1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
|
# Copyright (c) 2024, the cclib development team
#
# This file is part of cclib (http://cclib.github.io) and is distributed under
# the terms of the BSD 3-Clause License.
"""Test geometry optimization logfiles in cclib"""
import numpy
from common import get_minimum_carbon_separation
from skip import skipForLogfile, skipForParser
class GenericGeoOptTest:
"""Generic geometry optimization unittest"""
# In STO-3G, H has 1, C has 3.
nbasisdict = {1: 1, 6: 5}
# Some programs print surplus atom coordinates by default.
extracoords = 0
# Some programs do surplus SCF cycles by default.
extrascfs = 0
# Approximate B3LYP energy of dvb after SCF in STO-3G.
b3lyp_energy = -10365
b3lyp_tolerance = 40
@skipForParser("Molcas", "The parser is still being developed so we skip this test")
@skipForParser("MOPAC", "The success status is not parsed yet")
def test_success(self, data) -> None:
assert data.metadata["success"]
def testnatom(self, data) -> None:
"""Is the number of atoms equal to 20?"""
assert data.natom == 20
def testatomnos(self, data) -> None:
"""Are the atomnos correct?"""
# This will work only for numpy
# self.assertEqual(data.atomnos.dtype.char, 'i')
atomnos_types = [numpy.issubdtype(atomno, numpy.signedinteger) for atomno in data.atomnos]
assert numpy.all(atomnos_types)
assert data.atomnos.shape == (20,)
count_C = sum(data.atomnos == 6)
count_H = sum(data.atomnos == 1)
assert count_C + count_H == 20
def testatomcoords(self, data) -> None:
"""Are atomcoords consistent with natom and Angstroms?"""
natom = len(data.atomcoords[0])
ref = data.natom
msg = f"natom is {int(ref)} but len(atomcoords[0]) is {int(natom)}"
assert natom == ref, msg
def testatomcoords_units(self, data) -> None:
"""Are atomcoords consistent with Angstroms?"""
min_carbon_dist = get_minimum_carbon_separation(data)
dev = abs(min_carbon_dist - 1.34)
assert dev < 0.15, f"Minimum carbon dist is {min_carbon_dist:.2f} (not 1.34)"
@skipForParser("Molcas", "The parser is still being developed so we skip this test")
@skipForParser("xTB", "Not implemented yet")
def testcharge_and_mult(self, data) -> None:
"""Are the charge and multiplicity correct?"""
assert data.charge == 0
assert data.mult == 1
@skipForParser("MOPAC", "Not implemented.")
@skipForParser("xTB", "not implemented yet")
def testnbasis(self, data) -> None:
"""Is the number of basis set functions correct?"""
count = sum([self.nbasisdict[n] for n in data.atomnos])
assert data.nbasis == count
@skipForParser("Turbomole", "The parser is still being developed so we skip this test")
def testcoreelectrons(self, data) -> None:
"""Are the coreelectrons all 0?"""
ans = numpy.zeros(data.natom, "i")
numpy.testing.assert_array_equal(data.coreelectrons, ans)
@skipForParser("Molcas", "The parser is still being developed so we skip this test")
@skipForParser("MOPAC", "Not implemented.")
@skipForParser("xTB", "Not implemented yet")
def testhomos(self, data) -> None:
"""Is the index of the HOMO equal to 34?"""
ref = numpy.array([34], "i")
msg = f"{numpy.array_repr(data.homos)} != array([34], 'i')"
numpy.testing.assert_array_equal(data.homos, ref, msg)
@skipForParser("MOPAC", "The scfvalues attribute is not parsed yet")
@skipForParser("xTB", "not implemented yet")
def testscfvaluetype(self, data) -> None:
"""Are scfvalues and its elements the right type?"""
assert isinstance(data.scfvalues, list)
assert isinstance(data.scfvalues[0], numpy.ndarray)
def testscfenergy(self, data) -> None:
"""Is the SCF energy close to target?"""
scf = data.scfenergies[-1]
ref = self.b3lyp_energy
tol = self.b3lyp_tolerance
msg = f"Final SCF energy: {scf:f} not {int(ref)} +- {int(tol)}eV"
assert abs(scf - ref) < 40, msg
@skipForParser("xTB", "Not implemented yet")
def testscfenergydim(self, data) -> None:
"""Is the number of SCF energies consistent with atomcoords?"""
count_scfenergies = data.scfenergies.shape[0] - self.extrascfs
count_atomcoords = data.atomcoords.shape[0] - self.extracoords
assert count_scfenergies == count_atomcoords
@skipForParser("MOPAC", "The scftargets attribute is not parsed yet")
@skipForParser("xTB", "not implemented yet")
def testscftargetdim(self, data) -> None:
"""Do the scf targets have the right dimensions?"""
dim_scftargets = data.scftargets.shape
dim_scfvalues = (len(data.scfvalues), len(data.scfvalues[0][0]))
assert dim_scftargets == dim_scfvalues
@skipForParser("MOPAC", "Not implemented.")
@skipForParser("xTB", "not implemented yet")
def testgeovalues_atomcoords(self, data) -> None:
"""Are atomcoords consistent with geovalues?"""
count_geovalues = len(data.geovalues)
count_coords = len(data.atomcoords) - self.extracoords
msg = f"len(atomcoords) is {int(count_coords)} but len(geovalues) is {int(count_geovalues)}"
assert count_geovalues == count_coords, msg
@skipForParser("MOPAC", "Not implemented.")
@skipForParser("xTB", "not implemented yet")
def testgeovalues_scfvalues(self, data) -> None:
"""Are scfvalues consistent with geovalues?"""
count_scfvalues = len(data.scfvalues) - self.extrascfs
count_geovalues = len(data.geovalues)
assert count_scfvalues == count_geovalues
@skipForParser("MOPAC", "Not implemented.")
@skipForParser("xTB", "not implemented yet")
def testgeotargets(self, data) -> None:
"""Do the geo targets have the right dimensions?"""
dim_geotargets = data.geotargets.shape
dim_geovalues = (len(data.geovalues[0]),)
assert dim_geotargets == dim_geovalues
@skipForParser("MOPAC", "Not implemented.")
@skipForParser("xTB", "not implemented yet")
def testoptdone(self, data) -> None:
"""Has the geometry converged and set optdone to True?"""
assert data.optdone
assert numpy.all(numpy.abs(data.geovalues[-1]) <= data.geotargets)
@skipForParser("ADF", "Not implemented.")
@skipForParser("DALTON", "Not implemented.")
@skipForParser("GAMESS", "Not implemented.")
@skipForParser("GAMESSUK", "Not implemented.")
@skipForParser("Jaguar", "Not implemented.")
@skipForParser("Molcas", "The parser is still being developed so we skip this test")
@skipForParser("Molpro", "Not implemented.")
@skipForParser("MOPAC", "Not implemented.")
@skipForParser("NWChem", "Not implemented.")
@skipForParser("ORCA", "Not implemented.")
@skipForParser("QChem", "Not implemented.")
@skipForParser("xTB", "not implemented yet")
def testoptstatus(self, data) -> None:
"""Is optstatus consistent with geovalues and reasonable?"""
assert len(data.optstatus) == len(data.geovalues)
assert data.optstatus[0] == data.OPT_NEW
for i in range(1, len(data.optstatus) - 1):
assert data.optstatus[i] == data.OPT_UNKNOWN
assert data.optstatus[-1] == data.OPT_DONE
@skipForParser("ADF", "Not implemented yet")
@skipForParser("DALTON", "Not implemented yet")
@skipForParser("FChk", "Rotational constants are never written to fchk files")
@skipForParser("GAMESS", "Not implemented yet")
@skipForParser("GAMESSUK", "Not implemented yet")
@skipForParser("Jaguar", "Not implemented yet")
@skipForParser("Molcas", "Not implemented yet")
@skipForParser("Molpro", "Not implemented yet")
@skipForLogfile("MOPAC/basicMOPAC2016", "Not present in this file")
@skipForParser("NWChem", "Not implemented yet")
@skipForParser("ORCA", "Not implemented yet")
@skipForParser("Psi4", "Not implemented yet")
@skipForParser("QChem", "Not implemented yet")
@skipForParser("Turbomole", "Not implemented yet")
@skipForParser("xTB", "not implemented yet")
def testrotconsts(self, data) -> None:
"""Each geometry leads to a row in the rotational constants entry."""
assert data.rotconsts.shape == (len(data.atomcoords), 3)
@skipForParser("Molcas", "The parser is still being developed so we skip this test")
def testmoenergies(self, data) -> None:
"""Are only the final MOs parsed?"""
assert len(data.moenergies) == 1
if hasattr(data, "mocoeffs"):
assert len(data.mocoeffs) == 1
@skipForParser("ADF", "Not implemented.")
@skipForParser("DALTON", "Not implemented.")
@skipForParser("GAMESS", "Not implemented.")
@skipForParser("GAMESSUK", "Not implemented.")
@skipForParser("Jaguar", "Not implemented.")
@skipForParser("MOPAC", "Not implemented.")
@skipForParser("NWChem", "Not implemented.")
@skipForParser("xTB", "not implemented yet")
def testgradsdim(self, data) -> None:
"""Do the grads have the right dimensions?"""
assert data.grads.shape == (len(data.geovalues), data.natom, 3)
class ADFGeoOptTest(GenericGeoOptTest):
"""Customized geometry optimization unittest"""
extracoords = 1
extrascfs = 1
b3lyp_energy = -140
b3lyp_tolerance = 1
class DALTONGeoOptTest(GenericGeoOptTest):
"""Customzed geometry optimization unittest"""
# DALTON will normally print the geometry several extra times as the "final geometry"
# when an optimziation converges. We don't parse those coordinates, but the parser
# does catch the geometry printed in the final static property calculation when
# that is done for the final geometry (presumably always).
extracoords = 1
# Although DALTON generally has three criteria for convergence, it normally only
# requires two of them to end a geometry optimization. This is printed in the output
# and can probably be tweaked in the input, but we don't parsed that in cclib.
def testoptdone(self, data) -> None:
"""Has the geometry converged and set optdone to True?"""
assert data.optdone
convergence = numpy.abs(data.geovalues[-1]) <= data.geotargets
assert sum(convergence) >= 2
class GaussianGeoOptTest(GenericGeoOptTest):
"""Customized geometry optimization unittest"""
def testgradsorientation(self, data) -> None:
"""Are the orientations for grads and atomcoords are same?"""
# since z-coordinates of atomcoords are all 0 for dvb, z-values of grads should be all 0
assert numpy.all(numpy.abs(data.grads[:, :, 2]) < 1e-14)
class MolcasGeoOptTest(GenericGeoOptTest):
"""Customized geometry optimization unittest"""
# Molcas prints the input coordinates and performs the &scf job
# once before entering the optimization part where the coordinates and
# scf section are printed for each iteration. Hence we have an extra set of
# coordinates and extra set of SCF attributes (scfenergies, scftargets & scfvalues).
extracoords = 1
extrascfs = 1
class MolproGeoOptTest(GenericGeoOptTest):
"""Customized geometry optimization unittest"""
# Note that these extra coordinates and energies will be available only
# if the appropriate output is parsed, and Molpro often saves the initial
# SCF run and subsequent geometry optimization to separate files, which
# both need to be given to the cclib parser (as a list).
extracoords = 1
extrascfs = 2
# Here is what the manual has to say about convergence:
# The standard MOLPRO convergency criterion requires the maximum component of the gradient
# to be less then $3 \cdot 10^{-4}$ [a.u.] and the maximum energy change to be less than
# $1 \cdot 10^{-6}$ [H] or the maximum component of the gradient to be less then
# $3 \cdot 10^{-4}$ [a.u.] and the maximum component of the step to be less then
# $3 \cdot 10^{-4}$ [a.u.].
#
# It is also possible to use the convergency criterion of (...)
#
# Source: https://www.molpro.net/info/2012.1/doc/manual/node592.html
def testoptdone(self, data) -> None:
"""Has the geometry converged and set optdone to True?"""
assert data.optdone
target_e, target_g, target_s = data.geotargets
value_e, value_g, value_s = data.geovalues[-1]
converged = (value_e < target_e and value_g < target_g) or (
value_g < target_g and value_s < target_s
)
assert converged
class MOPACGeoOptTest(GenericGeoOptTest):
"""Customized geometry optimization unittest for MOPAC."""
# The geometry optimization unit test logfile uses a PM7 Hamiltonian.
b3lyp_energy = 2.22
b3lyp_tolerance = 0.01
class NWChemGeoOptTest(GenericGeoOptTest):
"""Customized restricted single point HF unittest"""
# NWChem typically prints the coordinates in the input module, at the
# beginning of each geometry optimization step, and then again after
# the optimziation is finished, so the first and last coordinates
# are repeated. On the other hand, each optimization step often
# involves a line search which we don't parse (see parse code for details).
extracoords = 2
extrascfs = 0
class OrcaGeoOptTest(GenericGeoOptTest):
"""Customized geometry optimization unittest"""
extracoords = 1
extrascfs = 1
# Besides all the geovalues being below their tolerances, ORCA also considers
# an optimization finished in some extra cases. These are:
# 1) everything converged except the energy (within 25 x tolerance)
# 2) gradient is overachieved and displacement is reasonable (3 x tolerance)
# 3) displacement is overachieved and gradient is reasonable (3 x tolerance)
# 4) energy, gradients and angles are converged (displacements not considered)
# All these exceptions are signaleld in the output with some comments, and here
# we include the first three exceptions for the pruposes of the unit test.
def testoptdone(self, data) -> None:
"""Has the geometry converged and set optdone to True?"""
assert data.optdone
targets = data.geotargets
values = numpy.abs(data.geovalues[-1])
target_e = targets[0]
target_g = targets[1:3]
target_x = targets[3:]
value_e = values[0]
value_g = values[1:3]
value_x = values[3:]
conv_all = all(values < targets)
conv_e = value_e < 25 * target_e and all(value_g < target_g) and all(value_x < target_x)
conv_g = (
value_e < target_e and all(value_g < target_g / 3.0) and all(value_x < target_x * 3.0)
)
conv_x = (
value_e < target_e and all(value_g < target_g * 3.0) and all(value_x < target_x / 3.0)
)
converged = conv_all or conv_e or conv_g or conv_x
assert converged
class Psi4GeoOptTest(GenericGeoOptTest):
"""Customized geometry optimization unittest"""
# Psi has a number of different convergence strategies to choose from, as described here:
# http://sirius.chem.vt.edu/psi4manual/latest/optking.html
# and the default is to check that the max. force is converged and if the max energy change
# or dispalcement is converged. This is in fact what is tested below.
def testoptdone(self, data) -> None:
"""Has the geometry converged and set optdone to True?"""
assert data.optdone
targets = data.geotargets
values = numpy.abs(data.geovalues[-1])
# Since the other criteria are not used and are not printed in this case, they should
# be parsed as numpy.inf, for which we can check.
assert numpy.isinf(targets[2])
assert numpy.isinf(targets[4])
conv = values[1] < targets[1] and (values[0] < targets[0] or values[3] < targets[3])
assert conv
class XTBGeoOptTest(GenericGeoOptTest):
"""Customized restricted single point unittest"""
def testscfenergy(self, data) -> None:
"""Is the SCF energy within the target?"""
assert abs(data.scfenergies[-1] - -719.42119585) < 1.0e-6
class TurbomoleKeepGeoOptTest(GenericGeoOptTest):
"""Customized geometry optimization unittest"""
# In Turbomole, each optimisation step is written to its own file,
# (job.1, job.2 ... job.last) and consists of three (or more)
# submodule steps:
# - grad: Calculation of gradient.
# - statpt: Update of coordinates.
# - dscf: Calculation of SCF from new geometry.
# - [rimp2/ricc2/ccsdf12]: Calculation of higher order energies.
#
# In addition, this cycle is started by an initial dscf step stored
# in the job.0 file. Each submodule will print the current atom coords
# during startup, so there will always be one more atom coords than
# there are geom steps (we make sure in the parser not to parse
# identical coords more than once).
#
# However, the number of SCF energies will depend on whether the
# jobex script was called with the -keep flag or not. Without -keep
# (the default), jobex will delete all intermediate files (including
# job.0), so we can only parse job.final. In this case, only one
# SCF energy will be available (the final energy). Alternatively,
# with -keep we can parse the energy at each step, including the
# initial energy, and so len(scfenergies) == len(atomcoords) (one
# greater than the number of opt steps).
#
# The test data was called with jobex -keep.
extracoords = 1
extrascfs = 1
class TurbomoleGeoOptTest(GenericGeoOptTest):
"""Customized geometry optimization unittest"""
# The test data was not called with jobex -keep.
extracoords = 1
extrascfs = 0
def testoptstatus(self, data) -> None:
"""Is optstatus consistent with geovalues and reasonable?"""
assert len(data.optstatus) == len(data.geovalues)
# We only have the final energy available, so there's no point looking for OPT_NEW.
for i in range(1, len(data.optstatus) - 1):
assert data.optstatus[i] == data.OPT_UNKNOWN
assert data.optstatus[-1] == data.OPT_DONE
|