1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
|
# -*- coding: utf-8 -*-
#
# Copyright (c) 2019, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.
"""Test single point logfiles in cclib."""
import os
import unittest
import numpy
from common import get_minimum_carbon_separation
from skip import skipForParser
from skip import skipForLogfile
__filedir__ = os.path.realpath(os.path.dirname(__file__))
class GenericSPTest(unittest.TestCase):
"""Generic restricted single point unittest"""
# Molecular mass of DVB in mD, and expected precision.
molecularmass = 130078.25
mass_precision = 0.10
# In STO-3G, H has 1, C has 5 (1 S and 4 SP).
nbasisdict = {1:1, 6:5}
# Approximate B3LYP energy of dvb after SCF in STO-3G.
b3lyp_energy = -10365
# Overlap first two atomic orbitals.
overlap01 = 0.24
# Generally, one criteria for SCF energy convergence.
num_scf_criteria = 1
def testnatom(self):
"""Is the number of atoms equal to 20?"""
self.assertEqual(self.data.natom, 20)
def testatomnos(self):
"""Are the atomnos correct?"""
# The nuclear charges should be integer values in a NumPy array.
self.assertTrue(numpy.alltrue([numpy.issubdtype(atomno, numpy.signedinteger)
for atomno in self.data.atomnos]))
self.assertEqual(self.data.atomnos.dtype.char, 'i')
self.assertEqual(self.data.atomnos.shape, (20,) )
self.assertEqual(sum(self.data.atomnos == 6) + sum(self.data.atomnos == 1), 20)
@skipForParser('DALTON', 'DALTON has a very low accuracy for the printed values of all populations (2 decimals rounded in a weird way), so let it slide for now')
@skipForLogfile('Jaguar/basicJaguar7', 'We did not print the atomic partial charges in the unit tests for this version')
@skipForLogfile('Molpro/basicMolpro2006', "These tests were run a long time ago and since we don't have access to Molpro 2006 anymore, we can skip this test (it is tested in 2012)")
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testatomcharges(self):
"""Are atomcharges (at least Mulliken) consistent with natom and sum to zero?"""
for type in set(['mulliken'] + list(self.data.atomcharges.keys())):
charges = self.data.atomcharges[type]
self.assertEqual(len(charges), self.data.natom)
self.assertAlmostEqual(sum(charges), 0.0, delta=0.001)
def testatomcoords(self):
"""Are the dimensions of atomcoords 1 x natom x 3?"""
expected_shape = (1, self.data.natom, 3)
self.assertEqual(self.data.atomcoords.shape, expected_shape)
def testatomcoords_units(self):
"""Are atomcoords consistent with Angstroms?"""
min_carbon_dist = get_minimum_carbon_separation(self.data)
dev = abs(min_carbon_dist - 1.34)
self.assertTrue(dev < 0.03, "Minimum carbon dist is %.2f (not 1.34)" % min_carbon_dist)
@skipForParser('Molcas','The parser is still being developed so we skip this test')
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testcharge_and_mult(self):
"""Are the charge and multiplicity correct?"""
self.assertEqual(self.data.charge, 0)
self.assertEqual(self.data.mult, 1)
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testnbasis(self):
"""Is the number of basis set functions correct?"""
count = sum([self.nbasisdict[n] for n in self.data.atomnos])
self.assertEqual(self.data.nbasis, count)
@skipForParser('ADF', 'ADF parser does not extract atombasis')
@skipForLogfile('Jaguar/basicJaguar7', 'Data file does not contain enough information. Can we make a new one?')
@skipForParser('Molcas','The parser is still being developed so we skip this test')
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testatombasis(self):
"""Are the indices in atombasis the right amount and unique?"""
all = []
for i, atom in enumerate(self.data.atombasis):
self.assertEqual(len(atom), self.nbasisdict[self.data.atomnos[i]])
all += atom
# Test if there are as many indices as atomic orbitals.
self.assertEqual(len(all), self.data.nbasis)
# Check if all are different (every orbital indexed once).
self.assertEqual(len(set(all)), len(all))
@skipForParser('GAMESS', 'atommasses not implemented yet')
@skipForParser('GAMESSUK', 'atommasses not implemented yet')
@skipForParser('Jaguar', 'atommasses not implemented yet')
@skipForParser('Molcas','The parser is still being developed so we skip this test')
@skipForParser('Molpro', 'atommasses not implemented yet')
@skipForParser('NWChem', 'atommasses not implemented yet')
@skipForLogfile('Psi4/basicPsi4.0b5', 'atommasses not implemented yet')
@skipForParser('QChem', 'atommasses not implemented yet')
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testatommasses(self):
"""Do the atom masses sum up to the molecular mass?"""
mm = 1000*sum(self.data.atommasses)
msg = "Molecule mass: %f not %f +- %fmD" % (mm, self.molecularmass, self.mass_precision)
self.assertAlmostEqual(mm, self.molecularmass, delta=self.mass_precision, msg=msg)
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testcoreelectrons(self):
"""Are the coreelectrons all 0?"""
ans = numpy.zeros(self.data.natom, 'i')
numpy.testing.assert_array_equal(self.data.coreelectrons, ans)
@skipForParser('Molcas','The parser is still being developed so we skip this test')
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testnormalisesym(self):
"""Did this subclass overwrite normalisesym?"""
# https://stackoverflow.com/a/8747890
self.logfile.normalisesym("A")
@skipForParser('Molcas','The parser is still being developed so we skip this test')
@skipForParser('Molpro', '?')
@skipForParser('ORCA', 'ORCA has no support for symmetry yet')
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testsymlabels(self):
"""Are all the symmetry labels either Ag/u or Bg/u?"""
sumwronglabels = sum([x not in ['Ag', 'Bu', 'Au', 'Bg'] for x in self.data.mosyms[0]])
self.assertEqual(sumwronglabels, 0)
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testhomos(self):
"""Is the index of the HOMO equal to 34?"""
numpy.testing.assert_array_equal(self.data.homos, numpy.array([34],"i"), "%s != array([34],'i')" % numpy.array_repr(self.data.homos))
def testscfvaluetype(self):
"""Are scfvalues and its elements the right type??"""
self.assertEqual(type(self.data.scfvalues),type([]))
self.assertEqual(type(self.data.scfvalues[0]),type(numpy.array([])))
def testscfenergy(self):
"""Is the SCF energy within the target?"""
self.assertAlmostEqual(self.data.scfenergies[-1], self.b3lyp_energy, delta=40, msg="Final scf energy: %f not %i +- 40eV" %(self.data.scfenergies[-1], self.b3lyp_energy))
def testscftargetdim(self):
"""Do the scf targets have the right dimensions?"""
self.assertEqual(self.data.scftargets.shape, (len(self.data.scfvalues), len(self.data.scfvalues[0][0])))
def testscftargets(self):
"""Are correct number of SCF convergence criteria being parsed?"""
self.assertEqual(len(self.data.scftargets[0]), self.num_scf_criteria)
def testlengthmoenergies(self):
"""Is the number of evalues equal to nmo?"""
if hasattr(self.data, "moenergies"):
self.assertEqual(len(self.data.moenergies[0]), self.data.nmo)
def testtypemoenergies(self):
"""Is moenergies a list containing one numpy array?"""
if hasattr(self.data, "moenergies"):
self.assertIsInstance(self.data.moenergies, list)
self.assertIsInstance(self.data.moenergies[0], numpy.ndarray)
@skipForParser('DALTON', 'mocoeffs not implemented yet')
@skipForLogfile('Jaguar/basicJaguar7', 'Data file does not contain enough information. Can we make a new one?')
def testdimmocoeffs(self):
"""Are the dimensions of mocoeffs equal to 1 x nmo x nbasis?"""
if hasattr(self.data, "mocoeffs"):
self.assertIsInstance(self.data.mocoeffs, list)
self.assertEqual(len(self.data.mocoeffs), 1)
self.assertEqual(self.data.mocoeffs[0].shape,
(self.data.nmo, self.data.nbasis))
@skipForParser('DALTON', 'mocoeffs not implemented yet')
@skipForLogfile('Jaguar/basicJaguar7', 'Data file does not contain enough information. Can we make a new one?')
def testfornoormo(self):
"""Do we have NOs or MOs?"""
self.assertTrue(
hasattr(self.data, "nocoeffs") or hasattr(self.data, "mocoeffs")
)
def testdimnoccnos(self):
"""Is the length of nooccnos equal to nmo?"""
if hasattr(self.data, "nooccnos"):
self.assertIsInstance(self.data.nooccnos, numpy.ndarray)
self.assertEqual(len(self.data.nooccnos), self.data.nmo)
def testdimnocoeffs(self):
"""Are the dimensions of nocoeffs equal to nmo x nmo?"""
if hasattr(self.data, "nocoeffs"):
self.assertIsInstance(self.data.nocoeffs, numpy.ndarray)
self.assertEqual(
self.data.nocoeffs.shape, (self.data.nmo, self.data.nmo)
)
@skipForParser('DALTON', 'To print: **INTEGRALS\n.PROPRI')
@skipForParser('Molcas','The parser is still being developed so we skip this test')
@skipForParser('Psi3', 'Psi3 does not currently have the option to print the overlap matrix')
@skipForParser('Psi4', 'Psi4 does not currently have the option to print the overlap matrix')
@skipForParser('QChem', 'QChem cannot print the overlap matrix')
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testaooverlaps(self):
"""Are the dims and values of the overlap matrix correct?"""
self.assertEqual(self.data.aooverlaps.shape, (self.data.nbasis, self.data.nbasis))
# The matrix is symmetric.
row = self.data.aooverlaps[0,:]
col = self.data.aooverlaps[:,0]
self.assertEqual(sum(col - row), 0.0)
# All values on diagonal should be exactly zero.
for i in range(self.data.nbasis):
self.assertEqual(self.data.aooverlaps[i,i], 1.0)
# Check some additional values that don't seem to move around between programs.
self.assertAlmostEqual(self.data.aooverlaps[0, 1], self.overlap01, delta=0.01)
self.assertAlmostEqual(self.data.aooverlaps[1, 0], self.overlap01, delta=0.01)
self.assertEqual(self.data.aooverlaps[3,0], 0.0)
self.assertEqual(self.data.aooverlaps[0,3], 0.0)
@skipForParser('Molcas','The parser is still being developed so we skip this test')
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testoptdone(self):
"""There should be no optdone attribute set."""
self.assertFalse(hasattr(self.data, 'optdone'))
@skipForParser('Gaussian', 'Logfile needs to be updated')
@skipForParser('Jaguar', 'No dipole moments in the logfile')
@skipForParser('Molcas','The parser is still being developed so we skip this test')
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testmoments(self):
"""Does the dipole and possible higher molecular moments look reasonable?"""
# The reference point is always a vector, but not necessarily the
# origin or center of mass. In this case, however, the center of mass
# is at the origin, so we now what to expect.
reference = self.data.moments[0]
self.assertEqual(len(reference), 3)
for x in reference:
self.assertEqual(x, 0.0)
# Length and value of dipole moment should always be correct (zero for this test).
dipole = self.data.moments[1]
self.assertEqual(len(dipole), 3)
for d in dipole:
self.assertAlmostEqual(d, 0.0, places=7)
# If the quadrupole is there, we can expect roughly -50B for the XX moment,
# -50B for the YY moment and and -60B for the ZZ moment.
if len(self.data.moments) > 2:
quadrupole = self.data.moments[2]
self.assertEqual(len(quadrupole), 6)
self.assertAlmostEqual(quadrupole[0], -50, delta=2.5)
self.assertAlmostEqual(quadrupole[3], -50, delta=2.5)
self.assertAlmostEqual(quadrupole[5], -60, delta=3)
# If the octupole is there, it should have 10 components and be zero.
if len(self.data.moments) > 3:
octupole = self.data.moments[3]
self.assertEqual(len(octupole), 10)
for m in octupole:
self.assertAlmostEqual(m, 0.0, delta=0.001)
# The hexadecapole should have 15 elements, an XXXX component of around -1900 Debye*ang^2,
# a YYYY component of -330B and a ZZZZ component of -50B.
if len(self.data.moments) > 4:
hexadecapole = self.data.moments[4]
self.assertEqual(len(hexadecapole), 15)
self.assertAlmostEqual(hexadecapole[0], -1900, delta=90)
self.assertAlmostEqual(hexadecapole[10], -330, delta=11)
self.assertAlmostEqual(hexadecapole[14], -50, delta=2.5)
# The are 21 unique 32-pole moments, and all are zero in this test case.
if len(self.data.moments) > 5:
moment32 = self.data.moments[5]
self.assertEqual(len(moment32), 21)
for m in moment32:
self.assertEqual(m, 0.0)
@skipForParser('ADF', 'Does not support metadata yet')
@skipForParser('GAMESSUK', 'Does not support metadata yet')
@skipForParser('Molcas','The parser is still being developed so we skip this test')
@skipForParser('Molpro', 'Does not support metadata yet')
@skipForParser('NWChem', 'Does not support metadata yet')
@skipForParser('ORCA', 'Does not support metadata yet')
@skipForParser('Psi3', 'Does not support metadata yet')
@skipForParser('Psi4', 'Does not support metadata yet')
@skipForParser('QChem', 'Does not support metadata yet')
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testmetadata(self):
"""Does metadata have expected keys and values?"""
self.assertTrue(hasattr(self.data, "metadata"))
if self.logfile.logname not in ['ORCA', 'Psi']:
self.assertIn("basis_set", self.data.metadata)
if self.logfile.logname == 'ORCA':
self.assertIn("input_file_name", self.data.metadata)
self.assertIn("input_file_contents", self.data.metadata)
self.assertIn("methods", self.data.metadata)
self.assertIn("package", self.data.metadata)
self.assertIn("package_version", self.data.metadata)
class ADFSPTest(GenericSPTest):
"""Customized restricted single point unittest"""
# ADF only prints up to 0.1mD per atom, so the precision here is worse than 0.1mD.
mass_precision = 0.3
foverlap00 = 1.00003
foverlap11 = 1.02672
foverlap22 = 1.03585
num_scf_criteria = 2
b3lyp_energy = -140
def testfoverlaps(self):
"""Are the dims and values of the fragment orbital overlap matrix correct?"""
self.assertEqual(self.data.fooverlaps.shape, (self.data.nbasis, self.data.nbasis))
# The matrix is symmetric.
row = self.data.fooverlaps[0,:]
col = self.data.fooverlaps[:,0]
self.assertEqual(sum(col - row), 0.0)
# Although the diagonal elements are close to zero, the SFOs
# are generally not normalized, so test for a few specific values.
self.assertAlmostEqual(self.data.fooverlaps[0, 0], self.foverlap00, delta=0.0001)
self.assertAlmostEqual(self.data.fooverlaps[1, 1], self.foverlap11, delta=0.0001)
self.assertAlmostEqual(self.data.fooverlaps[2, 2], self.foverlap22, delta=0.0001)
class GaussianSPTest(GenericSPTest):
"""Customized restricted single point unittest"""
num_scf_criteria = 3
class JaguarSPTest(GenericSPTest):
"""Customized restricted single point unittest"""
num_scf_criteria = 2
class Jaguar7SPTest(JaguarSPTest):
"""Customized restricted single point unittest"""
# Jaguar prints only 10 virtual MOs by default. Can we re-run with full output?
def testlengthmoenergies(self):
"""Is the number of evalues equal to the number of occ. MOs + 10?"""
self.assertEqual(len(self.data.moenergies[0]), self.data.homos[0]+11)
class MolcasSPTest(GenericSPTest):
"""Customized restricted single point unittest"""
num_scf_criteria = 4
class MolproSPTest(GenericSPTest):
"""Customized restricted single point unittest"""
num_scf_criteria = 2
class NWChemKSSPTest(GenericSPTest):
"""Customized restricted single point unittest"""
num_scf_criteria = 3
class PsiSPTest(GenericSPTest):
"""Customized restricted single point HF/KS unittest"""
num_scf_criteria = 2
class OrcaSPTest(GenericSPTest):
"""Customized restricted single point unittest"""
# Orca has different weights for the masses
molecularmass = 130190
num_scf_criteria = 3
class TurbomoleSPTest(GenericSPTest):
"""Customized restricted single point unittest"""
num_scf_criteria = 2
if __name__=="__main__":
import sys
sys.path.insert(1, os.path.join(__filedir__, ".."))
from test_data import DataSuite
suite = DataSuite(['SP'])
suite.testall()
|