File: testBasis.py

package info (click to toggle)
cclib 1.8.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 55,412 kB
  • sloc: python: 23,605; makefile: 75; sh: 31
file content (155 lines) | stat: -rw-r--r-- 5,039 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright (c) 2024, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.

"""Test logfiles related to basis sets"""

import pytest


class GenericBasisTest:
    """Generic basis set unittest"""

    # The number of contraction per atom, by atom number.
    contractions = {1: 1, 6: 3}

    # Number of components in each contraction by subshell type,
    # so that we can infer nbasis from gbasis. Note how we assume
    # the basis set is not is spherical representation.
    names = ["S", "P", "D", "F", "G"]
    multiple = {"S": 1, "P": 3, "D": 6, "F": 10, "G": 15}
    multiple_spher = {"S": 1, "P": 3, "D": 5, "F": 7, "G": 9}
    spherical = False

    # These are the expected exponents and coefficients for the first
    # Gaussians in particular shells for hydrogen and carbon atoms.
    gbasis_H_1s_func0 = [3.42525, 0.15433]
    gbasis_C_2s_func0 = [2.9412, -0.1000]
    gbasis_C_2p_func0 = [2.9412, 0.1559]

    def testgbasis(self, data) -> None:
        """Is gbasis the right length?"""
        assert data.natom == len(data.gbasis)

    def testnames(self, data) -> None:
        """Are the name of basis set functions acceptable?"""
        for atom in data.gbasis:
            for fns in atom:
                assert fns[0] in self.names, f"{fns[0]} not one of S or P"

    def testsizeofbasis(self, data) -> None:
        """Is the basis set the correct size?"""

        total = 0
        multiple = self.multiple_spher if self.spherical else self.multiple
        for atom in data.gbasis:
            for ftype, contraction in atom:
                total += multiple[ftype]

        assert data.nbasis == total

    def testcontractions(self, data) -> None:
        """Are the number of contractions on all atoms correct?"""
        for iatom, atom in enumerate(data.gbasis):
            atomno = data.atomnos[iatom]
            assert len(atom) == self.contractions[atomno]

    def testprimitives(self, data) -> None:
        """Are all primitives 2-tuples?"""
        for atom in data.gbasis:
            for ftype, contraction in atom:
                for primitive in contraction:
                    assert len(primitive) == 2

    def testcoeffs(self, data) -> None:
        """Are the atomic basis set exponents and coefficients correct?"""

        for iatom, atom in enumerate(data.gbasis):
            if data.atomnos[iatom] == 1:
                coeffs = atom[0][1]
                assert round(abs(coeffs[0][0] - self.gbasis_H_1s_func0[0]), 4) == 0
                assert round(abs(coeffs[0][1] - self.gbasis_H_1s_func0[1]), 4) == 0
            else:
                s_coeffs = atom[1][1]
                p_coeffs = atom[2][1]
                assert round(abs(s_coeffs[0][0] - self.gbasis_C_2s_func0[0]), 4) == 0
                assert round(abs(p_coeffs[0][0] - self.gbasis_C_2p_func0[0]), 4) == 0
                assert round(abs(s_coeffs[0][1] - self.gbasis_C_2s_func0[1]), 4) == 0
                assert round(abs(p_coeffs[0][1] - self.gbasis_C_2p_func0[1]), 4) == 0

    def testatomcoords(self, data) -> None:
        """Are the dimensions of atomcoords 1 x natom x 3?"""
        expected_shape = (1, data.natom, 3)
        assert data.atomcoords.shape == expected_shape


class JaguarBasisTest(GenericBasisTest):
    """Customized basis set unittest"""

    # For some reason, Jaguar seems to use slightly different coefficients for
    # contractions in the STO-3G basis set. Or perhaps we don't understand something.
    gbasis_H_1s_func0 = [3.42525, 0.24050]
    gbasis_C_2s_func0 = [2.941249, -0.29565]
    gbasis_C_2p_func0 = [2.941249, 0.22135]


class GenericBigBasisTest(GenericBasisTest):
    """Generic big basis set unittest"""

    contractions = {6: 20}

    @pytest.mark.skip("Write up a new test, and/or revise the one inherited.")
    def testcoeffs(self, data):
        """Are the basis set coefficients correct?"""
        assert True

    @pytest.mark.skip("# of contractions is 20 for VQZ, but 29 for CVQZ; unify files first.")
    def testcontractions(self, data):
        """"""
        assert True


class DALTONBigBasisTest(GenericBigBasisTest):
    """Customized big basis set unittest"""

    spherical = True


class GaussianBigBasisTest(GenericBigBasisTest):
    """Customized big basis set unittest"""

    spherical = True


class JaguarBigBasisTest(GenericBigBasisTest):
    """Customized big basis set unittest"""

    spherical = True

    # Jaguar only goes up to F functions.
    names = ["S", "P", "D", "F"]


class MolcasBigBasisTest(GenericBigBasisTest):
    """Customized big basis set unittest"""

    spherical = True


class MolproBigBasisTest(GenericBigBasisTest):
    """Customized big basis set unittest"""

    spherical = True


class Psi4BigBasisTest(GenericBigBasisTest):
    """Customized big basis set unittest"""

    spherical = True


class QChemBigBasisTest(GenericBigBasisTest):
    """Customized big basis set unittest"""

    spherical = True