1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
How to parse and write
======================
This page outlines the various ways cclib can be used to parse and write logfiles, and provides several examples to get you started.
From Python
+++++++++++
Importing cclib and parsing a file is a few lines of Python code, making it simple to access data from the output file of any supported computational chemistry program. For example:
.. code-block:: python
>>> import cclib
>>> filename = "water.out"
>>> parser = cclib.io.ccopen(filename)
>>> data = parser.parse()
>>> print("There are %i atoms and %i MOs" % (data.natom, data.nmo))
There are 3 atoms and 7 MOs
A newer command, ``ccread``, combines both the format detection and parsing steps:
.. code-block:: python
>>> import cclib
>>> filename = "logfile.out"
>>> data = cclib.io.ccread(filename)
>>> print("There are %i atoms and %i MOs" % (data.natom, data.nmo))
There are 3 atoms and 7 MOs
The `data` object above contains all the information cclib was able to to parse from the output file, available as attributes on the object:
.. code-block:: python
>>> dir(data)
[(...), 'atomcoords', 'atommasses', 'atomnos', 'charge', (...), 'mult', 'natom, 'nbasis', ...]
You can find a full list of these attribute on the `parsed data`_ page.
.. _`parsed data`: data.html
From command line
+++++++++++++++++
The cclib package provides four scripts to parse and write data: ``ccget``, ``ccwrite``, ``cda``, and ``ccframe``.
1. **ccget** is used to parse attribute data from output files.
2. **ccwrite** has the ability to list out all valid attribute data that can be parsed from an output format. It has the added feature of writing the output file into four different formats i.e. ``json``, ``cjson``, ``cml``, ``xyz``.
3. **cda** is used for the chemical decomposition analysis of output files.
4. **ccframe** is used to write data tables from output files.
This page describes how to use the ccget, ccwrite and ccframe scripts to obtain data from output files.
ccget
-----
The data types that can be parsed from the output file depends on the type of computation being conducted. The name of the output file used to show example usage is ``Benzeneselenol.out``.
Data type can be parsed from the output file by following this format::
ccget <attribute> [<attribute>] <CompChemLogFile> [<CompChemLogFile>]
where ``attribute`` can be any one of the attribute names available `here`_.
.. _`here`: data_dev.html
1. Atomic Charges
The atomic charges are obtained by using the ``atomcharges`` attribute::
$ ccget atomcharges Benzeneselenol.out
Attempting to read Benzeneselenol.out
atomcharges:
{'mulliken': array([-0.49915 , 0.056965, 0.172161, 0.349794, -0.153072, 0.094583,
0.016487, 0.050249, 0.002149, 0.01161 , 0.053777, -0.173671,
0.018118])}
2. Electronic Energies
The molecular electronic energies after SCF (DFT) optimization of the input molecule are printed by using the ``scfenergies`` attribute::
$ ccget scfenergies Benzeneselenol.out
Attempting to read Benzeneselenol.out
scfenergies:
[-71671.43702915 -71671.4524142 -71671.4534768 -71671.45447492
-71671.4556548 -71671.45605671 -71671.43194906 -71671.45761021
-71671.45850275 -71671.39630296 -71671.45915119 -71671.45935854
-71671.4594614 -71671.45947338 -71671.45948807 -71671.4594946
-71671.4594946 ]
3. Geometry Targets
The targets for convergence of geometry optimization can be obtained by using the ``geotargets`` attribute::
$ ccget geotargets Benzeneselenol.out
Attempting to read Benzeneselenol.out
geotargets:
[ 0.00045 0.0003 0.0018 0.0012 ]
Chaining of attributes
^^^^^^^^^^^^^^^^^^^^^^
ccget provides the user with the option to chain attributes to obtain more than one type of data with a command call. The attributes can be chained in any particular order. A few chained examples are provided below.
1. Molecular Orbitals and Multiplicity
The number of molecular orbitals and the number of basis functions used to optimize the molecule can be obtained by running the following command::
$ ccget nmo nbasis Benzeneselenol.out
Attempting to read Benzeneselenol.out
nmo:
405
nbasis:
407
2. Enthalpy and Vibrational Frequency
The enthalpy and the vibrational frequencies of the optimized molecule is conducted is obtained below::
$ ccget enthalpy vibfreqs Benzeneselenol.out
Attempting to read Benzeneselenol.out
enthalpy:
-2633.77264
vibfreqs:
[ 129.5512 170.6681 231.4278 304.8614 407.8299 472.5026
629.9087 679.9032 693.2509 746.7694 812.5113 850.2578
915.8742 987.1252 988.1785 1002.8922 1038.1073 1091.4005
1102.3417 1183.3857 1209.2727 1311.3497 1355.6441 1471.4447
1510.1919 1611.9088 1619.0156 2391.2487 3165.1596 3171.3909
3182.0753 3188.5786 3198.0359]
ccwrite
-------
The same Benzeneselenol.out file used in the previous examples will be used as the input file for ccwrite. When the ccwrite script is used with a valid input, it prints out the valid attributes that can be parsed from the file.
Command line format::
ccwrite <OutputFileFormat> <CompChemLogFile> [<CompChemLogFile>]
The valid output file formats are ``cjson``, ``cml``, and ``xyz``.
1. `Chemical markup language`_ (CML)::
$ ccwrite cml Benzeneselenol.out
Attempting to parse Benzeneselenol.out
cclib can parse the following attributes from Benzeneselenol.out:
atomcharges
atomcoords
atomnos
charge
coreelectrons
enthalpy
geotargets
geovalues
grads
homos
moenergies
mosyms
mult
natom
nbasis
nmo
optdone
optstatus
scfenergies
scftargets
temperature
vibdisps
vibfreqs
vibirs
vibsyms
.. _`chemical markup language`: http://www.xml-cml.org/
A ``Benzeneselenol.cml`` output file is generated in the same directory as the ``Benzeneselenol.out`` file:
.. code-block:: xml
<?xml version='1.0' encoding='utf-8'?>
<molecule id="Benzeneselenol.out" xmlns="http://www.xml-cml.org/schema">
<atomArray>
<atom elementType="C" id="a1" x3="-2.8947620000" y3="-0.0136420000" z3="-0.0015280000" />
<atom elementType="C" id="a2" x3="-2.2062510000" y3="1.1938510000" z3="-0.0025210000" />
<atom elementType="C" id="a3" x3="-0.8164260000" y3="1.2153020000" z3="-0.0022010000" />
<atom elementType="C" id="a4" x3="-0.1033520000" y3="0.0183920000" z3="0.0031060000" />
<atom elementType="C" id="a5" x3="-0.7906630000" y3="-1.1943840000" z3="0.0058500000" />
<atom elementType="C" id="a6" x3="-2.1799570000" y3="-1.2059710000" z3="0.0017890000" />
<atom elementType="H" id="a7" x3="-3.9758430000" y3="-0.0253010000" z3="-0.0029040000" />
<atom elementType="H" id="a8" x3="-2.7502340000" y3="2.1291370000" z3="-0.0052760000" />
<atom elementType="H" id="a9" x3="-0.2961840000" y3="2.1630180000" z3="-0.0073260000" />
<atom elementType="H" id="a10" x3="-0.2474670000" y3="-2.1302310000" z3="0.0132260000" />
<atom elementType="H" id="a11" x3="-2.7028960000" y3="-2.1530750000" z3="0.0036640000" />
<atom elementType="Se" id="a12" x3="1.8210800000" y3="-0.0433780000" z3="-0.0038760000" />
<atom elementType="H" id="a13" x3="2.0043580000" y3="1.4100070000" z3="0.1034490000" />
</atomArray>
<bondArray>
<bond atomRefs2="a9 a3" order="1" />
<bond atomRefs2="a8 a2" order="1" />
<bond atomRefs2="a12 a4" order="1" />
<bond atomRefs2="a12 a13" order="1" />
<bond atomRefs2="a7 a1" order="1" />
<bond atomRefs2="a2 a3" order="2" />
<bond atomRefs2="a2 a1" order="1" />
<bond atomRefs2="a3 a4" order="1" />
<bond atomRefs2="a1 a6" order="2" />
<bond atomRefs2="a6 a11" order="1" />
<bond atomRefs2="a6 a5" order="1" />
<bond atomRefs2="a4 a5" order="2" />
<bond atomRefs2="a5 a10" order="1" />
</bondArray>
</molecule>
2. XYZ_
Using ``xyz`` as the ``<OutputFileFormat>`` with ``Benzeneselenol.out``, we obtain the following ``Benzeneselenol.xyz`` file::
13
Benzeneselenol.out: Geometry 17
C -2.8947620000 -0.0136420000 -0.0015280000
C -2.2062510000 1.1938510000 -0.0025210000
C -0.8164260000 1.2153020000 -0.0022010000
C -0.1033520000 0.0183920000 0.0031060000
C -0.7906630000 -1.1943840000 0.0058500000
C -2.1799570000 -1.2059710000 0.0017890000
H -3.9758430000 -0.0253010000 -0.0029040000
H -2.7502340000 2.1291370000 -0.0052760000
H -0.2961840000 2.1630180000 -0.0073260000
H -0.2474670000 -2.1302310000 0.0132260000
H -2.7028960000 -2.1530750000 0.0036640000
Se 1.8210800000 -0.0433780000 -0.0038760000
H 2.0043580000 1.4100070000 0.1034490000
.. _XYZ: https://en.wikipedia.org/wiki/XYZ_file_format
ccframe
-------
This script creates complete tables of data from output files in some of the formats supported by pandas_.
Since the pandas library is not a dependency of cclib, `it must be installed <https://pandas.pydata.org/pandas-docs/stable/install.html>`_ separately.
.. _pandas: https://pandas.pydata.org/
A complete data table can be parsed from many output files by following this format::
ccframe [--force|-f] -O <OutputDest> <CompChemLogFile> [<CompChemLogFile>...]
The argument for ``-O`` indicates the data file to be written and its extension specifies the filetype (e.g. csv, h5/hdf/hdf5, json, pickle/pkl, xlsx).
An error will be thrown if ``<OutputDest>`` already exists, but you can force overwriting by using the ``--force`` (or ``-f``) flag.
Since higher-dimensional attributes (e.g. ``atomcoords``) are handled as plain text in some file formats (such as Excel XLSX or CSV), we recommend storing JSON or HDF5 files.
Observe that the output data file is overwritten if it exits already.
|