1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
|
Entering Gaussian System, Link 0=/usr/local/gaussian-2009-D.01_intel_sse4.2/g09/g09
Initial command:
/usr/local/gaussian-2009-D.01_intel_sse4.2/g09/l1.exe "/lustre/scratch/tmp/pbs.6224763.nova/g09--14491-dZvvErpwLIj14492/Gau-14494.inp" -scrdir="/lustre/scratch/tmp/pbs.6224763.nova/g09--14491-dZvvErpwLIj14492/"
Entering Link 1 = /usr/local/gaussian-2009-D.01_intel_sse4.2/g09/l1.exe PID= 14495.
Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013,
Gaussian, Inc. All Rights Reserved.
This is part of the Gaussian(R) 09 program. It is based on
the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983,
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.
This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.
This software is provided under written license and may be
used, copied, transmitted, or stored only in accord with that
written license.
The following legend is applicable only to US Government
contracts under FAR:
RESTRICTED RIGHTS LEGEND
Use, reproduction and disclosure by the US Government is
subject to restrictions as set forth in subparagraphs (a)
and (c) of the Commercial Computer Software - Restricted
Rights clause in FAR 52.227-19.
Gaussian, Inc.
340 Quinnipiac St., Bldg. 40, Wallingford CT 06492
---------------------------------------------------------------
Warning -- This program may not be used in any manner that
competes with the business of Gaussian, Inc. or will provide
assistance to any competitor of Gaussian, Inc. The licensee
of this program is prohibited from giving any competitor of
Gaussian, Inc. access to this program. By using this program,
the user acknowledges that Gaussian, Inc. is engaged in the
business of creating and licensing software in the field of
computational chemistry and represents and warrants to the
licensee that it is not a competitor of Gaussian, Inc. and that
it will not use this program in any manner prohibited above.
---------------------------------------------------------------
Cite this work as:
Gaussian 09, Revision D.01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
******************************************
Gaussian 09: ES64L-G09RevD.01 24-Apr-2013
20-Feb-2014
******************************************
%nproc=1
Will use up to 1 processors via shared memory.
%mem=1800MB
-----------------------------------------------------------------
#P CIS(50-50,NStates=5)/STO-3G Density Pop=(Full,NaturalOrbitals)
-----------------------------------------------------------------
1/30=1,38=1/1;
2/12=2,17=6,18=5,40=1/2;
3/6=3,11=9,16=1,25=1,30=1,71=1/1,2,8,3;
4//1;
5/5=2,38=5/2;
8/6=1,10=1,108=5/1,4;
9/15=1,41=5,42=3,48=2/14;
10/5=4,13=10/2;
6/7=3,22=-1,31=1/1;
99/5=1,9=1/99;
Leave Link 1 at Thu Feb 20 20:34:11 2014, MaxMem= 235929600 cpu: 0.0
(Enter /usr/local/gaussian-2009-D.01_intel_sse4.2/g09/l101.exe)
-----
Water
-----
Symbolic Z-matrix:
Charge = 0 Multiplicity = 1
O
H 1 R1
H 1 R1 2 A1
Variables:
R1 0.99
A1 106.
NAtoms= 3 NQM= 3 NQMF= 0 NMMI= 0 NMMIF= 0
NMic= 0 NMicF= 0.
Isotopes and Nuclear Properties:
(Nuclear quadrupole moments (NQMom) in fm**2, nuclear magnetic moments (NMagM)
in nuclear magnetons)
Atom 1 2 3
IAtWgt= 16 1 1
AtmWgt= 15.9949146 1.0078250 1.0078250
NucSpn= 0 1 1
AtZEff= 0.0000000 0.0000000 0.0000000
NQMom= 0.0000000 0.0000000 0.0000000
NMagM= 0.0000000 2.7928460 2.7928460
AtZNuc= 8.0000000 1.0000000 1.0000000
Leave Link 101 at Thu Feb 20 20:34:11 2014, MaxMem= 235929600 cpu: 0.1
(Enter /usr/local/gaussian-2009-D.01_intel_sse4.2/g09/l202.exe)
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 8 0 0.000000 0.000000 0.000000
2 1 0 0.000000 0.000000 0.990000
3 1 0 0.951649 0.000000 -0.272881
---------------------------------------------------------------------
Distance matrix (angstroms):
1 2 3
1 O 0.000000
2 H 0.990000 0.000000
3 H 0.990000 1.581298 0.000000
Stoichiometry H2O
Framework group C2V[C2(O),SGV(H2)]
Deg. of freedom 2
Full point group C2V NOp 4
Largest Abelian subgroup C2V NOp 4
Largest concise Abelian subgroup C2 NOp 2
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 8 0 0.000000 0.000000 0.119159
2 1 0 0.000000 0.790649 -0.476637
3 1 0 0.000000 -0.790649 -0.476637
---------------------------------------------------------------------
Rotational constants (GHZ): 795.3366977 401.0831665 266.6255975
Leave Link 202 at Thu Feb 20 20:34:11 2014, MaxMem= 235929600 cpu: 0.0
(Enter /usr/local/gaussian-2009-D.01_intel_sse4.2/g09/l301.exe)
Standard basis: STO-3G (5D, 7F)
Ernie: Thresh= 0.10000D-02 Tol= 0.10000D-05 Strict=F.
There are 4 symmetry adapted cartesian basis functions of A1 symmetry.
There are 0 symmetry adapted cartesian basis functions of A2 symmetry.
There are 1 symmetry adapted cartesian basis functions of B1 symmetry.
There are 2 symmetry adapted cartesian basis functions of B2 symmetry.
There are 4 symmetry adapted basis functions of A1 symmetry.
There are 0 symmetry adapted basis functions of A2 symmetry.
There are 1 symmetry adapted basis functions of B1 symmetry.
There are 2 symmetry adapted basis functions of B2 symmetry.
7 basis functions, 21 primitive gaussians, 7 cartesian basis functions
5 alpha electrons 5 beta electrons
nuclear repulsion energy 8.8870062259 Hartrees.
IExCor= 0 DFT=F Ex=HF Corr=None ExCW=0 ScaHFX= 1.000000
ScaDFX= 1.000000 1.000000 1.000000 1.000000 ScalE2= 1.000000 1.000000
IRadAn= 0 IRanWt= -1 IRanGd= 0 ICorTp=0 IEmpDi= 4
NAtoms= 3 NActive= 3 NUniq= 2 SFac= 2.25D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 1 integral format.
Two-electron integral symmetry is turned on.
Leave Link 301 at Thu Feb 20 20:34:11 2014, MaxMem= 235929600 cpu: 0.0
(Enter /usr/local/gaussian-2009-D.01_intel_sse4.2/g09/l302.exe)
NPDir=0 NMtPBC= 1 NCelOv= 1 NCel= 1 NClECP= 1 NCelD= 1
NCelK= 1 NCelE2= 1 NClLst= 1 CellRange= 0.0.
One-electron integrals computed using PRISM.
One-electron integral symmetry used in STVInt
NBasis= 7 RedAO= T EigKep= 5.09D-01 NBF= 4 0 1 2
NBsUse= 7 1.00D-06 EigRej= -1.00D+00 NBFU= 4 0 1 2
Leave Link 302 at Thu Feb 20 20:34:11 2014, MaxMem= 235929600 cpu: 0.1
(Enter /usr/local/gaussian-2009-D.01_intel_sse4.2/g09/l308.exe)
Leave Link 308 at Thu Feb 20 20:34:12 2014, MaxMem= 235929600 cpu: 0.0
(Enter /usr/local/gaussian-2009-D.01_intel_sse4.2/g09/l303.exe)
DipDrv: MaxL=1.
Leave Link 303 at Thu Feb 20 20:34:12 2014, MaxMem= 235929600 cpu: 0.0
(Enter /usr/local/gaussian-2009-D.01_intel_sse4.2/g09/l401.exe)
ExpMin= 1.69D-01 ExpMax= 1.31D+02 ExpMxC= 1.31D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00
Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess.
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Harris En= -75.0379981686237
JPrj=0 DoOrth=F DoCkMO=F.
Initial guess orbital symmetries:
Occupied (A1) (A1) (B2) (A1) (B1)
Virtual (A1) (B2)
The electronic state of the initial guess is 1-A1.
Leave Link 401 at Thu Feb 20 20:34:12 2014, MaxMem= 235929600 cpu: 0.1
(Enter /usr/local/gaussian-2009-D.01_intel_sse4.2/g09/l502.exe)
Closed shell SCF:
Using DIIS extrapolation, IDIIS= 1040.
Integral symmetry usage will be decided dynamically.
Keep R1 ints in memory in symmetry-blocked form, NReq=823030.
IVT= 20173 IEndB= 20173 NGot= 235929600 MDV= 235909005
LenX= 235909005 LenY= 235908123
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
FoFCou: FMM=F IPFlag= 0 FMFlag= 0 FMFlg1= 0
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
wScrn= 0.000000 ICntrl= 600 IOpCl= 0 I1Cent= 0 NGrid= 0
NMat0= 1 NMatS0= 28 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Cycle 1 Pass 1 IDiag 1:
E= -74.9100249815580
DIIS: error= 7.64D-02 at cycle 1 NSaved= 1.
NSaved= 1 IEnMin= 1 EnMin= -74.9100249815580 IErMin= 1 ErrMin= 7.64D-02
ErrMax= 7.64D-02 0.00D+00 EMaxC= 1.00D-01 BMatC= 3.91D-02 BMatP= 3.91D-02
IDIUse=3 WtCom= 2.36D-01 WtEn= 7.64D-01
Coeff-Com: 0.100D+01
Coeff-En: 0.100D+01
Coeff: 0.100D+01
Gap= 0.854 Goal= None Shift= 0.000
GapD= 0.854 DampG=2.000 DampE=0.500 DampFc=1.0000 IDamp=-1.
RMSDP=4.14D-02 MaxDP=1.46D-01 OVMax= 0.00D+00
Cycle 2 Pass 1 IDiag 1:
E= -74.9638052655729 Delta-E= -0.053780284015 Rises=F Damp=F
DIIS: error= 6.21D-03 at cycle 2 NSaved= 2.
NSaved= 2 IEnMin= 2 EnMin= -74.9638052655729 IErMin= 2 ErrMin= 6.21D-03
ErrMax= 6.21D-03 0.00D+00 EMaxC= 1.00D-01 BMatC= 4.76D-04 BMatP= 3.91D-02
IDIUse=3 WtCom= 9.38D-01 WtEn= 6.21D-02
Coeff-Com: 0.720D-01 0.928D+00
Coeff-En: 0.000D+00 0.100D+01
Coeff: 0.675D-01 0.932D+00
Gap= 0.959 Goal= None Shift= 0.000
RMSDP=3.23D-03 MaxDP=9.48D-03 DE=-5.38D-02 OVMax= 0.00D+00
Cycle 3 Pass 1 IDiag 1:
E= -74.9643149169881 Delta-E= -0.000509651415 Rises=F Damp=F
DIIS: error= 1.11D-03 at cycle 3 NSaved= 3.
NSaved= 3 IEnMin= 3 EnMin= -74.9643149169881 IErMin= 3 ErrMin= 1.11D-03
ErrMax= 1.11D-03 0.00D+00 EMaxC= 1.00D-01 BMatC= 7.94D-06 BMatP= 4.76D-04
IDIUse=3 WtCom= 9.89D-01 WtEn= 1.11D-02
Coeff-Com: -0.130D-01-0.148D+00 0.116D+01
Coeff-En: 0.000D+00 0.000D+00 0.100D+01
Coeff: -0.129D-01-0.147D+00 0.116D+01
Gap= 0.959 Goal= None Shift= 0.000
RMSDP=7.87D-04 MaxDP=3.31D-03 DE=-5.10D-04 OVMax= 0.00D+00
Cycle 4 Pass 1 IDiag 1:
E= -74.9643282751510 Delta-E= -0.000013358163 Rises=F Damp=F
DIIS: error= 1.68D-04 at cycle 4 NSaved= 4.
NSaved= 4 IEnMin= 4 EnMin= -74.9643282751510 IErMin= 4 ErrMin= 1.68D-04
ErrMax= 1.68D-04 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.20D-07 BMatP= 7.94D-06
IDIUse=3 WtCom= 9.98D-01 WtEn= 1.68D-03
Coeff-Com: 0.159D-02 0.957D-02-0.223D+00 0.121D+01
Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.100D+01
Coeff: 0.159D-02 0.955D-02-0.223D+00 0.121D+01
Gap= 0.959 Goal= None Shift= 0.000
RMSDP=1.73D-04 MaxDP=7.00D-04 DE=-1.34D-05 OVMax= 0.00D+00
Cycle 5 Pass 1 IDiag 1:
E= -74.9643287606834 Delta-E= -0.000000485532 Rises=F Damp=F
DIIS: error= 3.34D-05 at cycle 5 NSaved= 5.
NSaved= 5 IEnMin= 5 EnMin= -74.9643287606834 IErMin= 5 ErrMin= 3.34D-05
ErrMax= 3.34D-05 0.00D+00 EMaxC= 1.00D-01 BMatC= 9.42D-09 BMatP= 2.20D-07
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: -0.872D-03-0.480D-02 0.145D+00-0.888D+00 0.175D+01
Coeff: -0.872D-03-0.480D-02 0.145D+00-0.888D+00 0.175D+01
Gap= 0.959 Goal= None Shift= 0.000
RMSDP=5.11D-05 MaxDP=1.59D-04 DE=-4.86D-07 OVMax= 0.00D+00
Cycle 6 Pass 1 IDiag 1:
E= -74.9643287913036 Delta-E= -0.000000030620 Rises=F Damp=F
DIIS: error= 3.10D-07 at cycle 6 NSaved= 6.
NSaved= 6 IEnMin= 6 EnMin= -74.9643287913036 IErMin= 6 ErrMin= 3.10D-07
ErrMax= 3.10D-07 0.00D+00 EMaxC= 1.00D-01 BMatC= 7.27D-13 BMatP= 9.42D-09
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: -0.334D-07-0.141D-04 0.478D-03-0.330D-02 0.139D-01 0.989D+00
Coeff: -0.334D-07-0.141D-04 0.478D-03-0.330D-02 0.139D-01 0.989D+00
Gap= 0.959 Goal= None Shift= 0.000
RMSDP=3.82D-07 MaxDP=1.36D-06 DE=-3.06D-08 OVMax= 0.00D+00
Cycle 7 Pass 1 IDiag 1:
E= -74.9643287913054 Delta-E= -0.000000000002 Rises=F Damp=F
DIIS: error= 2.63D-10 at cycle 7 NSaved= 7.
NSaved= 7 IEnMin= 7 EnMin= -74.9643287913054 IErMin= 7 ErrMin= 2.63D-10
ErrMax= 2.63D-10 0.00D+00 EMaxC= 1.00D-01 BMatC= 4.69D-19 BMatP= 7.27D-13
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: 0.857D-10 0.134D-07 0.494D-06-0.535D-05 0.191D-04 0.134D-02
Coeff-Com: 0.999D+00
Coeff: 0.857D-10 0.134D-07 0.494D-06-0.535D-05 0.191D-04 0.134D-02
Coeff: 0.999D+00
Gap= 0.959 Goal= None Shift= 0.000
RMSDP=2.79D-10 MaxDP=8.85D-10 DE=-1.88D-12 OVMax= 0.00D+00
SCF Done: E(RHF) = -74.9643287913 A.U. after 7 cycles
NFock= 7 Conv=0.28D-09 -V/T= 2.0060
KE= 7.451686028138D+01 PE=-1.963570297689D+02 EE= 3.798883447035D+01
Leave Link 502 at Thu Feb 20 20:34:12 2014, MaxMem= 235929600 cpu: 0.1
(Enter /usr/local/gaussian-2009-D.01_intel_sse4.2/g09/l801.exe)
ExpMin= 1.69D-01 ExpMax= 1.31D+02 ExpMxC= 1.31D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14
ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
Largest valence mixing into a core orbital is 8.38D-05
Largest core mixing into a valence orbital is 4.70D-05
Range of M.O.s used for correlation: 2 7
NBasis= 7 NAE= 5 NBE= 5 NFC= 1 NFV= 0
NROrb= 6 NOA= 4 NOB= 4 NVA= 2 NVB= 2
Leave Link 801 at Thu Feb 20 20:34:12 2014, MaxMem= 235929600 cpu: 0.1
(Enter /usr/local/gaussian-2009-D.01_intel_sse4.2/g09/l804.exe)
Closed-shell transformation, MDV= 235929600 ITran=3 ISComp=1.
Semi-Direct transformation.
ModeAB= 2 MOrb= 4 LenV= 235822771
LASXX= 139 LTotXX= 139 LenRXX= 139
LTotAB= 274 MaxLAS= 672 LenRXY= 672
NonZer= 816 LenScr= 785920 LnRSAI= 0
LnScr1= 0 LExtra= 0 Total= 786731
MaxDsk= -1 SrtSym= F ITran= 3
DoSDTr: NPSUse= 1
JobTyp=0 Pass 1: I= 1 to 4.
(rs|ai) integrals will be sorted in core.
Complete sort for first half transformation.
First half transformation complete.
Complete sort for second half transformation.
Second half transformation complete.
Spin components of T(2) and E(2):
alpha-alpha T2 = 0.4074384588D-03 E2= -0.1088543323D-02
alpha-beta T2 = 0.1385761979D-01 E2= -0.3577624983D-01
beta-beta T2 = 0.4074384588D-03 E2= -0.1088543323D-02
ANorm= 0.1007309534D+01
E2 = -0.3795333648D-01 EUMP2 = -0.75002282127785D+02
Leave Link 804 at Thu Feb 20 20:34:12 2014, MaxMem= 235929600 cpu: 0.0
(Enter /usr/local/gaussian-2009-D.01_intel_sse4.2/g09/l914.exe)
RHF ground state
MDV= 235929600 DFT=F DoStab=F Mixed=F DoRPA=F DoScal=F NonHer=F
Making orbital integer symmetry assigments:
Orbital symmetries:
Occupied (A1) (A1) (B2) (A1) (B1)
Virtual (A1) (B2)
FoFJK: IHMeth= 1 ICntrl= 0 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F
IRaf= 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 1.
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
wScrn= 0.000000 ICntrl= 0 IOpCl= 1 I1Cent= 0 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
16 initial guesses have been made.
Convergence on wavefunction: 0.000001000000000
Davidson Disk Diagonalization: ConvIn= 1.00D-06 SkipCon=T Conv= 1.00D-06.
Max sub-space: 200 roots to seek: 32 dimension of matrix: 16
*** WARNING: Number of orthogonal guesses is 16
Iteration 1 Dimension 16 NMult 0 NNew 16
New state 1 was old state 2
New state 2 was old state 1
New state 3 was old state 4
New state 4 was old state 6
New state 5 was old state 8
New state 6 was old state 5
New state 7 was old state 3
New state 8 was old state 10
New state 9 was old state 7
New state 10 was old state 12
Excitation Energies [eV] at current iteration:
Root 1 : 10.177283211955390
Root 2 : 12.226645009253520
Root 3 : 12.274320072042430
Root 4 : 12.904010287324910
Root 5 : 14.131511296593420
Root 6 : 14.246597996298340
Root 7 : 15.863542202492710
Root 8 : 17.048166357930420
Root 9 : 18.161280041863270
Root 10 : 19.183269645166060
Root 11 : 21.059581739110200
Root 12 : 28.094241029354220
Root 13 : 33.595347652218440
Root 14 : 36.776095294892390
Root 15 : 38.900423196955320
Root 16 : 39.912492201240140
Convergence achieved for final wavefunctions.
***********************************************************************
Excited states from <AA,BB:AA,BB> singles matrix:
***********************************************************************
1PDM for each excited state written to RWF 633
Ground to excited state transition densities written to RWF 633
Ground to excited state transition electric dipole moments (Au):
state X Y Z Dip. S. Osc.
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 -0.1058 0.0000 0.0000 0.0112 0.0034
3 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.0000 0.0000 0.0000 0.0000
7 0.0000 0.0000 0.4349 0.1892 0.0735
8 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.0000 -0.3367 0.0000 0.1134 0.0505
10 0.0000 0.0000 0.0000 0.0000 0.0000
Ground to excited state transition velocity dipole moments (Au):
state X Y Z Dip. S. Osc.
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 -0.1384 0.0000 0.0000 0.0191 0.0284
3 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.0000 0.0000 0.0000 0.0000
7 0.0000 0.0000 -0.3246 0.1054 0.1205
8 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.0000 0.1527 0.0000 0.0233 0.0233
10 0.0000 0.0000 0.0000 0.0000 0.0000
Ground to excited state transition magnetic dipole moments (Au):
state X Y Z
1 0.0000 0.0000 0.0000
2 0.0000 0.5007 0.0000
3 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000
6 0.0000 0.0000 0.6833
7 0.0000 0.0000 0.0000
8 0.0000 0.0000 0.0000
9 -0.7359 0.0000 0.0000
10 0.0000 0.0000 0.0000
Ground to excited state transition velocity quadrupole moments (Au):
state XX YY ZZ XY XZ YZ
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0336 0.0000
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.0000 0.0000 -0.0895 0.0000 0.0000
7 -0.0015 0.0743 0.0531 0.0000 0.0000 0.0000
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0496
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
<0|del|b> * <b|rxdel|0> + <0|del|b> * <b|delr+rdel|0>
Rotatory Strengths (R) in cgs (10**-40 erg-esu-cm/Gauss)
state XX YY ZZ R(velocity) E-M Angle
1 0.0000 0.0000 0.0000 0.0000 90.00
2 0.0000 0.0000 0.0000 0.0000 90.00
3 0.0000 0.0000 0.0000 0.0000 90.00
4 0.0000 0.0000 0.0000 0.0000 90.00
5 0.0000 0.0000 0.0000 0.0000 90.00
6 0.0000 0.0000 0.0000 0.0000 90.00
7 0.0000 0.0000 0.0000 0.0000 90.00
8 0.0000 0.0000 0.0000 0.0000 90.00
9 0.0000 0.0000 0.0000 0.0000 90.00
10 0.0000 0.0000 0.0000 0.0000 90.00
1/2[<0|r|b>*<b|rxdel|0> + (<0|rxdel|b>*<b|r|0>)*]
Rotatory Strengths (R) in cgs (10**-40 erg-esu-cm/Gauss)
state XX YY ZZ R(length)
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.0000 0.0000 0.0000
7 0.0000 0.0000 0.0000 0.0000
8 0.0000 0.0000 0.0000 0.0000
9 0.0000 0.0000 0.0000 0.0000
10 0.0000 0.0000 0.0000 0.0000
1/2[<0|del|b>*<b|r|0> + (<0|r|b>*<b|del|0>)*] (Au)
state X Y Z Dip. S. Osc.(frdel)
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0146 0.0000 0.0000 -0.0146 -0.0098
3 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.0000 0.0000 0.0000 0.0000
7 0.0000 0.0000 -0.1412 0.1412 0.0941
8 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.0000 -0.0514 0.0000 0.0514 0.0343
10 0.0000 0.0000 0.0000 0.0000 0.0000
Excitation energies and oscillator strengths:
Excited State 1: Triplet-B1 10.1773 eV 121.82 nm f=0.0000 <S**2>=2.000
5 -> 6 0.70711
This state for optimization and/or second-order correction.
Total Energy, E(CIS) = -74.5903204989
Copying the excited state density for this state as the 1-particle RhoCI density.
Excited State 2: Singlet-B1 12.2266 eV 101.40 nm f=0.0034 <S**2>=0.000
5 -> 6 0.70711
Excited State 3: Triplet-A1 12.2743 eV 101.01 nm f=0.0000 <S**2>=2.000
3 -> 7 -0.16334
4 -> 6 0.68423
Excited State 4: Triplet-A2 12.9040 eV 96.08 nm f=0.0000 <S**2>=2.000
5 -> 7 0.70711
Excited State 5: Triplet-B2 14.1315 eV 87.74 nm f=0.0000 <S**2>=2.000
3 -> 6 -0.37900
4 -> 7 0.59603
Excited State 6: Singlet-A2 14.2466 eV 87.03 nm f=0.0000 <S**2>=0.000
5 -> 7 0.70711
Excited State 7: Singlet-A1 15.8635 eV 78.16 nm f=0.0735 <S**2>=0.000
3 -> 7 0.17520
4 -> 6 0.68369
Excited State 8: Triplet-B2 17.0482 eV 72.73 nm f=0.0000 <S**2>=2.000
3 -> 6 0.58973
4 -> 7 0.37995
Excited State 9: Singlet-B2 18.1613 eV 68.27 nm f=0.0505 <S**2>=0.000
3 -> 6 0.31164
4 -> 7 0.63472
Excited State 10: Triplet-A1 19.1833 eV 64.63 nm f=0.0000 <S**2>=2.000
2 -> 6 0.10940
3 -> 7 0.67682
4 -> 6 0.17305
SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 16 LETran= 298.
The selected state is a triplet
CISAX will form 1 AO SS matrices at one time.
NMat= 1 NSing= 0 JSym2X= 0.
Leave Link 914 at Thu Feb 20 20:34:13 2014, MaxMem= 235929600 cpu: 0.1
(Enter /usr/local/gaussian-2009-D.01_intel_sse4.2/g09/l1002.exe)
Minotr: Closed shell wavefunction.
Computing CIS/TD-HF/TD-KS derivatives.
Using Z-Vector for PSCF gradient.
Skipping F1 and S1 gradient terms here.
Frozen-core window.
Direct CPHF calculation.
Differentiating once with respect to electric field.
with respect to dipole field.
Electric field/nuclear overlap derivatives assumed to be zero.
Requested convergence is 1.0D-10 RMS, and 1.0D-09 maximum.
NewPWx=F KeepS1=T KeepF1=T KeepIn=T MapXYZ=F SortEE=F KeepMc=T.
MDV= 235929566 using IRadAn= 0.
Keep R1 ints in memory in symmetry-blocked form, NReq=804224.
FoFCou: FMM=F IPFlag= 0 FMFlag= 0 FMFlg1= 0
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
wScrn= 0.000000 ICntrl= 600 IOpCl= 0 I1Cent= 0 NGrid= 0
NMat0= 1 NMatS0= 28 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Solving linear equations separately, MaxMat= 0.
There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1.
LinEq1: Iter= 0 NonCon= 1 RMS=1.15D-01 Max=3.32D-01 NDo= 1
AX will form 1 AO Fock derivatives at one time.
LinEq1: Iter= 1 NonCon= 1 RMS=1.59D-02 Max=4.12D-02 NDo= 1
LinEq1: Iter= 2 NonCon= 1 RMS=1.48D-03 Max=3.49D-03 NDo= 1
LinEq1: Iter= 3 NonCon= 1 RMS=3.98D-06 Max=1.26D-05 NDo= 1
LinEq1: Iter= 4 NonCon= 0 RMS=1.77D-20 Max=4.68D-20 NDo= 1
Linear equations converged to 1.000D-10 1.000D-09 after 4 iterations.
End of Minotr F.D. properties file 721 does not exist.
End of Minotr F.D. properties file 722 does not exist.
End of Minotr F.D. properties file 788 does not exist.
Leave Link 1002 at Thu Feb 20 20:34:13 2014, MaxMem= 235929600 cpu: 0.1
(Enter /usr/local/gaussian-2009-D.01_intel_sse4.2/g09/l601.exe)
Copying SCF densities to generalized density rwf, IOpCl= 0 IROHF=0.
**********************************************************************
Population analysis using the CI density.
**********************************************************************
Orbital symmetries:
Occupied (A1) (A1) (B2) (A1) (B1)
Virtual (A1) (B2)
The electronic state is 1-A1.
Natural Orbital Coefficients:
1 2 3 4 5
Eigenvalues -- 2.01580 2.00363 2.00000 2.00000 1.00000
1 1 O 1S 0.00000 -0.15731 -0.28062 0.97330 0.00000
2 2S 0.00000 0.75440 0.57746 0.07245 0.00000
3 2PX 0.00000 0.00000 0.00000 0.00000 1.00000
4 2PY 0.68707 0.00000 0.00000 0.00000 0.00000
5 2PZ 0.00000 0.71307 -0.40071 -0.05751 0.00000
6 2 H 1S 0.37330 -0.16030 0.25402 0.02448 0.00000
7 3 H 1S -0.37330 -0.16030 0.25402 0.02448 0.00000
6 7
Eigenvalues -- 0.99637 -0.01580
1 1 O 1S 0.13804 0.00000
2 2S -0.87938 0.00000
3 2PX 0.00000 0.00000
4 2PY 0.00000 -0.91947
5 2PZ 0.69108 0.00000
6 2 H 1S 0.78684 0.84513
7 3 H 1S 0.78684 -0.84513
Density Matrix:
1 2 3 4 5
1 1 O 1S 2.12069
2 2S -0.54178 2.58823
3 2PX 0.00000 0.00000 1.00000
4 2PY 0.00000 0.00000 0.00000 0.93824
5 2PZ -0.01676 0.00119 0.00000 0.00000 1.82241
6 2 H 1S 0.06383 -0.63480 0.00000 0.52930 0.10638
7 3 H 1S 0.06383 -0.63480 0.00000 -0.52930 0.10638
6 7
6 2 H 1S 1.06822
7 3 H 1S 0.52899 1.06822
Full Mulliken population analysis:
1 2 3 4 5
1 1 O 1S 2.12069
2 2S -0.12824 2.58823
3 2PX 0.00000 0.00000 1.00000
4 2PY 0.00000 0.00000 0.00000 0.93824
5 2PZ 0.00000 0.00000 0.00000 0.00000 1.82241
6 2 H 1S 0.00319 -0.28790 0.00000 0.16140 -0.02445
7 3 H 1S 0.00319 -0.28790 0.00000 0.16140 -0.02445
6 7
6 2 H 1S 1.06822
7 3 H 1S 0.12075 1.06822
Gross orbital populations:
1
1 1 O 1S 1.99883
2 2S 1.88419
3 2PX 1.00000
4 2PY 1.26105
5 2PZ 1.77352
6 2 H 1S 1.04121
7 3 H 1S 1.04121
Condensed to atoms (all electrons):
1 2 3
1 O 8.213093 -0.147755 -0.147755
2 H -0.147755 1.068215 0.120749
3 H -0.147755 0.120749 1.068215
Mulliken charges:
1
1 O 0.082418
2 H -0.041209
3 H -0.041209
Sum of Mulliken charges = 0.00000
Mulliken charges with hydrogens summed into heavy atoms:
1
1 O 0.000000
Electronic spatial extent (au): <R**2>= 20.3949
Charge= 0.0000 electrons
Dipole moment (field-independent basis, Debye):
X= 0.0000 Y= 0.0000 Z= 0.0537 Tot= 0.0537
Quadrupole moment (field-independent basis, Debye-Ang):
XX= -5.5983 YY= -6.5428 ZZ= -6.5575
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
XX= 0.6346 YY= -0.3099 ZZ= -0.3247
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Octapole moment (field-independent basis, Debye-Ang**2):
XXX= 0.0000 YYY= 0.0000 ZZZ= 1.2383 XYY= 0.0000
XXY= 0.0000 XXZ= 0.4379 XZZ= 0.0000 YZZ= 0.0000
YYZ= 0.7055 XYZ= 0.0000
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX= -3.2019 YYYY= -11.1600 ZZZZ= -6.9695 XXXY= 0.0000
XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000
ZZZY= 0.0000 XXYY= -2.3231 XXZZ= -1.6719 YYZZ= -3.0445
XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000
N-N= 8.887006225878D+00 E-N=-1.954060526428D+02 KE= 7.500114913257D+01
Symmetry A1 KE= 6.925293878912D+01
Symmetry A2 KE= 0.000000000000D+00
Symmetry B1 KE= 2.528731226009D+00
Symmetry B2 KE= 3.219479117440D+00
Orbital energies and kinetic energies (alpha):
1 2
1 (A1)--O -20.243755 28.659911
2 (A1)--O -1.250645 2.380045
3 (B2)--O -0.603166 1.445214
4 (A1)--O -0.445470 2.244529
5 (B1)--O -0.388215 2.528731
6 (A1)--V 0.570748 2.700187
7 (B2)--V 0.708592 2.745955
Total kinetic energy from orbitals= 7.451686028138D+01
No NMR shielding tensors so no spin-rotation constants.
Leave Link 601 at Thu Feb 20 20:34:13 2014, MaxMem= 235929600 cpu: 0.1
(Enter /usr/local/gaussian-2009-D.01_intel_sse4.2/g09/l9999.exe)
1\1\ WCSS.WROC.PL-SUPERNOVA-WN453\SP\RCIS-FC\STO-3G\H2O1\LANGNER\20-Fe
b-2014\0\\#P CIS(50-50,NStates=5)/STO-3G Density Pop=(Full,NaturalOrbi
tals)\\Water\\0,1\O\H,1,0.99\H,1,0.99,2,106.\\Version=ES64L-G09RevD.01
\State=1-A1\HF=-74.9643288\MP2=-75.0022821\RMSD=2.789e-10\Dipole=-0.01
68632,0.,-0.0127073\Quadrupole=-0.2374116,0.4717973,-0.2343857,0.,-0.0
052764,0.\PG=C02V [C2(O1),SGV(H2)]\\@
In the beginning there was nothing, which exploded.
Job cpu time: 0 days 0 hours 0 minutes 1.1 seconds.
File lengths (MBytes): RWF= 12 Int= 0 D2E= 0 Chk= 1 Scr= 1
Normal termination of Gaussian 09 at Thu Feb 20 20:34:13 2014.
|