOHR)
           CHARGE         X                   Y                   Z
 O           8.0     0.0000000190        0.1260041748        0.0000000000
 H           1.0    -1.4941103743       -0.9998884762        0.0000000000
 H           1.0     1.4941100732       -0.9998887031        0.0000000000

          INTERNUCLEAR DISTANCES (ANGS.)
          ------------------------------

                1 O          2 H          3 H     

   1 O       0.0000000    0.9900000 *  0.9899999 *
   2 H       0.9900000 *  0.0000000    1.5812983 *
   3 H       0.9899999 *  1.5812983 *  0.0000000  

  * ... LESS THAN  3.000


     ATOMIC BASIS SET
     ----------------
 THE CONTRACTED PRIMITIVE FUNCTIONS HAVE BEEN UNNORMALIZED
 THE CONTRACTED BASIS FUNCTIONS ARE NOW NORMALIZED TO UNITY

  SHELL TYPE  PRIMITIVE        EXPONENT          CONTRACTION COEFFICIENT(S)

 O         

      1   S       1           130.7093214    0.154328967295
      1   S       2            23.8088661    0.535328142282
      1   S       3             6.4436083    0.444634542185

      2   L       4             5.0331513   -0.099967229187    0.155916274999
      2   L       5             1.1695961    0.399512826089    0.607683718598
      2   L       6             0.3803890    0.700115468880    0.391957393099

 H         

      3   S       7             3.4252509    0.154328967295
      3   S       8             0.6239137    0.535328142282
      3   S       9             0.1688554    0.444634542185

 H         

      4   S      10             3.4252509    0.154328967295
      4   S      11             0.6239137    0.535328142282
      4   S      12             0.1688554    0.444634542185

 TOTAL NUMBER OF BASIS SET SHELLS             =    4
 NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS =    7
 NUMBER OF ELECTRONS                          =   10
 CHARGE OF MOLECULE                           =    0
 SPIN MULTIPLICITY                            =    1
 NUMBER OF OCCUPIED ORBITALS (ALPHA)          =    5
 NUMBER OF OCCUPIED ORBITALS (BETA )          =    5
 TOTAL NUMBER OF ATOMS                        =    3
 THE NUCLEAR REPULSION ENERGY IS        8.8870072224

     $CONTRL OPTIONS
     ---------------
 SCFTYP=RHF          RUNTYP=ENERGY       EXETYP=RUN     
 MPLEVL=       0     CITYP =CIS          CCTYP =NONE         VBTYP =NONE    
 DFTTYP=NONE         TDDFT =NONE    
 MULT  =       1     ICHARG=       0     NZVAR =       0     COORD =PRINAXIS
 PP    =NONE         RELWFN=NONE         LOCAL =NONE         NUMGRD=       F
 ISPHER=      -1     NOSYM =       0     MAXIT =      30     UNITS =ANGS    
 PLTORB=       F     MOLPLT=       F     AIMPAC=       T     FRIEND=        
 NPRINT=       7     IREST =       0     GEOM  =INPUT   
 NORMF =       0     NORMP =       0     ITOL  =      20     ICUT  =       9
 INTTYP=BEST         GRDTYP=BEST         QMTTOL= 1.0E-06

     $SYSTEM OPTIONS
     ---------------
  REPLICATED MEMORY=     1000000 WORDS (ON EVERY NODE).
 DISTRIBUTED MEMDDI=           0 MILLION WORDS IN AGGREGATE,
 MEMDDI DISTRIBUTED OVER   4 PROCESSORS IS           0 WORDS/PROCESSOR.
 TOTAL MEMORY REQUESTED ON EACH PROCESSOR=     1000000 WORDS.
 TIMLIM=      525600.00 MINUTES, OR     365.0 DAYS.
 PARALL= T  BALTYP=  DLB     KDIAG=    0  COREFL= F
 MXSEQ2=     300 MXSEQ3=     150  mem10=         0

          ----------------
          PROPERTIES INPUT
          ----------------

     MOMENTS            FIELD           POTENTIAL          DENSITY
 IEMOM =       1   IEFLD =       0   IEPOT =       0   IEDEN =       0
 WHERE =COMASS     WHERE =NUCLEI     WHERE =NUCLEI     WHERE =NUCLEI  
 OUTPUT=BOTH       OUTPUT=BOTH       OUTPUT=BOTH       OUTPUT=BOTH    
 IEMINT=       0   IEFINT=       0                     IEDINT=       0
                                                       MORB  =       0
          EXTRAPOLATION IN EFFECT
 ORBITAL PRINTING OPTION: NPREO=     1     7     2     1

     -------------------------------
     INTEGRAL TRANSFORMATION OPTIONS
     -------------------------------
     NWORD  =            0
     CUTOFF = 1.0E-09     MPTRAN =       0
     DIRTRF =       F     AOINTS =DUP     

          ----------------------
          INTEGRAL INPUT OPTIONS
          ----------------------
 NOPK  =       1 NORDER=       0 SCHWRZ=       F

     ------------------------------
     CI-SINGLES CONTROL INFORMATION
     ------------------------------
     NACORE =        1  NBCORE   =        1
     NSTATE =        5  IROOT    =        1
     HAMTYP = SAPS      SAP MULT =        1
     DIAGZN = DAVID     MXVEC    =       40
     NDAVIT =       50  DAVCVG   = 1.00E-05
     CISPRP =        F  NGSVEC   =       10
     MNMEDG =        F  MNMEOP   =        F
     CHFSLV = CONJG     RDCISV   =        F
     DGAPRX =        T

     NUMBER OF CORE -A-  ORBITALS =     1
     NUMBER OF CORE -B-  ORBITALS =     1
     NUMBER OF OCC. -A-  ORBITALS =     5
     NUMBER OF OCC. -B-  ORBITALS =     5
     NUMBER OF MOLECULAR ORBITALS =     7
     NUMBER OF   BASIS  FUNCTIONS =     7


     ------------------------------------------
     THE POINT GROUP IS C1 , NAXIS= 0, ORDER= 1
     ------------------------------------------

     DIMENSIONS OF THE SYMMETRY SUBSPACES ARE
 A   =    7

 ..... DONE SETTING UP THE RUN .....
 CPU     0: STEP CPU TIME=     0.01 TOTAL CPU TIME=        0.0 (    0.0 MIN)
 TOTAL WALL CLOCK TIME=        0.0 SECONDS, CPU UTILIZATION IS  50.00%

          ********************
          1 ELECTRON INTEGRALS
          ********************
 ...... END OF ONE-ELECTRON INTEGRALS ......
 CPU     0: STEP CPU TIME=     0.00 TOTAL CPU TIME=        0.0 (    0.0 MIN)
 TOTAL WALL CLOCK TIME=        0.0 SECONDS, CPU UTILIZATION IS  50.00%

          -------------
          GUESS OPTIONS
          -------------
          GUESS =HUCKEL            NORB  =       0          NORDER=       0
          MIX   =       F          PRTMO =       F          PUNMO =       F
          TOLZ  = 1.0E-08          TOLE  = 1.0E-05
          SYMDEN=       F          PURIFY=       F

 INITIAL GUESS ORBITALS GENERATED BY HUCKEL   ROUTINE.
 HUCKEL GUESS REQUIRES      2620 WORDS.

 SYMMETRIES FOR INITIAL GUESS ORBITALS FOLLOW.   BOTH SET(S).
     5 ORBITALS ARE OCCUPIED (    1 CORE ORBITALS).
     2=A        3=A        4=A        5=A        6=A        7=A   
 ...... END OF INITIAL ORBITAL SELECTION ......
 CPU     0: STEP CPU TIME=     0.00 TOTAL CPU TIME=        0.0 (    0.0 MIN)
 TOTAL WALL CLOCK TIME=        0.0 SECONDS, CPU UTILIZATION IS  50.00%

                    ----------------------
                    AO INTEGRAL TECHNOLOGY
                    ----------------------
     S,P,L SHELL ROTATED AXIS INTEGRALS, REPROGRAMMED BY
        KAZUYA ISHIMURA (IMS) AND JOSE SIERRA (SYNSTAR).
     S,P,D,L SHELL ROTATED AXIS INTEGRALS PROGRAMMED BY
        KAZUYA ISHIMURA (INSTITUTE FOR MOLECULAR SCIENCE).
     S,P,D,F,G SHELL TO TOTAL QUARTET ANGULAR MOMENTUM SUM 5,
        ERIC PROGRAM BY GRAHAM FLETCHER (ELORET AND NASA ADVANCED
        SUPERCOMPUTING DIVISION, AMES RESEARCH CENTER).
     S,P,D,F,G,L SHELL GENERAL RYS QUADRATURE PROGRAMMED BY
        MICHEL DUPUIS (PACIFIC NORTHWEST NATIONAL LABORATORY).

          --------------------
          2 ELECTRON INTEGRALS
          --------------------

 THE -PK- OPTION IS OFF, THE INTEGRALS ARE NOT IN SUPERMATRIX FORM.
 STORING   15000 INTEGRALS/RECORD ON DISK, USING 12 BYTES/INTEGRAL.
 TWO ELECTRON INTEGRAL EVALUATION REQUIRES   89366 WORDS OF MEMORY.
 II,JST,KST,LST =  1  1  1  1 NREC =         1 INTLOC =    1
 II,JST,KST,LST =  2  1  1  1 NREC =         1 INTLOC =    1
 II,JST,KST,LST =  3  1  1  1 NREC =         1 INTLOC =    1
 II,JST,KST,LST =  4  1  1  1 NREC =         1 INTLOC =    2
 TOTAL NUMBER OF NONZERO TWO-ELECTRON INTEGRALS =                 229
          4 INTEGRAL RECORDS WERE STORED ON DISK FILE  8.
  ...... END OF TWO-ELECTRON INTEGRALS .....
 CPU     0: STEP CPU TIME=     0.02 TOTAL CPU TIME=        0.0 (    0.0 MIN)
 TOTAL WALL CLOCK TIME=        0.0 SECONDS, CPU UTILIZATION IS  75.00%

          --------------------------
                 RHF SCF CALCULATION
          --------------------------

     NUCLEAR ENERGY =         8.8870072224
     MAXIT =   30     NPUNCH=    2
     EXTRAP=T  DAMP=F  SHIFT=F  RSTRCT=F  DIIS=F  DEM=F  SOSCF=F
     DENSITY MATRIX CONV=  1.00E-06
     MEMORY REQUIRED FOR RHF ITERS=     30441 WORDS.

 ITER EX DEM     TOTAL ENERGY        E CHANGE  DENSITY CHANGE    DIIS ERROR
   1  0  0      -74.7981539440   -74.7981539440   0.585814612   0.000000000
   2  1  0      -74.9499878503    -0.1518339063   0.180197669   0.000000000
   3  2  0      -74.9626905265    -0.0127026762   0.060203036   0.000000000
   4  3  0      -74.9640834590    -0.0013929325   0.020782027   0.000000000
   5  4  0      -74.9642853914    -0.0002019324   0.007719362   0.000000000
   6  0  0      -74.9643205277    -0.0000351362   0.005106732   0.000000000
   7  1  0      -74.9643287836    -0.0000082560   0.000126896   0.000000000
   8  2  0      -74.9643287906    -0.0000000069   0.000045747   0.000000000
   9  3  0      -74.9643287917    -0.0000000011   0.000017697   0.000000000
  10  4  0      -74.9643287919    -0.0000000002   0.000007301   0.000000000
  11  5  0      -74.9643287920    -0.0000000000   0.000003237   0.000000000
  12  6  0      -74.9643287920    -0.0000000000   0.000001437   0.000000000
  13  7  0      -74.9643287920    -0.0000000000   0.000000639   0.000000000

          -----------------
          DENSITY CONVERGED
          -----------------
     TIME TO FORM FOCK OPERATORS=       0.0 SECONDS (       0.0 SEC/ITER)
     TIME TO SOLVE SCF EQUATIONS=       0.0 SECONDS (       0.0 SEC/ITER)

 FINAL RHF ENERGY IS      -74.9643287920 AFTER  13 ITERATIONS

          ------------
          EIGENVECTORS
          ------------

                      1          2          3          4          5
                  -20.2438    -1.2506    -0.6032    -0.4455    -0.3882
                     A          A          A          A          A   
    1  O  1  S    0.994203  -0.234218   0.000000  -0.100458   0.000000
    2  O  1  S    0.025916   0.845882  -0.000000   0.521395   0.000000
    3  O  1  X    0.000000   0.000000   0.603305   0.000000   0.000000
    4  O  1  Y   -0.003993  -0.117048  -0.000000   0.774267   0.000000
    5  O  1  Z   -0.000000   0.000000  -0.000000  -0.000000   1.000000
    6  H  2  S   -0.005627   0.156449  -0.446377  -0.289064   0.000000
    7  H  3  S   -0.005627   0.156449   0.446377  -0.289064   0.000000

                      6          7
                    0.5707     0.7086
                     A          A   
    1  O  1  S   -0.128351  -0.000000
    2  O  1  S    0.832526   0.000000
    3  O  1  X   -0.000000   0.976485
    4  O  1  Y   -0.732626  -0.000000
    5  O  1  Z   -0.000000   0.000000
    6  H  2  S   -0.775801   0.808915
    7  H  3  S   -0.775801  -0.808916
 ...... END OF RHF CALCULATION ......
 CPU     0: STEP CPU TIME=     0.01 TOTAL CPU TIME=        0.0 (    0.0 MIN)
 TOTAL WALL CLOCK TIME=        0.0 SECONDS, CPU UTILIZATION IS 100.00%

     ----------------------------------------------------------------
     PROPERTY VALUES FOR THE RHF   SELF-CONSISTENT FIELD WAVEFUNCTION
     ----------------------------------------------------------------

          -----------------
          ENERGY COMPONENTS
          -----------------

         WAVEFUNCTION NORMALIZATION =       1.0000000000

                ONE ELECTRON ENERGY =    -121.8401714153
                TWO ELECTRON ENERGY =      37.9888354010
           NUCLEAR REPULSION ENERGY =       8.8870072224
                                      ------------------
                       TOTAL ENERGY =     -74.9643287920

 ELECTRON-ELECTRON POTENTIAL ENERGY =      37.9888354010
  NUCLEUS-ELECTRON POTENTIAL ENERGY =    -196.3570317288
   NUCLEUS-NUCLEUS POTENTIAL ENERGY =       8.8870072224
                                      ------------------
             TOTAL POTENTIAL ENERGY =    -149.4811891055
               TOTAL KINETIC ENERGY =      74.5168603135
                 VIRIAL RATIO (V/T) =       2.0060049293

  ...... PI ENERGY ANALYSIS ......

 ENERGY ANALYSIS:
            FOCK ENERGY=    -45.8625004361
          BARE H ENERGY=   -121.8401714153
     ELECTRONIC ENERGY =    -83.8513359257
         KINETIC ENERGY=     74.5168603135
          N-N REPULSION=      8.8870072224
           TOTAL ENERGY=    -74.9643287033
        SIGMA PART(1+2)=    -76.0328769524
               (K,V1,2)=     69.4593978615   -176.4390805300     30.9468057162
           PI PART(1+2)=     -7.8184589734
               (K,V1,2)=      5.0574624520    -19.9179511988      7.0420297734
  SIGMA SKELETON, ERROR=    -67.1458697299      0.0000000000
             MIXED PART= 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
 ...... END OF PI ENERGY ANALYSIS ......

          ---------------------------------------
          MULLIKEN AND LOWDIN POPULATION ANALYSES
          ---------------------------------------

               ----- POPULATIONS IN EACH AO -----
                             MULLIKEN      LOWDIN
              1  O  1  S      1.99775     1.99609
              2  O  1  S      1.83608     1.69744
              3  O  1  X      1.05644     1.08303
              4  O  1  Y      1.44894     1.46130
              5  O  1  Z      2.00000     2.00000
              6  H  2  S      0.83039     0.88107
              7  H  3  S      0.83039     0.88107

          ----- MULLIKEN ATOMIC OVERLAP POPULATIONS -----
          (OFF-DIAGONAL ELEMENTS NEED TO BE MULTIPLIED BY 2)

             1           2           3

    1    7.8244435
    2    0.2573856   0.6146365
    3    0.2573856  -0.0416294   0.6146365

          TOTAL MULLIKEN AND LOWDIN ATOMIC POPULATIONS
       ATOM         MULL.POP.    CHARGE          LOW.POP.     CHARGE
    1 O             8.339215   -0.339215         8.237863   -0.237863
    2 H             0.830393    0.169607         0.881068    0.118932
    3 H             0.830393    0.169607         0.881068    0.118932

          ---------------------
          ELECTROSTATIC MOMENTS
          ---------------------

 POINT   1           X           Y           Z (BOHR)    CHARGE
                 0.000000   -0.000000    0.000000        0.00 (A.U.)
         DX          DY          DZ         /D/  (DEBYE)
    -0.000000   -1.673511    0.000000    1.673511
 ...... END OF PROPERTY EVALUATION ......
 CPU     0: STEP CPU TIME=     0.00 TOTAL CPU TIME=        0.0 (    0.0 MIN)
 TOTAL WALL CLOCK TIME=        0.1 SECONDS, CPU UTILIZATION IS  66.67%

 MXVEC CANNOT BE BIGGER THAN THE NUMBER OF CIS CONFIGS
 SETTING MXVEC = NCFG


          ---------------------------------------------
             ATOMIC ORBITAL BASIS CI-SINGLES ENERGY
             PROGRAM WRITTEN BY SIMON P. WEBB
          ---------------------------------------------

 # CORE ORBITALS      =    1
 # OCCUPIED ORBITALS  =    4
 # MOLECULAR ORBITALS =    7
 # BASIS FUNCTIONS    =    7

 NUMBER OF CIS SPIN-ADAPTED ANTISYMMETRIZED PRODUCTS (SAPS) IS       8

 APPROXIMATING CIS HAMILTONIAN DIAGONAL ELEMENTS USING ONLY ORBITAL ENERGIES

 -CIS- HAM. DIAGONAL ELEMENTS  TOOK      0.000 SECONDS

 MIN MEMORY REQ. FOR CIS ENERGY FOCK-LIKE BUILDS =        98 WORDS
 MEMORY REQ. FOR SINGLE BATCH BUILDS             =       784 WORDS
 MEMORY AVAILABLE                                =    969195 WORDS

 SINGLE BATCH ENERGY CALCULATION WILL BE PERFORMED

 UNIT VECTOR GUESS AT CIS COEFFICIENTS ...

 USING IN MEMORY DIAGONALIZTION TO FIND CIS EIGENVALUES AND EIGENVECTORS ...

 STATE    1 ENERGY=      -74.5150077566
 STATE    2 ENERGY=      -74.4407757938
 STATE    3 ENERGY=      -74.3813542385
 STATE    4 ENERGY=      -74.2969138467
 STATE    5 ENERGY=      -74.1904032518


        --------------------------------------------------------
        RESULTS FROM SPIN-ADAPTED ANTISYMMETRIZED PRODUCT (SAPS)
        BASED ATOMIC ORBITAL CI-SINGLES ENERGY CALCULATION
        --------------------------------------------------------

 PRINTING CIS COEFFICIENTS LARGER THAN  0.050000

 RHF REFERENCE ENERGY  =       -74.9643287920


 EXCITED STATE   1  ENERGY=       -74.5150077566  S = 0.0  SPACE SYM = A   

          ----------------------------------------------
          SINGLE EXCITATION               SAP COEFFICENT
          FROM MO     TO MO
          ----------------------------------------------
             5          6                   1.00000000
          ----------------------------------------------


 EXCITED STATE   2  ENERGY=       -74.4407757938  S = 0.0  SPACE SYM = A   

          ----------------------------------------------
          SINGLE EXCITATION               SAP COEFFICENT
          FROM MO     TO MO
          ----------------------------------------------
             5          7                   1.00000000
          ----------------------------------------------


 EXCITED STATE   3  ENERGY=       -74.3813542385  S = 0.0  SPACE SYM = A   

          ----------------------------------------------
          SINGLE EXCITATION               SAP COEFFICENT
          FROM MO     TO MO
          ----------------------------------------------
             2          6                   0.06128646
             3          7                   0.24776502
             4          6                   0.96687976
          ----------------------------------------------


 EXCITED STATE   4  ENERGY=       -74.2969138467  S = 0.0  SPACE SYM = A   

          ----------------------------------------------
          SINGLE EXCITATION               SAP COEFFICENT
          FROM MO     TO MO
          ----------------------------------------------
             3          6                   0.44072342
             4          7                   0.89762923
          ----------------------------------------------


 EXCITED STATE   5  ENERGY=       -74.1904032518  S = 0.0  SPACE SYM = A   

          ----------------------------------------------
          SINGLE EXCITATION               SAP COEFFICENT
          FROM MO     TO MO
          ----------------------------------------------
             3          6                   0.89668443
             4          7                  -0.43999065
          ----------------------------------------------

  ---------------------------------------------------------------------
                    CI-SINGLES EXCITATION ENERGIES
  STATE       HARTREE        EV      KCAL/MOL       CM-1         NM
  ---------------------------------------------------------------------
   1A     0.4493210354    12.2266    281.9532      98614.57     101.40
   1A     0.5235529982    14.2466    328.5345     114906.60      87.03
   1A     0.5829745535    15.8635    365.8221     127948.13      78.16
   1A     0.6674149453    18.1613    418.8093     146480.65      68.27
   1A     0.7739255402    21.0596    485.6457     169857.02      58.87

 -CIS- ENERGY                  TOOK      0.000 SECONDS

  ---------------------------------------------------------------------
                    CIS TRANSITION DIPOLE MOMENTS AND
                    EXPECTATION VALUES OF DIPOLE MOMENTS
  ---------------------------------------------------------------------

 GROUND STATE (SCF) DIPOLE=    -0.000000    -1.673511     0.000000 DEBYE

 TRANSITION FROM THE GROUND STATE TO EXCITED STATE  1

 STATE MULTIPLICITIES =   1  1
 STATE ENERGIES =        -74.9643287920      -74.5150077566
 EXCITATION ENERGY =  2.9564E+15 [1/SEC] =    98614.57 [1/CM] =     12.23 [EV]
                            X           Y           Z           NORM
 TRANSITION DIPOLE =    0.000000    0.000000    0.105812    0.105812 E*BOHR
 TRANSITION DIPOLE =    0.000000    0.000000    0.268948    0.268948 DEBYE
 OSCILLATOR STRENGTH =    0.003354
 EINSTEIN COEFFICIENTS: A=  2.1755E+07 1/SEC; B=  4.5438E+06 SEC/G

 TRANSITION FROM THE GROUND STATE TO EXCITED STATE  2

 STATE MULTIPLICITIES =   1  1
 STATE ENERGIES =        -74.9643287920      -74.4407757938
 EXCITATION ENERGY =  3.4448E+15 [1/SEC] =   114906.60 [1/CM] =     14.25 [EV]
                            X           Y           Z           NORM
 TRANSITION DIPOLE =    0.000000    0.000000    0.000000    0.000000 E*BOHR
 TRANSITION DIPOLE =    0.000000    0.000000    0.000000    0.000000 DEBYE
 OSCILLATOR STRENGTH =    0.000000
 EINSTEIN COEFFICIENTS: A=  6.9444E-06 1/SEC; B=  9.1682E-07 SEC/G

 TRANSITION FROM THE GROUND STATE TO EXCITED STATE  3

 STATE MULTIPLICITIES =   1  1
 STATE ENERGIES =        -74.9643287920      -74.3813542385
 EXCITATION ENERGY =  3.8358E+15 [1/SEC] =   127948.12 [1/CM] =     15.86 [EV]
                            X           Y           Z           NORM
 TRANSITION DIPOLE =   -0.000000   -0.434939    0.000000    0.434939 E*BOHR
 TRANSITION DIPOLE =   -0.000001   -1.105514    0.000000    1.105514 DEBYE
 OSCILLATOR STRENGTH =    0.073522
 EINSTEIN COEFFICIENTS: A=  8.0285E+08 1/SEC; B=  7.6774E+07 SEC/G

 TRANSITION FROM THE GROUND STATE TO EXCITED STATE  4

 STATE MULTIPLICITIES =   1  1
 STATE ENERGIES =        -74.9643287920      -74.2969138467
 EXCITATION ENERGY =  4.3914E+15 [1/SEC] =   146480.65 [1/CM] =     18.16 [EV]
                            X           Y           Z           NORM
 TRANSITION DIPOLE =    0.336747   -0.000000    0.000000    0.336747 E*BOHR
 TRANSITION DIPOLE =    0.855933   -0.000001    0.000000    0.855933 DEBYE
 OSCILLATOR STRENGTH =    0.050456
 EINSTEIN COEFFICIENTS: A=  7.2214E+08 1/SEC; B=  4.6022E+07 SEC/G

 TRANSITION FROM THE GROUND STATE TO EXCITED STATE  5

 STATE MULTIPLICITIES =   1  1
 STATE ENERGIES =        -74.9643287920      -74.1904032518
 EXCITATION ENERGY =  5.0922E+15 [1/SEC] =   169857.02 [1/CM] =     21.06 [EV]
                            X           Y           Z           NORM
 TRANSITION DIPOLE =   -1.533912    0.000000    0.000000    1.533912 E*BOHR
 TRANSITION DIPOLE =   -3.898846    0.000000    0.000000    3.898846 DEBYE
 OSCILLATOR STRENGTH =    1.213973
 EINSTEIN COEFFICIENTS: A=  2.3363E+10 1/SEC; B=  9.5490E+08 SEC/G

 EXPECTATION VALUE DIPOLE MOMENT FOR EXCITED STATE  1

 STATE MULTIPLICITY =   1
 STATE ENERGY =        -74.5150077566
                            X           Y           Z           NORM
      STATE DIPOLE =    0.000001    0.300932    0.000000    0.300932 E*BOHR
      STATE DIPOLE =    0.000003    0.764898    0.000000    0.764898 DEBYE

 TRANSITION BETWEEN EXCITED STATES   1 AND  2

 STATE MULTIPLICITIES=  1  1
 STATE ENERGIES =        -74.5150077566      -74.4407757938
 TRANSITION ENERGY =  4.8842E+14 [1/SEC] =    16292.03 [1/CM] =        2.02 [EV]
                            X           Y           Z           NORM
 TRANSITION DIPOLE =    1.083675   -0.000000    0.000000    1.083675 E*BOHR
 TRANSITION DIPOLE =    2.754449   -0.000001    0.000000    2.754449 DEBYE
 OSCILLATOR STRENGTH =    0.058116
 EINSTEIN COEFFICIENTS: A=  1.0290E+07 1/SEC; B=  4.7660E+08 SEC/G

 TRANSITION BETWEEN EXCITED STATES   1 AND  3

 STATE MULTIPLICITIES=  1  1
 STATE ENERGIES =        -74.5150077566      -74.3813542385
 TRANSITION ENERGY =  8.7940E+14 [1/SEC] =    29333.56 [1/CM] =        3.64 [EV]
                            X           Y           Z           NORM
 TRANSITION DIPOLE =    0.000000    0.000000   -0.193400    0.193400 E*BOHR
 TRANSITION DIPOLE =    0.000000    0.000000   -0.491577    0.491577 DEBYE
 OSCILLATOR STRENGTH =    0.003333
 EINSTEIN COEFFICIENTS: A=  1.9128E+06 1/SEC; B=  1.5180E+07 SEC/G

 TRANSITION BETWEEN EXCITED STATES   1 AND  4

 STATE MULTIPLICITIES=  1  1
 STATE ENERGIES =        -74.5150077566      -74.2969138467
 TRANSITION ENERGY =  1.4350E+15 [1/SEC] =    47866.08 [1/CM] =        5.93 [EV]
                            X           Y           Z           NORM
 TRANSITION DIPOLE =    0.000000    0.000000   -0.000000    0.000000 E*BOHR
 TRANSITION DIPOLE =    0.000000    0.000000   -0.000000    0.000000 DEBYE
 OSCILLATOR STRENGTH =    0.000000
 EINSTEIN COEFFICIENTS: A=  1.2337E-09 1/SEC; B=  2.2533E-09 SEC/G

 TRANSITION BETWEEN EXCITED STATES   1 AND  5

 STATE MULTIPLICITIES=  1  1
 STATE ENERGIES =        -74.5150077566      -74.1904032518
 TRANSITION ENERGY =  2.1358E+15 [1/SEC] =    71242.45 [1/CM] =        8.83 [EV]
                            X           Y           Z           NORM
 TRANSITION DIPOLE =    0.000000    0.000000   -0.000000    0.000000 E*BOHR
 TRANSITION DIPOLE =    0.000000    0.000000   -0.000000    0.000000 DEBYE
 OSCILLATOR STRENGTH =    0.000000
 EINSTEIN COEFFICIENTS: A=  7.0831E-08 1/SEC; B=  3.9237E-08 SEC/G

 EXPECTATION VALUE DIPOLE MOMENT FOR EXCITED STATE  2

 STATE MULTIPLICITY =   1
 STATE ENERGY =        -74.4407757938
                            X           Y           Z           NORM
      STATE DIPOLE =   -0.000001    0.005921    0.000000    0.005921 E*BOHR
      STATE DIPOLE =   -0.000002    0.015050    0.000000    0.015050 DEBYE

 TRANSITION BETWEEN EXCITED STATES   2 AND  3

 STATE MULTIPLICITIES=  1  1
 STATE ENERGIES =        -74.4407757938      -74.3813542385
 TRANSITION ENERGY =  3.9098E+14 [1/SEC] =    13041.52 [1/CM] =        1.62 [EV]
                            X           Y           Z           NORM
 TRANSITION DIPOLE =    0.000000    0.000000   -0.000000    0.000000 E*BOHR
 TRANSITION DIPOLE =    0.000000    0.000000   -0.000000    0.000000 DEBYE
 OSCILLATOR STRENGTH =    0.000000
 EINSTEIN COEFFICIENTS: A=  4.5014E-09 1/SEC; B=  4.0649E-07 SEC/G

 TRANSITION BETWEEN EXCITED STATES   2 AND  4

 STATE MULTIPLICITIES=  1  1
 STATE ENERGIES =        -74.4407757938      -74.2969138467
 TRANSITION ENERGY =  9.4657E+14 [1/SEC] =    31574.05 [1/CM] =        3.91 [EV]
                            X           Y           Z           NORM
 TRANSITION DIPOLE =    0.000000    0.000000   -0.141089    0.141089 E*BOHR
 TRANSITION DIPOLE =    0.000000    0.000000   -0.358616    0.358616 DEBYE
 OSCILLATOR STRENGTH =    0.001909
 EINSTEIN COEFFICIENTS: A=  1.2696E+06 1/SEC; B=  8.0788E+06 SEC/G

 TRANSITION BETWEEN EXCITED STATES   2 AND  5

 STATE MULTIPLICITIES=  1  1
 STATE ENERGIES =        -74.4407757938      -74.1904032518
 TRANSITION ENERGY =  1.6474E+15 [1/SEC] =    54950.42 [1/CM] =        6.81 [EV]
                            X           Y           Z           NORM
 TRANSITION DIPOLE =    0.000000    0.000000    0.040434    0.040434 E*BOHR
 TRANSITION DIPOLE =    0.000000    0.000000    0.102774    0.102774 DEBYE
 OSCILLATOR STRENGTH =    0.000273
 EINSTEIN COEFFICIENTS: A=  5.4965E+05 1/SEC; B=  6.6352E+05 SEC/G

 EXPECTATION VALUE DIPOLE MOMENT FOR EXCITED STATE  3

 STATE MULTIPLICITY =   1
 STATE ENERGY =        -74.3813542385
                            X           Y           Z           NORM
      STATE DIPOLE =    0.000001    0.376438    0.000000    0.376438 E*BOHR
      STATE DIPOLE =    0.000002    0.956817    0.000000    0.956817 DEBYE

 TRANSITION BETWEEN EXCITED STATES   3 AND  4

 STATE MULTIPLICITIES=  1  1
 STATE ENERGIES =        -74.3813542385      -74.2969138467
 TRANSITION ENERGY =  5.5559E+14 [1/SEC] =    18532.52 [1/CM] =        2.30 [EV]
                            X           Y           Z           NORM
 TRANSITION DIPOLE =    1.249153   -0.000000    0.000000    1.249153 E*BOHR
 TRANSITION DIPOLE =    3.175056   -0.000001    0.000000    3.175056 DEBYE
 OSCILLATOR STRENGTH =    0.087840
 EINSTEIN COEFFICIENTS: A=  2.0124E+07 1/SEC; B=  6.3327E+08 SEC/G

 TRANSITION BETWEEN EXCITED STATES   3 AND  5

 STATE MULTIPLICITIES=  1  1
 STATE ENERGIES =        -74.3813542385      -74.1904032518
 TRANSITION ENERGY =  1.2564E+15 [1/SEC] =    41908.90 [1/CM] =        5.20 [EV]
                            X           Y           Z           NORM
 TRANSITION DIPOLE =   -0.025692   -0.000000    0.000000    0.025692 E*BOHR
 TRANSITION DIPOLE =   -0.065304   -0.000000    0.000000    0.065304 DEBYE
 OSCILLATOR STRENGTH =    0.000084
 EINSTEIN COEFFICIENTS: A=  9.8445E+04 1/SEC; B=  2.6789E+05 SEC/G

 EXPECTATION VALUE DIPOLE MOMENT FOR EXCITED STATE  4

 STATE MULTIPLICITY =   1
 STATE ENERGY =        -74.2969138467
                            X           Y           Z           NORM
      STATE DIPOLE =   -0.000001   -0.003681    0.000000    0.003681 E*BOHR
      STATE DIPOLE =   -0.000002   -0.009356    0.000000    0.009356 DEBYE

 TRANSITION BETWEEN EXCITED STATES   4 AND  5

 STATE MULTIPLICITIES=  1  1
 STATE ENERGIES =        -74.2969138467      -74.1904032518
 TRANSITION ENERGY =  7.0081E+14 [1/SEC] =    23376.37 [1/CM] =        2.90 [EV]
                            X           Y           Z           NORM
 TRANSITION DIPOLE =   -0.000000    0.070656    0.000000    0.070656 E*BOHR
 TRANSITION DIPOLE =   -0.000000    0.179591    0.000000    0.179591 DEBYE
 OSCILLATOR STRENGTH =    0.000354
 EINSTEIN COEFFICIENTS: A=  1.2921E+05 1/SEC; B=  2.0261E+06 SEC/G

 EXPECTATION VALUE DIPOLE MOMENT FOR EXCITED STATE  5

 STATE MULTIPLICITY =   1
 STATE ENERGY =        -74.1904032518
                            X           Y           Z           NORM
      STATE DIPOLE =    0.000000   -0.186241    0.000000    0.186241 E*BOHR
      STATE DIPOLE =    0.000000   -0.473382    0.000000    0.473382 DEBYE

 CIS NATURAL ORBITAL OCCUPATION NUMBERS FOR EXCITED STATE    1 ARE
  2.0000 2.0000 2.0000 2.0000 1.0000 1.0000 0.0000
 THERE ARE     9.0000 ELECTRONS IN PRINCIPAL CIS NATURAL ORBITALS.
 THERE ARE     1.0000 ELECTRONS IN SECONDARY CIS NATURAL ORBITALS.

          --------------------
          CIS NATURAL ORBITALS
          --------------------

                      1          2          3          4          5

                    2.0000     2.0000     2.0000     2.0000     1.0000

    1  O  1  S   -0.959157  -0.279433  -0.231060   0.044004   0.000232
    2  O  1  S    0.443539  -0.785479   0.155180   0.387628  -0.001502
    3  O  1  X    0.153503  -0.061746  -0.575910  -0.070209   0.000000
    4  O  1  Y    0.148820  -0.533270   0.161421  -0.529740   0.001322
    5  O  1  Z   -0.000000  -0.000000  -0.000000  -0.000000  -0.999998
    6  H  2  S   -0.118300   0.197697   0.373602   0.338616   0.001400
    7  H  3  S    0.108850   0.106327  -0.478612   0.234723   0.001400

                      6          7

                    1.0000     0.0000

    1  O  1  S   -0.128350  -0.000000
    2  O  1  S    0.832524   0.000000
    3  O  1  X   -0.000001   0.976485
    4  O  1  Y   -0.732625  -0.000000
    5  O  1  Z   -0.001805  -0.000000
    6  H  2  S   -0.775800   0.808915
    7  H  3  S   -0.775799  -0.808916

 THE CIS NATURAL ORBITALS HAVE BEEN PUNCHED.

 ..... DONE WITH CIS ENERGY .....

 CPU     0: STEP CPU TIME=     0.00 TOTAL CPU TIME=        0.0 (    0.0 MIN)
 TOTAL WALL CLOCK TIME=        0.1 SECONDS, CPU UTILIZATION IS  66.67%

     -------------------------------------------------------------
     CIS   PROPERTIES...FOR THE WAVEFUNCTION OF EXCITED STATE    1
                 USING THE EXPECTATION VALUE DENSITY
     -------------------------------------------------------------

          -----------------
          ENERGY COMPONENTS
          -----------------

         WAVEFUNCTION NORMALIZATION =       1.0000000000

                ONE ELECTRON ENERGY =    -119.7240501000
                TWO ELECTRON ENERGY =      36.3220351210
           NUCLEAR REPULSION ENERGY =       8.8870072224
                                      ------------------
                       TOTAL ENERGY =     -74.5150077566

 ELECTRON-ELECTRON POTENTIAL ENERGY =      36.3220351210
  NUCLEUS-ELECTRON POTENTIAL ENERGY =    -194.4123659465
   NUCLEUS-NUCLEUS POTENTIAL ENERGY =       8.8870072224
                                      ------------------
             TOTAL POTENTIAL ENERGY =    -149.2033236030
               TOTAL KINETIC ENERGY =      74.6883158465
                 VIRIAL RATIO (V/T) =       1.9976795823

          ---------------------------------------
          MULLIKEN AND LOWDIN POPULATION ANALYSES
          ---------------------------------------

               ----- POPULATIONS IN EACH AO -----
                             MULLIKEN      LOWDIN
              1  O  1  S      1.99888     1.99805
              2  O  1  S      1.91804     1.84872
              3  O  1  X      1.05644     1.08303
              4  O  1  Y      1.72447     1.73065
              5  O  1  Z      1.00000     1.00000
              6  H  2  S      1.15109     1.16978
              7  H  3  S      1.15109     1.16978

          ----- MULLIKEN ATOMIC OVERLAP POPULATIONS -----
          (OFF-DIAGONAL ELEMENTS NEED TO BE MULTIPLIED BY 2)

             1           2           3

    1    8.0201712
    2   -0.1611728   1.2165038
    3   -0.1611723   0.0957563   1.2165027

          TOTAL MULLIKEN AND LOWDIN ATOMIC POPULATIONS
       ATOM         MULL.POP.    CHARGE          LOW.POP.     CHARGE
    1 O             7.697826    0.302174         7.660447    0.339553
    2 H             1.151087   -0.151087         1.169777   -0.169777
    3 H             1.151087   -0.151087         1.169776   -0.169776

          ---------------------
          ELECTROSTATIC MOMENTS
          ---------------------

 POINT   1           X           Y           Z (BOHR)    CHARGE
                 0.000000   -0.000000    0.000000       -0.00 (A.U.)
         DX          DY          DZ         /D/  (DEBYE)
     0.000003    0.764898    0.000000    0.764898
 ...... END OF PROPERTY EVALUATION ......
 CPU     0: STEP CPU TIME=     0.01 TOTAL CPU TIME=        0.0 (    0.0 MIN)
 TOTAL WALL CLOCK TIME=        0.1 SECONDS, CPU UTILIZATION IS  71.43%

 AN AIMPAC INPUT FILE IS BEING WRITTEN TO FILE   7

               580000  WORDS OF DYNAMIC MEMORY USED
 EXECUTION OF GAMESS TERMINATED NORMALLY Mon Aug 14 12:30:37 2017
 DDI: 263640 bytes (0.3 MB / 0 MWords) used by master data server.

 ----------------------------------------
 CPU timing information for all processes
 ========================================
 0: 0.36 + 0.28 = 0.64
 1: 0.12 + 0.24 = 0.36
 2: 0.16 + 0.24 = 0.40
 3: 0.08 + 0.24 = 0.32
 ----------------------------------------
 ddikick.x: exited gracefully.
----- accounting info -----
Files used on the master node firzens were:
-rw-r--r-- 1 sagar sagar     318 Aug 14 12:30 /scr/sagar/water_cis_saps.F05
-rw-rw-r-- 1 sagar sagar  180016 Aug 14 12:30 /scr/sagar/water_cis_saps.F08
-rw-rw-r-- 1 sagar sagar  180016 Aug 14 12:30 /scr/sagar/water_cis_saps.F08.001
-rw-rw-r-- 1 sagar sagar  180016 Aug 14 12:30 /scr/sagar/water_cis_saps.F08.002
-rw-rw-r-- 1 sagar sagar  180016 Aug 14 12:30 /scr/sagar/water_cis_saps.F08.003
-rw-rw-r-- 1 sagar sagar 1603280 Aug 14 12:30 /scr/sagar/water_cis_saps.F10
-rw-rw-r-- 1 sagar sagar     360 Aug 14 12:30 /scr/sagar/water_cis_saps.F12
Mon Aug 14 12:30:40 IST 2017
0.084u 0.008s 0:03.21 2.4%	0+0k 0+16io 0pf+0w