File: testSP.py

package info (click to toggle)
cclib 1.8-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 55,300 kB
  • sloc: python: 23,276; makefile: 84; sh: 26
file content (702 lines) | stat: -rw-r--r-- 33,555 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
# -*- coding: utf-8 -*-
#
# Copyright (c) 2023, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.

"""Test single point logfiles in cclib."""

import datetime
import os
import unittest

import numpy
import packaging

from common import get_minimum_carbon_separation

from skip import skipForParser
from skip import skipForLogfile


__filedir__ = os.path.realpath(os.path.dirname(__file__))


class GenericSPTest(unittest.TestCase):
    """Generic restricted single point unittest"""

    # Molecular mass of DVB in mD, and expected precision.
    molecularmass = 130078.25
    mass_precision = 0.10

    # In STO-3G, H has 1, C has 5 (1 S and 4 SP).
    nbasisdict = {1:1, 6:5}

    # Approximate B3LYP energy of dvb after SCF in STO-3G.
    b3lyp_energy = -10365

    # Approximate energy of the innermost molecular orbital of DVB with
    # B3LYP/STO-3G (from Q-Chem 5.4).
    b3lyp_moenergy = -272.60365543
    b3lyp_moenergy_delta = 7.55e-2

    # Overlap first two atomic orbitals.
    overlap01 = 0.24

    # Generally, one criteria for SCF energy convergence.
    num_scf_criteria = 1

    def testnatom(self):
        """Is the number of atoms equal to 20?"""
        assert self.data.natom == 20

    def testatomnos(self):
        """Are the atomnos correct?"""

        # The nuclear charges should be integer values in a NumPy array.
        assert numpy.alltrue([numpy.issubdtype(atomno, numpy.signedinteger)
                                       for atomno in self.data.atomnos])
        assert self.data.atomnos.dtype.char == 'i'

        assert self.data.atomnos.shape == (20,)
        assert sum(self.data.atomnos == 6) + sum(self.data.atomnos == 1) == 20

    @skipForParser('DALTON', 'DALTON has a very low accuracy for the printed values of all populations (2 decimals rounded in a weird way), so let it slide for now')
    @skipForParser('FChk', 'The parser is still being developed so we skip this test')
    @skipForParser('GAMESSDAT', 'We are not going to implement atom charges in this version.')
    @skipForLogfile('Jaguar/basicJaguar7', 'We did not print the atomic partial charges in the unit tests for this version')
    @skipForLogfile('Molpro/basicMolpro2006', "These tests were run a long time ago and since we don't have access to Molpro 2006 anymore, we can skip this test (it is tested in 2012)")
    @skipForParser('Turbomole','The parser is still being developed so we skip this test')
    def testatomcharges(self):
        """Are atomic charges consistent with natom?"""
        for atomcharge_type in self.data.atomcharges:
            charges = self.data.atomcharges[atomcharge_type]
            natom = self.data.natom
            assert len(charges) == natom, f"len(atomcharges['{atomcharge_type}']) = {len(charges)}, natom = {natom}"

    @skipForParser('DALTON', 'DALTON has a very low accuracy for the printed values of all populations (2 decimals rounded in a weird way), so let it slide for now')
    @skipForLogfile("FChk/basicQChem5.2", "not printed for Q-Chem")
    @skipForLogfile("FChk/basicQChem5.4", "not printed for Q-Chem")
    @skipForParser('GAMESSDAT', 'We are not sure about the specific type of atom charges, it is best to skip the test for now.')
    @skipForLogfile('Jaguar/basicJaguar7', 'We did not print the atomic partial charges in the unit tests for this version')
    @skipForLogfile('Molpro/basicMolpro2006', "These tests were run a long time ago and since we don't have access to Molpro 2006 anymore, we can skip this test (it is tested in 2012)")
    @skipForParser('Turbomole','The parser is still being developed so we skip this test')
    def testatomcharges_mulliken(self):
        """Do Mulliken atomic charges sum to zero?"""
        charges = self.data.atomcharges["mulliken"]
        assert abs(sum(charges)) < 1.0e-2

    @skipForParser('ADF', 'Lowdin charges not present by default')
    @skipForParser('DALTON', 'DALTON has a very low accuracy for the printed values of all populations (2 decimals rounded in a weird way), so let it slide for now')
    @skipForParser('FChk', 'The parser is still being developed so we skip this test')
    @skipForParser('GAMESSDAT', 'We are not sure about the specific type of atom charges, it is best to skip the test for now.')
    @skipForParser('Gaussian', 'Lowdin charges not present by default')
    @skipForParser('Jaguar', 'Lowdin charges not present by default')
    @skipForParser('NWChem', 'Lowdin charges not present by default')
    @skipForParser('Molcas', 'Lowdin charges not present by default')
    @skipForParser('Molpro', 'Lowdin charges not present by default')
    @skipForParser('QChem', 'Lowdin charges not present by default')
    @skipForParser('Turbomole','The parser is still being developed so we skip this test')
    def testatomcharges_lowdin(self):
        """Do Lowdin atomic charges sum to zero?"""
        charges = self.data.atomcharges["lowdin"]
        assert abs(sum(charges)) < 1.0e-2

    @skipForParser('ADF', 'Hirshfeld charges not implemented')
    @skipForParser('DALTON', 'DALTON has a very low accuracy for the printed values of all populations (2 decimals rounded in a weird way), so let it slide for now')
    @skipForParser('FChk', 'The parser is still being developed so we skip this test')
    @skipForParser('Gaussian', 'Hirshfeld charges not implemented')
    @skipForParser('GAMESS', 'Hirshfeld charges not implemented')
    @skipForParser('GAMESSUK', 'Hirshfeld charges not implemented')
    @skipForParser('GAMESSDAT', 'We are not sure about the specific type of atom charges, it is best to skip the test for now.')
    @skipForParser('Jaguar', 'Hirshfeld charges not implemented')
    @skipForParser('NWChem', 'Hirshfeld charges not implemented')
    @skipForParser('Molcas', 'Hirshfeld charges not implemented')
    @skipForParser('Molpro', 'Hirshfeld charges not implemented')
    @skipForLogfile('ORCA/basicORCA4.1', 'This needs to be moved to regressions')
    @skipForParser('Psi4', 'Hirshfeld charges not implemented')
    @skipForParser('QChem', 'Hirshfeld charges not implemented')
    @skipForParser('Turbomole','The parser is still being developed so we skip this test')
    def testatomcharges_hirshfeld(self):
        """Do Hirshfeld atomic charges sum to roughly zero?"""
        charges = self.data.atomcharges["hirshfeld"]
        assert abs(sum(charges)) < 4.0e-3

    def testatomcoords(self):
        """Are the dimensions of atomcoords 1 x natom x 3?"""
        expected_shape = (1, self.data.natom, 3)
        assert self.data.atomcoords.shape == expected_shape

    @skipForParser('GAMESSDAT', 'Vectors need some calculations to transform them. Current mm value is 2.54')
    def testatomcoords_units(self):
        """Are atomcoords consistent with Angstroms?"""
        min_carbon_dist = get_minimum_carbon_separation(self.data)
        dev = abs(min_carbon_dist - 1.34)
        assert dev < 0.03, f"Minimum carbon dist is {min_carbon_dist:.2f} (not 1.34)"

    @skipForParser('GAMESSDAT', 'Neither charge nor mult exists in the files.')
    @skipForParser('Molcas', 'missing mult')
    def testcharge_and_mult(self):
        """Are the charge and multiplicity correct?"""
        assert self.data.charge == 0
        assert self.data.mult == 1

    def testnbasis(self):
        """Is the number of basis set functions correct?"""
        count = sum([self.nbasisdict[n] for n in self.data.atomnos])
        assert self.data.nbasis == count

    @skipForParser('ADF', 'ADF parser does not extract atombasis')
    @skipForLogfile('Jaguar/basicJaguar7', 'Data file does not contain enough information. Can we make a new one?')
    @skipForParser('Molcas','The parser is still being developed so we skip this test')
    @skipForParser('Turbomole','The parser is still being developed so we skip this test')
    def testatombasis(self):
        """Are the indices in atombasis the right amount and unique?"""
        all = []
        for i, atom in enumerate(self.data.atombasis):
            assert len(atom) == self.nbasisdict[self.data.atomnos[i]]
            all += atom
        # Test if there are as many indices as atomic orbitals.
        assert len(all) == self.data.nbasis
        # Check if all are different (every orbital indexed once).
        assert len(set(all)) == len(all)

    @skipForLogfile("FChk/basicQChem5.2", "Q-Chem doesn't print SCF energy to fchk")
    @skipForLogfile("FChk/basicQChem5.4", "Q-Chem doesn't print SCF energy to fchk")
    @skipForParser('GAMESS', 'atommasses not implemented yet')
    @skipForParser('GAMESSUK', 'atommasses not implemented yet')
    @skipForParser('GAMESSDAT', 'Atommasses implemented, but it does not pass the test.')
    @skipForParser('Jaguar', 'atommasses not implemented yet')
    @skipForParser('Molcas','The parser is still being developed so we skip this test')
    @skipForParser('Molpro', 'atommasses not implemented yet')
    @skipForLogfile('Psi4/basicPsi4.0b5', 'atommasses not implemented yet')
    @skipForParser('QChem', 'atommasses not implemented yet')
    @skipForParser('Turbomole','The parser is still being developed so we skip this test')
    def testatommasses(self):
        """Do the atom masses sum up to the molecular mass?"""
        mm = 1000*sum(self.data.atommasses)
        msg = f"Molecule mass: {mm:f} not {self.molecularmass:f} +- {self.mass_precision:f}mD"
        assert abs(mm-self.molecularmass) < self.mass_precision, msg

    @skipForParser('Turbomole','The parser is still being developed so we skip this test')
    def testcoreelectrons(self):
        """Are the coreelectrons all 0?"""
        ans = numpy.zeros(self.data.natom, 'i')
        numpy.testing.assert_array_equal(self.data.coreelectrons, ans)

    @skipForParser('FChk', 'Formatted checkpoint files do not have a section for symmetry')
    @skipForParser('GAMESSDAT', 'Mosyms do not exist in the file')
    @skipForParser('Molcas','The parser is still being developed so we skip this test')
    @skipForParser('Molpro', '?')
    def testsymlabels(self):
        """Are all the symmetry labels either Ag/u or Bg/u?"""
        sumwronglabels = sum([x not in ['Ag', 'Bu', 'Au', 'Bg'] for x in self.data.mosyms[0]])
        assert sumwronglabels == 0

    def testhomos(self):
        """Is the index of the HOMO equal to 34?"""
        numpy.testing.assert_array_equal(
            self.data.homos,
            numpy.array([34], "i"),
            f"{numpy.array_repr(self.data.homos)} != array([34],'i')",
        )

    @skipForParser('FChk', 'Formatted Checkpoint files do not have a section for SCF energy')
    @skipForParser('GAMESSDAT', 'Scfvalues probably do not exist in the file')
    def testscfvaluetype(self):
        """Are scfvalues and its elements the right type??"""
        assert isinstance(self.data.scfvalues, list)
        assert isinstance(self.data.scfvalues[0], numpy.ndarray)

    @skipForLogfile("FChk/basicQChem5.2", "Q-Chem doesn't print SCF energy to fchk")
    @skipForLogfile("FChk/basicQChem5.4", "Q-Chem doesn't print SCF energy to fchk")
    @skipForParser('GAMESSDAT', 'Scfenergies probably do not exist in the file')
    def testscfenergy(self):
        """Is the SCF energy within the target?"""
        assert abs(self.data.scfenergies[-1]-self.b3lyp_energy) < 40

    @skipForParser('FChk', 'Formatted Checkpoint files do not have a section for SCF convergence')
    @skipForParser('GAMESSDAT', 'Scftargets probably do not exist in the file')
    def testscftargetdim(self):
        """Do the scf targets have the right dimensions?"""
        assert self.data.scftargets.shape == (len(self.data.scfvalues), len(self.data.scfvalues[0][0]))

    @skipForParser('FChk', 'Formatted Checkpoint files do not have a section for SCF convergence')
    @skipForParser('GAMESSDAT', 'Scftargets probably do not exist in the file')
    def testscftargets(self):
        """Are correct number of SCF convergence criteria being parsed?"""
        assert len(self.data.scftargets[0]) == self.num_scf_criteria

    def testlengthmoenergies(self):
        """Is the number of evalues equal to nmo?"""
        if hasattr(self.data, "moenergies"):
            assert len(self.data.moenergies[0]) == self.data.nmo

    def testtypemoenergies(self):
        """Is moenergies a list containing one numpy array?"""
        if hasattr(self.data, "moenergies"):
            assert isinstance(self.data.moenergies, list)
            assert isinstance(self.data.moenergies[0], numpy.ndarray)

    @skipForParser('GAMESSDAT', 'Moenergies probably do not exist in the file')
    @skipForLogfile('Gaussian/basicGaussian16/dvb_sp_no.out', 'no energies for natural orbitals')
    @skipForLogfile('Turbomole/basicTurbomole5.9/dvb_sp_symm', 'delta of 7.4, everything else ok')
    def testfirstmoenergy(self):
        """Is the lowest energy molecular orbital within the target?"""
        assert abs(self.data.moenergies[0][0]-self.b3lyp_moenergy) < self.b3lyp_moenergy_delta

    @skipForParser('DALTON', 'mocoeffs not implemented yet')
    @skipForLogfile('Jaguar/basicJaguar7', 'Data file does not contain enough information. Can we make a new one?')
    @skipForParser('Turbomole', 'Use of symmetry has reduced the number of mo coeffs')
    def testdimmocoeffs(self):
        """Are the dimensions of mocoeffs equal to 1 x nmo x nbasis?"""
        if hasattr(self.data, "mocoeffs"):
            assert isinstance(self.data.mocoeffs, list)
            assert len(self.data.mocoeffs) == 1
            assert self.data.mocoeffs[0].shape == (self.data.nmo, self.data.nbasis)

    @skipForParser('DALTON', 'mocoeffs not implemented yet')
    @skipForLogfile('Jaguar/basicJaguar7', 'Data file does not contain enough information. Can we make a new one?')
    def testfornoormo(self):
        """Do we have NOs or MOs?"""
        assert hasattr(self.data, "nocoeffs") or hasattr(self.data, "mocoeffs")

    def testdimnoccnos(self):
        """Is the length of nooccnos equal to nmo?"""
        if hasattr(self.data, "nooccnos"):
            assert isinstance(self.data.nooccnos, numpy.ndarray)
            assert len(self.data.nooccnos) == self.data.nmo

    def testdimnocoeffs(self):
        """Are the dimensions of nocoeffs equal to nmo x nmo?"""
        if hasattr(self.data, "nocoeffs"):
            assert isinstance(self.data.nocoeffs, numpy.ndarray)
            assert self.data.nocoeffs.shape == (self.data.nmo, self.data.nmo)

    @skipForParser('DALTON', 'To print: **INTEGRALS\n.PROPRI')
    @skipForLogfile('FChk/basicGaussian09', 'Only available in QChem')
    @skipForLogfile('FChk/basicGaussian16', 'Only available in QChem')
    @skipForParser('GAMESSDAT','Aooverlaps probably do not exist in the file.')
    @skipForParser('Molcas','The parser is still being developed so we skip this test')
    @skipForParser('Psi4', 'Psi4 does not currently have the option to print the overlap matrix')
    @skipForParser('QChem', 'QChem cannot print the overlap matrix')
    @skipForParser('Turbomole','The parser is still being developed so we skip this test')
    def testaooverlaps(self):
        """Are the dims and values of the overlap matrix correct?"""

        assert self.data.aooverlaps.shape == (self.data.nbasis, self.data.nbasis)

        # The matrix is symmetric.
        row = self.data.aooverlaps[0,:]
        col = self.data.aooverlaps[:,0]
        assert sum(col - row) == 0.0

        # All values on diagonal should be exactly one.
        for i in range(self.data.nbasis):
            assert self.data.aooverlaps[i,i] == 1.0

        # Check some additional values that don't seem to move around between programs.
        assert abs(self.data.aooverlaps[0, 1] - self.overlap01) < 0.01
        assert abs(self.data.aooverlaps[1, 0] - self.overlap01) < 0.01
        assert round(abs(self.data.aooverlaps[3, 0]), 7) == 0
        assert round(abs(self.data.aooverlaps[0, 3]), 7) == 0

    def testoptdone(self):
        """There should be no optdone attribute set."""
        assert not hasattr(self.data, 'optdone')

    @skipForParser('ADF', 'Not implemented yes')
    @skipForParser('DALTON', 'Not implemented yes')
    @skipForParser('FChk', 'Rotational constants are never written to fchk files')
    @skipForParser('GAMESS', 'Not implemented yes')
    @skipForParser('GAMESSUK', 'Not implemented yet')
    @skipForParser('GAMESSDAT', 'Not implemented yet')
    @skipForParser('Jaguar', 'Not implemented yet')
    @skipForParser('Molcas', 'Not implemented yes')
    @skipForParser('Molpro', 'Not implemented yes')
    @skipForParser('NWChem', 'Not implemented yes')
    @skipForParser('ORCA', 'Not implemented yes')
    @skipForParser('Psi4', 'Not implemented yes')
    @skipForParser('QChem', 'Not implemented yes')
    @skipForParser('Turbomole', 'Not implemented yes')
    def testrotconsts(self):
        """A single geometry leads to single set of rotational constants."""
        assert self.data.rotconsts.shape == (1, 3)
        # taken from Gaussian16/dvb_sp.out
        ref = [4.6266363, 0.6849065, 0.5965900]
        numpy.testing.assert_allclose(self.data.rotconsts[0], ref, rtol=0, atol=1.0e-3)

    @skipForParser('FChk', 'The parser is still being developed so we skip this test')
    @skipForParser('Gaussian', 'Logfile needs to be updated')
    @skipForParser('Jaguar', 'No dipole moments in the logfile')
    @skipForParser('Molcas','The parser is still being developed so we skip this test')
    def testmoments(self):
        """Does the dipole and possible higher molecular moments look reasonable?"""

        # The reference point is always a vector, but not necessarily the
        # origin or center of mass. In this case, however, the center of mass
        # is at the origin, so we now what to expect.
        reference = self.data.moments[0]
        assert len(reference) == 3
        for x in reference:
            assert x == 0.0

        # Length and value of dipole moment should always be correct (zero for this test).
        dipole = self.data.moments[1]
        assert len(dipole) == 3
        for d in dipole:
            assert round(abs(d), 7) == 0

        # If the quadrupole is there, we can expect roughly -50B for the XX moment,
        # -50B for the YY moment and and -60B for the ZZ moment.
        if len(self.data.moments) > 2:
            quadrupole = self.data.moments[2]
            assert len(quadrupole) == 6
            assert abs(quadrupole[0] - -50) < 2.5
            assert abs(quadrupole[3] - -50) < 2.5
            assert abs(quadrupole[5] - -60) < 3

        # If the octupole is there, it should have 10 components and be zero.
        if len(self.data.moments) > 3:
            octupole = self.data.moments[3]
            assert len(octupole) == 10
            for m in octupole:
                assert abs(m) < 0.001

        # The hexadecapole should have 15 elements, an XXXX component of around -1900 Debye*ang^2,
        # a YYYY component of -330B and a ZZZZ component of -50B.
        if len(self.data.moments) > 4:
            hexadecapole = self.data.moments[4]
            assert len(hexadecapole) == 15
            assert abs(hexadecapole[0] - -1900) < 90
            assert abs(hexadecapole[10] - -330) < 11
            assert abs(hexadecapole[14] - -50) < 2.5

        # The are 21 unique 32-pole moments, and all are zero in this test case.
        if len(self.data.moments) > 5:
            moment32 = self.data.moments[5]
            assert len(moment32) == 21
            for m in moment32:
                assert m == 0.0

    @skipForParser('ADF', 'reading basis set names is not implemented')
    @skipForParser('GAMESSDAT', 'Basis set not implemented in this version.')
    @skipForParser('GAMESSUK', 'reading basis set names is not implemented')
    @skipForParser('Molcas', 'reading basis set names is not implemented')
    @skipForParser('Psi4', 'reading basis set names is not implemented')
    def testmetadata_basis_set(self):
        """Does metadata have expected keys and values?"""
        assert self.data.metadata["basis_set"].lower() == "sto-3g"

    @skipForParser('ADF', 'reading input file contents and name is not implemented')
    @skipForParser('DALTON', 'reading input file contents and name is not implemented')
    @skipForParser('FChk', 'Formatted checkpoint files do not have an input file section')
    @skipForParser('GAMESS', 'reading input file contents and name is not implemented')
    @skipForParser('GAMESSUK', 'reading input file contents and name is not implemented')
    @skipForParser('GAMESSDAT', 'reading input file contents and name is not implemented')
    @skipForParser('Gaussian', 'reading input file contents and name is not implemented')
    @skipForParser('Jaguar', 'reading input file contents and name is not implemented')
    @skipForParser('Molcas', 'reading input file contents and name is not implemented')
    @skipForParser('Molpro', 'reading input file contents and name is not implemented')
    @skipForParser('NWChem', 'reading input file contents and name is not implemented')
    @skipForParser('Psi4', 'reading input file contents and name is not implemented')
    @skipForParser('QChem', 'reading input file contents and name is not implemented')
    @skipForParser('Turbomole', 'reading input file contents and name is not implemented')
    def testmetadata_input_file(self):
        """Does metadata have expected keys and values?"""
        assert "input_file_contents" in self.data.metadata
        # TODO make input file names consistent where possible, though some
        # programs do not allow arbitrary file extensions; for example, DALTON
        # must end in `dal`.
        assert "dvb_sp.in" in self.data.metadata["input_file_name"]

    def testmetadata_methods(self):
        """Does metadata have expected keys and values?"""
        # TODO implement and unify across parsers; current values are [],
        # ["HF"], ["RHF"], and ["DFT"]
        assert "methods" in self.data.metadata

    def testmetadata_package(self):
        """Does metadata have expected keys and values?"""
        # TODO How can the value be tested when the package name comes from
        # the parser and isn't stored on ccData?
        assert "package" in self.data.metadata

    @skipForParser('FChk', 'Formatted Checkpoint files do not have section for legacy package version')
    @skipForParser('GAMESSDAT', 'Files do not contain information about the legacy package version')
    def testmetadata_legacy_package_version(self):
        """Does metadata have expected keys and values?"""
        # TODO Test specific values for each unit test.
        assert "legacy_package_version" in self.data.metadata

    @skipForParser('FChk', 'Formatted Checkpoint files do not have section for package version')
    @skipForParser('GAMESSDAT', 'Files do not contain information about the package version')
    def testmetadata_package_version(self):
        """Does metadata have expected keys and values?"""
        # TODO Test specific values for each unit test.
        assert isinstance(packaging.version.parse(self.data.metadata["package_version"]), packaging.version.Version)

    @skipForParser('FChk', 'point group symmetry cannot be printed')
    @skipForParser('GAMESSDAT', 'Files probably do not contain information about symmetry_detected')
    @skipForParser('Molcas', 'reading point group symmetry and name is not implemented')
    @skipForParser('Molpro', 'reading point group symmetry and name is not implemented')
    @skipForParser('Turbomole', 'reading point group symmetry and name is not implemented')
    def testmetadata_symmetry_detected(self):
        """Does metadata have expected keys and values?"""
        assert self.data.metadata["symmetry_detected"] == "c2h"

    @skipForParser('FChk', 'point group symmetry cannot be printed')
    @skipForParser('GAMESSDAT', 'Files probably do not contain information about symmetry_used')
    @skipForParser('Molcas', 'reading point group symmetry and name is not implemented')
    @skipForParser('Molpro', 'reading point group symmetry and name is not implemented')
    @skipForParser('Turbomole', 'reading point group symmetry and name is not implemented')
    def testmetadata_symmetry_used(self):
        """Does metadata have expected keys and values?"""
        assert self.data.metadata["symmetry_used"] == "c2h"

    @skipForParser('ADF', 'reading cpu/wall time is not implemented for this parser')
    @skipForParser('DALTON', 'reading cpu/wall time is not implemented for this parser') 
    @skipForParser('FChk', 'reading cpu/wall time is not implemented for this parser') 
    @skipForParser('GAMESS', 'reading cpu/wall time is not implemented for this parser') 
    @skipForParser('GAMESSUK', 'reading cpu/wall time is not implemented for this parser') 
    @skipForParser('GAMESSUS', 'reading cpu/wall time is not implemented for this parser') 
    @skipForParser('GAMESSDAT', 'reading cpu/wall time is not implemented for this parser')
    @skipForParser('Jaguar', 'reading cpu/wall time is not implemented for this parser') 
    @skipForParser('Molcas', ' reading cpu/wall time is not implemented for this parser') 
    @skipForParser('Molpro', 'reading cpu/wall time is not implemented for this parser') 
    @skipForParser('NWChem', 'reading cpu/wall time is not implemented for this parser')  
    @skipForParser('Psi3', 'reading cpu/wall time is not implemented for this parser') 
    @skipForParser('Psi4', 'reading cpu/wall time is not implemented for this parser')
    def testmetadata_times(self):
        """Does metadata have expected keys and values of correct types?"""
        if "wall_time" in self.data.metadata:
            assert self.data.metadata["wall_time"]
            assert all(isinstance(wall_time, datetime.timedelta)
                       for wall_time in self.data.metadata["wall_time"])
        if "cpu_time" in self.data.metadata:
            assert self.data.metadata["cpu_time"]
            assert all(isinstance(cpu_time, datetime.timedelta)
                       for cpu_time in self.data.metadata["cpu_time"])


class GenericHFSPTest(GenericSPTest):

    # Approximate HF energy of dvb after SCF in STO-3G (from DALTON 2015).
    hf_scfenergy = -10334.03948035995

    # Approximate energy of the innermost molecular orbital of DVB with
    # HF/STO-3G (from Psi4 1.3.1).
    hf_moenergy = -300.43401785663235

    @skipForParser('FChk', 'Formatted Checkpoint files do not have a section for SCF energy')
    def testscfenergy(self):
        """Is the SCF energy within the target?"""
        assert abs(self.data.scfenergies[-1]-self.hf_scfenergy) < 6.5e-1

    def testfirstmoenergy(self):
        """Is the lowest energy molecular orbital within the target?"""
        assert abs(self.data.moenergies[0][0]-self.hf_moenergy) < 1.6e-1


class ADFSPTest(GenericSPTest):
    """Customized restricted single point unittest"""

    # ADF only prints up to 0.1mD per atom, so the precision here is worse than 0.1mD.
    mass_precision = 0.3

    foverlap00 = 1.00003
    foverlap11 = 1.02672
    foverlap22 = 1.03585
    num_scf_criteria = 2
    b3lyp_energy = -140
    b3lyp_moenergy = -269.6079423873336

    def testfoverlaps(self):
        """Are the dims and values of the fragment orbital overlap matrix correct?"""

        assert self.data.fooverlaps.shape == (self.data.nbasis, self.data.nbasis)

        # The matrix is symmetric.
        row = self.data.fooverlaps[0,:]
        col = self.data.fooverlaps[:,0]
        assert sum(col - row) == 0.0

        # Although the diagonal elements are close to zero, the SFOs
        # are generally not normalized, so test for a few specific values.
        assert abs(self.data.fooverlaps[0, 0]-self.foverlap00) < 0.0001
        assert abs(self.data.fooverlaps[1, 1]-self.foverlap11) < 0.0001
        assert abs(self.data.fooverlaps[2, 2]-self.foverlap22) < 0.0001


class GaussianSPTest(GenericSPTest):
    """Customized restricted single point unittest"""

    num_scf_criteria = 3

class JaguarSPTest(GenericSPTest):
    """Customized restricted single point KS unittest"""

    num_scf_criteria = 2


class JaguarHFSPTest(JaguarSPTest, GenericHFSPTest):
    """Customized restricted single point KS unittest"""


class Jaguar7SPTest(JaguarSPTest):
    """Customized restricted single point unittest"""

    # Jaguar prints only 10 virtual MOs by default. Can we re-run with full output?
    def testlengthmoenergies(self):
        """Is the number of evalues equal to the number of occ. MOs + 10?"""
        assert len(self.data.moenergies[0]) == self.data.homos[0]+11

class MolcasSPTest(GenericSPTest):
    """Customized restricted single point unittest"""

    num_scf_criteria = 4

class MolproSPTest(GenericHFSPTest):
    """Customized restricted single point HF unittest"""

    num_scf_criteria = 2

class NWChemKSSPTest(GenericSPTest):
    """Customized restricted single point unittest"""

    num_scf_criteria = 3

class PsiSPTest(GenericSPTest):
    """Customized restricted single point KS unittest"""

    num_scf_criteria = 2


class PsiHFSPTest(PsiSPTest, GenericHFSPTest):
    """Customized restricted single point HF unittest"""


class OrcaSPTest(GenericSPTest):
    """Customized restricted single point unittest"""

    # Orca has different weights for the masses
    molecularmass = 130190

    b3lyp_moenergy_delta = 1.2e-1

    num_scf_criteria = 3


class TurbomoleSPTest(GenericSPTest):
    """Customized restricted single point KS unittest"""

    num_scf_criteria = 2
    
    def testmetadata_basis_set(self):
        """Does metadata have expected keys and values?"""
        # One of our test cases used sto-3g hondo
        valid_basis = self.data.metadata["basis_set"].lower() in ("sto-3g", "sto-3g hondo")
        assert valid_basis


class TurbomoleHFSPTest(TurbomoleSPTest, GenericHFSPTest):
    """Customized restricted single point HF unittest"""


class GenericDispersionTest(unittest.TestCase):
    """Generic single-geometry dispersion correction unittest"""

    dispersionenergy = -0.4005496

    def testdispersionenergies(self):
        """Is the dispersion energy parsed correctly?"""
        assert len(self.data.dispersionenergies) == 1
        assert abs(self.data.dispersionenergies[0]-self.dispersionenergy) < 2.0e-7


class FireflyDispersionTest(GenericDispersionTest):
    """Customized single-geometry dispersion correction unittest"""
    dispersionenergy = -0.4299821
    

class SolventMetadataTest(unittest.TestCase):
    """Check we can parse implicit solvent data."""
    
    model = ""
    # Toluene
    static_dielectric_constant = 2.3741
    
    def test_solvent_model(self) -> None:
        """Check solvent model was parsed correctly"""
        assert self.data.metadata['solvent_model'] == self.model

    @skipForLogfile("basicQChem6.0/water_hf_solvent_smd_iefpcm.out", "the internally-used dielectric constant isn't printed, only solvent name")
    def test_solvent_dielectric(self) -> None:
        """Check solvent dielectric was parsed correctly"""
        assert abs(self.data.metadata['solvent_params']['epsilon'] - self.static_dielectric_constant) < 1.0e-4


class QChemSolventMetadataTest(SolventMetadataTest):

    static_dielectric_constant = 2.370
        

class IEFPCMMetadataTest(SolventMetadataTest):
    """Check we can parse implicit solvent data."""

    model = "IEFPCM"
    
class SCIPCMMetadataTest(SolventMetadataTest):
    """Check we can parse implicit solvent data."""

    model = "SCIPCM"
    
class IPCMMetadataTest(SolventMetadataTest):
    """Check we can parse implicit solvent data."""

    model = "IPCM"
    static_dielectric_constant = 78.3
    
class COSMOMetadataTest(SolventMetadataTest):
    """Check we can parse implicit solvent data."""

    model = "COSMO"

class CPCMMetadataTest(SolventMetadataTest):
    """Check we can parse implicit solvent data."""

    model = "CPCM"
    
class CPCMCOSMOMetadataTest(SolventMetadataTest):
    """Check we can parse implicit solvent data."""

    model = "CPCM-COSMO"
    
class SMDIEFPCMMetadataTest(SolventMetadataTest):
    """Check we can parse implicit solvent data."""

    model = "SMD-IEFPCM"
    
class SMDCPCMMetadataTest(SolventMetadataTest):
    """Check we can parse implicit solvent data."""

    model = "SMD-CPCM"


class QChemSMDIEFPCMMetadataTest(QChemSolventMetadataTest, SMDIEFPCMMetadataTest):
    """Check we can parse implicit solvent data."""


class QChemSMDCPCMMetadataTest(QChemSolventMetadataTest, SMDCPCMMetadataTest):
    """Check we can parse implicit solvent data."""


if __name__ == "__main__":

    import sys
    sys.path.insert(1, os.path.join(__filedir__, ".."))

    from test_data import DataSuite
    suite = DataSuite(['SP'])
    suite.testall()