1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
# -*- coding: utf-8 -*-
#
# Copyright (c) 2017, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.
"""Test logfiles related to basis sets"""
import os
import unittest
from skip import skipForParser
__filedir__ = os.path.realpath(os.path.dirname(__file__))
class GenericBasisTest(unittest.TestCase):
"""Generic basis set unittest"""
# The number of contraction per atom, by atom number.
contractions = { 1: 1, 6: 3 }
# Number of components in each contraction by subshell type,
# so that we can infer nbasis from gbasis. Note how we assume
# the basis set is not is spherical representation.
names = ['S', 'P', 'D', 'F', 'G']
multiple = {'S': 1, 'P': 3, 'D': 6, 'F': 10, 'G': 15}
multiple_spher = {'S': 1, 'P': 3, 'D': 5, 'F': 7, 'G': 9}
spherical = False
# These are the expected exponents and coefficients for the first
# Gaussians in particular shells for hydrogen and carbon atoms.
gbasis_H_1s_func0 = [3.42525, 0.15433]
gbasis_C_2s_func0 = [2.9412, -0.1000]
gbasis_C_2p_func0 = [2.9412, 0.1559]
@skipForParser('Molcas','The parser is still being developed so we skip this test')
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testgbasis(self):
"""Is gbasis the right length?"""
self.assertEquals(self.data.natom, len(self.data.gbasis))
@skipForParser('Molcas','The parser is still being developed so we skip this test')
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testnames(self):
"""Are the name of basis set functions acceptable?"""
for atom in self.data.gbasis:
for fns in atom:
self.assert_(fns[0] in self.names,
"%s not one of S or P" % fns[0])
@skipForParser('Molcas','The parser is still being developed so we skip this test')
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testsizeofbasis(self):
"""Is the basis set the correct size?"""
total = 0
multiple = self.multiple_spher if self.spherical else self.multiple
for atom in self.data.gbasis:
for (ftype, contraction) in atom:
total += multiple[ftype]
self.assertEquals(self.data.nbasis, total)
@skipForParser('Molcas','The parser is still being developed so we skip this test')
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testcontractions(self):
"""Are the number of contractions on all atoms correct?"""
for iatom, atom in enumerate(self.data.gbasis):
atomno = self.data.atomnos[iatom]
self.assertEquals(len(atom), self.contractions[atomno])
@skipForParser('Molcas','The parser is still being developed so we skip this test')
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testprimitives(self):
"""Are all primitives 2-tuples?"""
for atom in self.data.gbasis:
for ftype, contraction in atom:
for primitive in contraction:
self.assertEquals(len(primitive), 2)
@skipForParser('Molcas','The parser is still being developed so we skip this test')
@skipForParser('Turbomole','The parser is still being developed so we skip this test')
def testcoeffs(self):
"""Are the atomic basis set exponents and coefficients correct?"""
for iatom,atom in enumerate(self.data.gbasis):
if self.data.atomnos[iatom] == 1:
coeffs = atom[0][1]
self.assertAlmostEqual(coeffs[0][0], self.gbasis_H_1s_func0[0], 4)
self.assertAlmostEqual(coeffs[0][1], self.gbasis_H_1s_func0[1], 4)
else:
s_coeffs = atom[1][1]
p_coeffs = atom[2][1]
self.assertAlmostEqual(s_coeffs[0][0], self.gbasis_C_2s_func0[0], 4)
self.assertAlmostEqual(p_coeffs[0][0], self.gbasis_C_2p_func0[0], 4)
self.assertAlmostEqual(s_coeffs[0][1], self.gbasis_C_2s_func0[1], 4)
self.assertAlmostEqual(p_coeffs[0][1], self.gbasis_C_2p_func0[1], 4)
class JaguarBasisTest(GenericBasisTest):
"""Customized basis set unittest"""
# For some reason, Jaguar seems to use slightly different coefficients for
# contractions in the STO-3G basis set. Or perhaps we don't understand something.
gbasis_H_1s_func0 = [3.42525, 0.24050]
gbasis_C_2s_func0 = [2.941249, -0.29565]
gbasis_C_2p_func0 = [2.941249, 0.22135]
class GenericBigBasisTest(GenericBasisTest):
"""Generic big basis set unittest"""
contractions = { 6: 20 }
@unittest.skip('Write up a new test, and/or revise the one inherited.')
def testcoeffs(self):
"""Are the basis set coefficients correct?"""
self.assertEqual(1, 1)
@unittest.skip('# of contractions is 20 for VQZ, but 29 for CVQZ; unify files first.')
def testcontractions(self):
""""""
self.assertEqual(1, 1)
class DALTONBigBasisTest(GenericBigBasisTest):
"""Customized big basis set unittest"""
spherical = True
class GaussianBigBasisTest(GenericBigBasisTest):
"""Customized big basis set unittest"""
spherical = True
class JaguarBigBasisTest(GenericBigBasisTest):
"""Customized big basis set unittest"""
spherical = True
# Jaguar only goes up to F functions.
names = ['S', 'P', 'D', 'F']
class MolcasBigBasisTest(GenericBigBasisTest):
"""Customized big basis set unittest"""
spherical = True
class MolproBigBasisTest(GenericBigBasisTest):
"""Customized big basis set unittest"""
spherical = True
class Psi4BigBasisTest(GenericBigBasisTest):
"""Customized big basis set unittest"""
spherical = True
class QChemBigBasisTest(GenericBigBasisTest):
"""Customized big basis set unittest"""
spherical = True
if __name__=="__main__":
import sys
sys.path.insert(1, os.path.join(__filedir__, ".."))
from test_data import DataSuite
suite = DataSuite(['Basis'])
suite.testall()
|