1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
/* Copyright (C) 2000-2009 Peter Selinger.
This file is part of ccrypt. It is free software and it is covered
by the GNU general public license. See the file COPYING for details. */
/* rijndael.c - optimized version of the Rijndeal cipher */
/* $Id: rijndael.c 258 2009-08-26 17:46:10Z selinger $ */
/* derived from original source: rijndael-alg-ref.c v2.0 August '99
* Reference ANSI C code for NIST competition
* authors: Paulo Barreto
* Vincent Rijmen
*/
#include "rijndael.h"
static int xshifts[3][2][4] = {
{{0, 1, 2, 3},
{0, 3, 2, 1}},
{{0, 1, 2, 3},
{0, 5, 4, 3}},
{{0, 1, 3, 4},
{0, 7, 5, 4}},
};
/* Exor corresponding text input and round key input bytes */
/* the result is written to res, which can be the same as a */
static inline void xKeyAddition(word32 res[MAXBC], word32 a[MAXBC],
word32 rk[MAXBC], int BC)
{
int j;
for (j = 0; j < BC; j++) {
res[j] = a[j] ^ rk[j];
}
}
#if 0 /* code included for reference */
/* shift rows a, return result in res. This avoids having to copy a
tmp array back to a. res must not be a. */
static inline void xShiftRow(word32 res[MAXBC], word32 a[MAXBC], int shift[4],
int BC)
{
word8 (*a8)[4] = (word8 (*)[4]) a;
word8 (*res8)[4] = (word8 (*)[4]) res;
/* Row 0 remains unchanged
* The other three rows are shifted a variable amount
*/
int i, j;
int s;
for (j = 0; j < BC; j++) {
res8[j][0] = a8[j][0];
}
for (i = 1; i < 4; i++) {
s = shift[i];
for (j = 0; j < BC; j++) {
res8[j][i] = a8[(j + s) % BC][i];
}
}
}
static inline void xSubstitution(word32 a[MAXBC], word8 box[256], int BC)
{
word8 (*a8)[4] = (word8 (*)[4]) a;
/* Replace every byte of the input by the byte at that place
* in the nonlinear S-box
*/
int i, j;
for (i = 0; i < 4; i++) {
for (j = 0; j < BC; j++) {
a8[j][i] = box[a[j][i]];
}
}
}
#endif /* code included for reference */
/* profiling shows that the ccrypt program spends about 50% of its
time in the function xShiftSubst. Splitting the inner "for"
statement into two parts - versus using the expensive "%" modulo
operation, makes this function about 44% faster, thereby making the
entire program about 28% faster. With -O3 optimization, the time
savings are even more dramatic - ccrypt runs between 55% and 65%
faster on most platforms. */
/* do ShiftRow and Substitution together. res must not be a. */
static inline void xShiftSubst(word32 res[MAXBC], word32 a[MAXBC],
int shift[4], int BC, word8 box[256])
{
int i, j;
int s;
word8 (*a8)[4] = (word8 (*)[4]) a;
word8 (*res8)[4] = (word8 (*)[4]) res;
for (j = 0; j < BC; j++) {
res8[j][0] = box[a8[j][0]];
}
for (i = 1; i < 4; i++) {
s = shift[i];
for (j = 0; j < BC - s; j++) {
res8[j][i] = box[a8[(j + s)][i]];
}
for (j = BC - s; j < BC; j++) {
res8[j][i] = box[a8[(j + s) - BC][i]];
}
}
}
#if 0 /* code included for reference */
/* Mix the four bytes of every column in a linear way */
/* the result is written to res, which may equal a */
static inline void xMixColumn(word32 res[MAXBC], word32 a[MAXBC], int BC)
{
int j;
word32 b;
word8 (*a8)[4] = (word8 (*)[4]) a;
for (j = 0; j < BC; j++) {
b = M0[0][a8[j][0]].w32;
b ^= M0[1][a8[j][1]].w32;
b ^= M0[2][a8[j][2]].w32;
b ^= M0[3][a8[j][3]].w32;
res[j] = b;
}
}
#endif /* code included for reference */
/* do MixColumn and KeyAddition together */
static inline void xMixAdd(word32 res[MAXBC], word32 a[MAXBC],
word32 rk[MAXBC], int BC)
{
int j;
word32 b;
word8 (*a8)[4] = (word8 (*)[4]) a;
for (j = 0; j < BC; j++) {
b = M0[0][a8[j][0]].w32;
b ^= M0[1][a8[j][1]].w32;
b ^= M0[2][a8[j][2]].w32;
b ^= M0[3][a8[j][3]].w32;
b ^= rk[j];
res[j] = b;
}
}
/* Mix the four bytes of every column in a linear way
* This is the opposite operation of xMixColumn */
/* the result is written to res, which may equal a */
static inline void xInvMixColumn(word32 res[MAXBC], word32 a[MAXBC], int BC)
{
int j;
word32 b;
word8 (*a8)[4] = (word8 (*)[4]) a;
for (j = 0; j < BC; j++) {
b = M1[0][a8[j][0]].w32;
b ^= M1[1][a8[j][1]].w32;
b ^= M1[2][a8[j][2]].w32;
b ^= M1[3][a8[j][3]].w32;
res[j] = b;
}
}
#if 0 /* code included for reference */
/* do KeyAddition and InvMixColumn together */
static inline void xAddInvMix(word32 res[MAXBC], word32 a[MAXBC],
word32 rk[MAXBC], int BC)
{
int j;
word32 b;
word8 (*a8)[4] = (word8 (*)[4]) a;
for (j = 0; j < BC; j++) {
a[j] = a[j] ^ rk[j];
b = M1[0][a8[j][0]].w32;
b ^= M1[1][a8[j][1]].w32;
b ^= M1[2][a8[j][2]].w32;
b ^= M1[3][a8[j][3]].w32;
res[j] = b;
}
}
#endif /* code included for reference */
int xrijndaelKeySched(word32 key[], int keyBits, int blockBits,
roundkey *rkk)
{
/* Calculate the necessary round keys
* The number of calculations depends on keyBits and blockBits */
int KC, BC, ROUNDS;
int i, j, t, rconpointer = 0;
word8 (*k8)[4] = (word8 (*)[4]) key;
switch (keyBits) {
case 128:
KC = 4;
break;
case 192:
KC = 6;
break;
case 256:
KC = 8;
break;
default:
return -1;
}
switch (blockBits) {
case 128:
BC = 4;
break;
case 192:
BC = 6;
break;
case 256:
BC = 8;
break;
default:
return -2;
}
ROUNDS = KC > BC ? KC + 6 : BC + 6;
t = 0;
/* copy values into round key array */
for (j = 0; (j < KC) && (t < (ROUNDS + 1) * BC); j++, t++)
rkk->rk[t] = key[j];
while (t < (ROUNDS + 1) * BC) { /* while not enough round key material */
/* calculate new values */
for (i = 0; i < 4; i++) {
k8[0][i] ^= xS[k8[KC - 1][(i + 1) % 4]];
}
k8[0][0] ^= xrcon[rconpointer++];
if (KC != 8) {
for (j = 1; j < KC; j++) {
key[j] ^= key[j - 1];
}
} else {
for (j = 1; j < 4; j++) {
key[j] ^= key[j - 1];
}
for (i = 0; i < 4; i++) {
k8[4][i] ^= xS[k8[3][i]];
}
for (j = 5; j < 8; j++) {
key[j] ^= key[j - 1];
}
}
/* copy values into round key array */
for (j = 0; (j < KC) && (t < (ROUNDS + 1) * BC); j++, t++) {
rkk->rk[t] = key[j];
}
}
/* make roundkey structure */
rkk->BC = BC;
rkk->KC = KC;
rkk->ROUNDS = ROUNDS;
for (i = 0; i < 2; i++) {
for (j = 0; j < 4; j++) {
rkk->shift[i][j] = xshifts[(BC - 4) >> 1][i][j];
}
}
return 0;
}
/* Encryption of one block. */
void xrijndaelEncrypt(word32 block[], roundkey *rkk)
{
word32 block2[MAXBC]; /* hold intermediate result */
int r;
int *shift = rkk->shift[0];
int BC = rkk->BC;
int ROUNDS = rkk->ROUNDS;
word32 *rp = rkk->rk;
/* begin with a key addition */
xKeyAddition(block, block, rp, BC);
rp += BC;
/* ROUNDS-1 ordinary rounds */
for (r = 1; r < ROUNDS; r++) {
xShiftSubst(block2, block, shift, BC, xS);
xMixAdd(block, block2, rp, BC);
rp += BC;
}
/* Last round is special: there is no xMixColumn */
xShiftSubst(block2, block, shift, BC, xS);
xKeyAddition(block, block2, rp, BC);
}
void xrijndaelDecrypt(word32 block[], roundkey *rkk)
{
word32 block2[MAXBC]; /* hold intermediate result */
int r;
int *shift = rkk->shift[1];
int BC = rkk->BC;
int ROUNDS = rkk->ROUNDS;
word32 *rp = rkk->rk + ROUNDS * BC;
/* To decrypt: apply the inverse operations of the encrypt routine,
* in opposite order
*
* (xKeyAddition is an involution: it's equal to its inverse)
* (the inverse of xSubstitution with table S is xSubstitution with the
* inverse table of S)
* (the inverse of xShiftRow is xShiftRow over a suitable distance)
*/
/* First the special round:
* without xInvMixColumn
* with extra xKeyAddition
*/
xKeyAddition(block2, block, rp, BC);
xShiftSubst(block, block2, shift, BC, xSi);
rp -= BC;
/* ROUNDS-1 ordinary rounds
*/
for (r = ROUNDS - 1; r > 0; r--) {
xKeyAddition(block, block, rp, BC);
xInvMixColumn(block2, block, BC);
xShiftSubst(block, block2, shift, BC, xSi);
rp -= BC;
}
/* End with the extra key addition
*/
xKeyAddition(block, block, rp, BC);
}
|