File: FabConv.cpp

package info (click to toggle)
ccseapps 2.5-2
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 16,812 kB
  • sloc: cpp: 117,349; fortran: 86,921; ansic: 13,083; sh: 633; perl: 492; makefile: 110; csh: 56
file content (1431 lines) | stat: -rw-r--r-- 40,027 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
/*
** (c) 1996-2000 The Regents of the University of California (through
** E.O. Lawrence Berkeley National Laboratory), subject to approval by
** the U.S. Department of Energy.  Your use of this software is under
** license -- the license agreement is attached and included in the
** directory as license.txt or you may contact Berkeley Lab's Technology
** Transfer Department at TTD@lbl.gov.  NOTICE OF U.S. GOVERNMENT RIGHTS.
** The Software was developed under funding from the U.S. Government
** which consequently retains certain rights as follows: the
** U.S. Government has been granted for itself and others acting on its
** behalf a paid-up, nonexclusive, irrevocable, worldwide license in the
** Software to reproduce, prepare derivative works, and perform publicly
** and display publicly.  Beginning five (5) years after the date
** permission to assert copyright is obtained from the U.S. Department of
** Energy, and subject to any subsequent five (5) year renewals, the
** U.S. Government is granted for itself and others acting on its behalf
** a paid-up, nonexclusive, irrevocable, worldwide license in the
** Software to reproduce, prepare derivative works, distribute copies to
** the public, perform publicly and display publicly, and to permit
** others to do so.
*/

//
// $Id: FabConv.cpp,v 1.16 2001/07/24 18:16:53 lijewski Exp $
//

#include <iostream>
#include <cstdlib>
#include <limits>
#include <cstring>

#include <BoxLib.H>
#include <FabConv.H>
#include <FArrayBox.H>
#include <FPC.H>
#include <REAL.H>
//
// Declarations of Cray-specific FP format to IEEE routines.
//

#if defined(BL_ARCH_CRAY)
#define FORT_IEG2CRAY  IEG2CRAY
#define FORT_CRAY2IEG  CRAY2IEG
extern "C"
{
    void FORT_IEG2CRAY(int& type, int& num, char* forn, int& bitoff,
                       char* cry, int& stride, char& craych);
    void FORT_CRAY2IEG(int& type, int& num, char* forn, int& bitoff,
                       char* cry, int& stride, char& craych);
}
#endif /*defined(BL_ARCH_CRAY)*/

RealDescriptor::~RealDescriptor() {}

bool RealDescriptor::bAlwaysFixDenormals(false);

IntDescriptor::IntDescriptor ()
{}

IntDescriptor::IntDescriptor (long     nb,
                              Ordering o)
    : numbytes(nb),
      ord(o)
{}

IntDescriptor::Ordering
IntDescriptor::order () const
{
    return ord;
}

int
IntDescriptor::numBytes () const
{
    return numbytes;
}

bool
IntDescriptor::operator== (const IntDescriptor& id) const
{
    return ord == id.ord && numbytes == id.numbytes;
}

bool
IntDescriptor::operator!= (const IntDescriptor& id) const
{
    return !operator==(id);
}

RealDescriptor::RealDescriptor ()
{}

RealDescriptor::RealDescriptor (const long* fr_,
                                const int*  ord_,
                                int         ordl_)
    : fr(fr_, 8),
      ord(ord_, ordl_)
{}

RealDescriptor::RealDescriptor (const RealDescriptor& rhs)
    : fr(rhs.fr),
      ord(rhs.ord)
{}

RealDescriptor&
RealDescriptor::operator= (const RealDescriptor& rhs)
{
    fr  = rhs.fr;
    ord = rhs.ord;
    return *this;
}

const long*
RealDescriptor::format () const
{
    BL_ASSERT(fr.size() != 0);
    return fr.dataPtr();
}

const Array<long>&
RealDescriptor::formatarray () const
{
    BL_ASSERT(fr.size() != 0);
    return fr;
}

const int*
RealDescriptor::order () const
{
    BL_ASSERT(ord.size() != 0);
    return ord.dataPtr();
}

const Array<int>&
RealDescriptor::orderarray () const
{
    BL_ASSERT(ord.size() != 0);
    return ord;
}

int
RealDescriptor::numBytes () const
{
    BL_ASSERT(fr.size() != 0);
    return (fr[0] + 7 ) >> 3;
}

bool
RealDescriptor::operator== (const RealDescriptor& rd) const
{
    return fr == rd.fr && ord == rd.ord;
}

bool
RealDescriptor::operator != (const RealDescriptor& rd) const
{
    return !operator==(rd);
}

void
RealDescriptor::SetFixDenormals()
{
    bAlwaysFixDenormals = true;
}

//
// This is not inlined as it's an inherited virtual.
//
RealDescriptor*
RealDescriptor::clone () const
{
    RealDescriptor* rd = new RealDescriptor(*this);
    return rd;
}

//
// This exists solely to support reading "old" FABs.
//

static
const int*
selectOrdering (int prec,
                int ordering)
{
    switch (prec)
    {
    case FABio::FAB_FLOAT:
        switch (ordering)
        {
        case FABio::FAB_NORMAL_ORDER:
            return FPC::normal_float_order;
        case FABio::FAB_REVERSE_ORDER:
            return FPC::reverse_float_order;
        case FABio::FAB_REVERSE_ORDER_2:
            return FPC::reverse_float_order_2;
        default:
            BoxLib::Error("selectOrdering(): Crazy ordering");
        }
        break;
    case FABio::FAB_DOUBLE:
        switch (ordering)
        {
        case FABio::FAB_NORMAL_ORDER:
            return FPC::normal_double_order;
        case FABio::FAB_REVERSE_ORDER:
            return FPC::reverse_double_order;
        case FABio::FAB_REVERSE_ORDER_2:
            return FPC::reverse_double_order_2;
        default:
            BoxLib::Error("selectOrdering(): Crazy ordering");
        }
        break;
    default:
        BoxLib::Error("selectOrdering(): Crazy precision");
    }
    return 0;
}

//
// This is here solely to support reading "old" FABs.
//

RealDescriptor*
RealDescriptor::newRealDescriptor (int         iot,
                                   int         prec,
                                   const char* sys,
                                   int         ordering)
{
    RealDescriptor* rd = 0;

    switch (iot)
    {
    case FABio::FAB_IEEE:
    {
        const int* ord = selectOrdering(prec, ordering);
        switch (prec)
        {
        case FABio::FAB_FLOAT:
	    if(strcmp(sys, "CRAY") == 0) {
              rd = new RealDescriptor(FPC::ieee_double, ord, 8);
	    } else {
              rd = new RealDescriptor(FPC::ieee_float, ord, 4);
	    }
            return rd;
        case FABio::FAB_DOUBLE:
            rd = new RealDescriptor(FPC::ieee_double, ord, 8);
            return rd;
        }
    }
    case FABio::FAB_NATIVE:
        if (sys != 0 && strncmp(sys, "CRAY", 4) == 0)
        {
            rd = new RealDescriptor(FPC::cray_float, FPC::cray_float_order, 8);
            return rd;
        }
    default:
        BoxLib::Error("RealDescriptor::newRealDescriptor(): Crazy precision");
    }
    rd = new RealDescriptor;
    return rd;
}

inline
void
ONES_COMP_NEG (long& n,
               int   nb,
               long  incr)
{
    if (nb == 8*sizeof(long))
        n = ~n + incr;
    else
    {
        const long MSK = (1L << nb) - 1L;
        n = (~n + incr) & MSK;
    }
}

//
// Return bit specified as on offset from the given pointer.
//

inline
int
_PD_get_bit (char*      base,
             int        offs,
             int        nby,
             const int* ord)
{
    int n      = offs >> 3;
    int nbytes = n % nby;
    n     -= nbytes;
    offs   = offs % 8;

    if (ord == NULL)
        base += (n + nbytes);
    else
        base += (n + (ord[nbytes] - 1));

    int mask = (1 << (7 - offs));

    return (*base & mask) != 0;
}

//
// Make a copy of the bit field specified by the starting bit, OFFS and
// the number of bits, NBI, from the byte array pointed to by IN.
// All indexing is 0 based.  The copy is to be put in a long and returned.
// This imposes a 32 bit limit (minimum) so repeated calls - must be made
// for longer fields
//

static
long
_PD_extract_field (char*      in,
                   int        offs,
                   int        nbi,
                   int        nby,
                   const int* ord)
{
    int ind;
    long bit_field = 0L;
    //
    // Move past the apropriate number of bytes so that the start bit is
    // in the first byte.  OFFY is the offset of the byte containing the
    // bit OFFS
    //
    long n   = offs >> 3;
    int offy = int(n % nby);
    n   -= offy;
    offs = offs % 8;
    //
    // Advance the pointer past the unneeded items.
    //
    in += n;
    unsigned char bpb = 8 - offs;

    if (ord == NULL)
        ind = offy++;
    else
    {
        if (offy >= nby)
        {
            offy -= nby;
            in   += nby;
        }
        ind = (ord[offy++] - 1);
    }

    int tgt  = in[ind];
    unsigned char mask = (1 << bpb) - 1;
    bit_field = ((bit_field << bpb) | (tgt & mask));
    nbi -= bpb;
    if (nbi < 0)
        bit_field = bit_field >> (-nbi);
    else
    {
        for (; nbi > 0; nbi -= bpb)
        {
            //
            // ind  = (ord == NULL) ? offy++ : (ord[offy++] - 1);
            //
            if (ord == NULL)
                ind = offy++;
            else
            {
                if (offy >= nby)
                {
                    offy -= nby;
                    in += nby;
                }
                ind = (ord[offy++] - 1);
            }

            tgt  = in[ind];
            bpb  = nbi > 8 ? 8 : nbi;
            mask = (1 << bpb) - 1;
            bit_field = ((bit_field << bpb) | ((tgt >> (8 - bpb)) & mask));
        }
    }

    return bit_field;
}

//
// Byte reverse nitems words.  Each word is nb bytes long where nb is even.
//

static
void
_PD_btrvout (char* out,
             long  nb,
             long  nitems)
{
    for (long jl = 0, nbo2 = nb >> 1; jl < nbo2; jl++)
    {
        long jh  = nb - jl - 1;
        char* p1 = out + jh;
        char* p2 = out + jl;
        for (long i = 0L; i < nitems; i++)
        {
            char tmp = *p1;
            *p1 = *p2;
            *p2 = tmp;
            p1 += nb;
            p2 += nb;
        }
    }
}

const int BitsMax       = 8*sizeof(long);
const int REVERSE_ORDER = 2;

//
// Copy the least significant NB bits from the given long into the byte array
// pointed to by OUT.  All indexing is 0 based.  OFFS is the offset from the
// beginning of OUT in bits.  This assumes that the output bit array is
// initialized to all zeros after offs.
//

inline
void
_PD_insert_field (long  in_long,
                  int   nb,
                  char* out,
                  int   offs,
                  int   l_order,
                  int   l_bytes)
{
    int  dm;
    long longmask;

    char* in = (char *) &in_long;
    //
    // If the output start bit is not in the first byte move past the
    // apropriate number of bytes so that the start bit is in the first byte.
    //
    if (offs > 7)
    {
        out  += (offs >> 3);
        offs %= 8;
    }
    //
    // If mi is less than offs, copy the first dm bits over, reset offs to 0,
    // Advance mi by dm, and handle the rest as if mi >= offs.
    //
    int mi = BitsMax - nb;
    if (mi < offs)
    {
        dm = BitsMax - (8 - offs);
        if (nb == BitsMax)
            longmask = ~((1L << dm) - 1L);
        else
            longmask = ((1L << nb) - 1L) ^ ((1L << dm) - 1L);

        unsigned char fb = ((in_long&longmask)>>dm)&((1L<<(nb-dm))-1L);
        *(out++) |= fb;

        mi  += 8 - offs;
        offs = 0;
    }
    //
    // Assuming mi >= offs, left shift the input so that it is bit aligned
    // with the output.
    //
    dm       = mi - offs;
    longmask = ~((1L << dm) - 1L);
    in_long  = (in_long << dm) & longmask;
    //
    // Reorder the bytes apropriately.
    //
    if (l_order == REVERSE_ORDER)
        _PD_btrvout(in, l_bytes, 1L);
    //
    // Copy the remaining aligned bytes over.
    //
    for (int n = (offs+nb+7)/8; n > 0; n--, *(out++) |= *(in++))
        ;
}

//
// Set the bit specified as on offset from the given pointer.
//

inline
void
_PD_set_bit (char* base, int offs)
{
    int nbytes = offs >> 3;

    base += nbytes;
    offs -= 8*nbytes;

    int mask = (1 << (7 - offs));

    *base  |= mask;
}

//
// Given a pointer to an array ARR with NITEMS of NBYTES each put them
// in the order defined by ORD.  This assumes they're in the order 1 .. n
// on input.
//

static
void
_PD_reorder (char*      arr,
             long       nitems,
             int        nbytes,
             const int* ord)
{
    const int MAXLINE = 16;
    char local[MAXLINE];

    for (int j; nitems > 0; nitems--)
    {
        arr--;
        for (j = 0; j < nbytes; local[j] = arr[ord[j]], j++);
        arr++;
        for (j = 0; j < nbytes; *(arr++) = local[j++]);
    }
}

//
// This should only be called with two arrays of Reals.
// It maps the `in' array into the `out' array, changing the ordering
// from inord to outord.
//

static
void
permute_real_word_order (void*       out,
                         const void* in,
                         long        nitems,
                         const int*  outord,
                         const int*  inord)
{
    const int REALSIZE = sizeof(Real);
    
    char* pin  = (char*) in;
    char* pout = (char*) out;

    pin--; pout--;

    for (; nitems > 0; nitems--, pin += REALSIZE, pout += REALSIZE)
    {
        for (int i = 0; i < REALSIZE; i++)
            pout[outord[i]] = pin[inord[i]];
    }
}

//
// Parametrized Data Conversion Method
//
// Floating point formats are characterized by a set of parameters which
// describe the fundamental elements of a floating point number. These are
//
//  Sign     - always assumed to be a single bit
//           - requires bit offset
//  Exponent - assumed to be a biased integer smaller than 32 bits
//           - (this allows the conversion to use a long on all known
//           - platforms - an exponent greater than 32 bits long would
//           - allow much larger numbers than should be needed for
//           - scientific computations)
//           - requires a bit offset, a bit length, and a bias
// Mantissa  - assumed to be a bitstream of arbitrary length
//           - requires a bit offset and a bit length
// HMB       - in all floating point representations the mantissa is
//           - normalized so that the most significant bit is one.
//           - in some formats the one is explicitly included in the
//           - representation and in others it is only implicit
//           - this gives some formats an extra bit of precision.
//           - requires a flag which is TRUE if the HMB is explicit
//
// Two other factors involved are: the byte order which could be
// mixed with the bit layout of the numbers but isn't in actual practice
// on current machines; and whether one's complement or two's complement
// arithmetic is used. Modern machines all use two's complement arithmetic
// and the model used here and now is that data from one's complement
// machines is to be read only.  This restriction is relatively easy
// to relax, but there is no evidence that it should be.
//
// An issue which is not a problem in the current implementation is that
// old machines with byte sizes other than 8 bits can be accomodated
// because the conversions treat the input and output as bitstreams
// instead of bytestreams.
//
// The conversion process is summarized as follows:
//   1) Extract the sign bit and exponent field from the input number
//   2) Subtract the bias of the source format and add the bias
//      of the target format
//   3) Check for overflow in the exponent
//   4) Insert the new exponent and the sign bit in the target stream
//   5) Copy the mantissa bits from the source to the target
//      compensating for differences in the HMB between the two
//      formats
//   6) Take care of any known anomalies - e.g. CRAY format is
//      inconsistent in that the HMB is explicitly on for all numbers
//      with the exception of 0.0
//   7) Reorder the bytes of the target stream appropriately
//
// The floating point formats for a variety of platforms are supplied by
// PDBLib and are defined at the top of this file

// _PD_FCONVERT - general floating point conversion routine
//              - convert from floating point format specified by infor
//              - to format specified by outfor
//              -
//              - floating point format specification:
//              -
//              -   format[0] = # of bits per number
//              -   format[1] = # of bits in exponent
//              -   format[2] = # of bits in mantissa
//              -   format[3] = start bit of sign
//              -   format[4] = start bit of exponent
//              -   format[5] = start bit of mantissa
//              -   format[6] = high order mantissa bit (CRAY needs this)
//              -   format[7] = bias of exponent
//

void
PD_fconvert (void*       out,
             const void* in,
             long        nitems,
             int         boffs,
             const long* outfor,
             const int*  outord,
             const long* infor,
             const int*  inord,
             int         l_order,
             int         l_bytes,
             int         onescmp)
{
    long i, expn, expn_max, hexpn, mant, DeltaBias, hmbo, hmbi;
    int nbits, inbytes, outbytes, sign;
    int indxin, indxout, inrem, outrem, dindx;
    int bi_sign, bo_sign, bi_exp, bo_exp, bi_mant, bo_mant;
    int nbi_exp, nbo_exp, nbi, nbo;
    char *lout, *lin;
    unsigned char *rout;

    nbi     = int(infor[0]);
    nbo     = int(outfor[0]);
    nbi_exp = int(infor[1]);
    nbo_exp = int(outfor[1]);
    bi_sign = int(infor[3] + boffs);
    bo_sign = int(outfor[3]);
    bi_exp  = int(infor[4] + boffs);
    bo_exp  = int(outfor[4]);
    bi_mant = int(infor[5] + boffs);
    bo_mant = int(outfor[5]);

    hmbo    = (outfor[6] & 1L);
    hmbi    = (infor[6] & 1L);

    inbytes   = (nbi + 7) >> 3;
    outbytes  = (nbo + 7) >> 3;
    DeltaBias = outfor[7] + hmbo - infor[7] - hmbi;
    hexpn     = 1L << (outfor[1] - 1L);
    expn_max  = (1L << outfor[1]) - 1L;

    size_t number = size_t(nitems);
    BL_ASSERT(int(number) == nitems);
    memset(out, 0, number*outbytes);

    lout = (char*)out;
    lin  = (char*)in;

    for (i = 0L; i < nitems; i++)
    {
        //
        // Move the exponent over.
        //
        expn = _PD_extract_field(lin, bi_exp, nbi_exp, inbytes, inord);
        sign = _PD_get_bit(lin, bi_sign, inbytes, inord);
        //
        // If we have a negative number and ones complement arithmetic on the
        // input side (won't have it on the output side with modern data).
        // Take the complement of the exponent and mantissa.
        //
        if (onescmp)
        {
            if (sign)
            {
                ONES_COMP_NEG(expn, nbi_exp, 1L);
            }
            else
                expn += (expn < hexpn);
        }
        if (expn != 0)
            expn += DeltaBias;
        if ((0 <= expn) && (expn < expn_max))
        {
            _PD_insert_field(expn, nbo_exp, lout, bo_exp, l_order, l_bytes);

            if (sign)
                _PD_set_bit(lout, bo_sign);

            indxin  = bi_mant;
            inrem   = int(infor[2]);
            indxout = bo_mant;
            outrem  = int(outfor[2]);
            //
            // If input high mantissa bit (HMB) is assumed 1 and not written
            // (e.g. IEEE) but output HMB is assumed 0 (e.g. CRAY) write the
            // input starting at the output HMB+1 and set the HMB.
            //
            dindx = int(hmbo - hmbi);
            if (dindx > 0)
            {
                _PD_set_bit(lout, indxout);
                indxout += dindx;
                outrem  -= dindx;
            }
            //
            // If input HMB is assumed 0 (e.g. CRAY) but output HMB is
            // assumed 1 and not written (e.g. IEEE) take the input from
            // HMB+1 and write it to output HMB.
            //
            else if (dindx < 0)
            {
                indxin -= dindx;
                inrem  += dindx;
            }
            //
            // Move the mantissa over in sizeof(long) packets.
            //
            while ((inrem > 0) && (outrem > 0))
            {
                nbits = BitsMax > inrem ? inrem : BitsMax;
                nbits = nbits > outrem ? outrem : nbits;
                mant  = _PD_extract_field(lin, indxin, nbits, inbytes, inord);
                //
                // Do complement for negative ones complement data.
                //
                if (onescmp && sign)
                    ONES_COMP_NEG(mant, nbits, 0L);

                _PD_insert_field(mant, nbits, lout, indxout, l_order, l_bytes);

                indxin  += nbits;
                indxout += nbits;
                inrem   -= nbits;
                outrem  -= nbits;
            }
        }
        //
        // In case of overflow use 1.0e+(expn_max).
        //
        else if (expn_max <= expn)
        {
            _PD_insert_field(expn_max, nbo_exp, lout, bo_exp, l_order, l_bytes);

            if (_PD_get_bit(lin, bi_sign, inbytes, inord))
                _PD_set_bit(lout, bo_sign);
        }
        bi_sign += nbi;
        bi_exp  += nbi;
        bi_mant += nbi;
        bo_sign += nbo;
        bo_exp  += nbo;
        bo_mant += nbo;
    }
    //
    // Handle CRAY inconsistency which has zero as the only floating point
    // number with a 0 in the HMB.  Also problem for IEEE 96 bit float - fixed
    // by Dave Munro.
    //
    if (hmbo)
    {
        int j, mask = (1 << (7 - bo_mant % 8));

        indxout = int(outfor[5]/8);
        rout    = (unsigned char *) out;
        for (i = 0L; i < nitems; i++, rout += outbytes)
        {
            for (j = 0; j < outbytes; j++)
                if ((j == indxout) ? (rout[j] != mask) : rout[j])
                    break;
            if (j == outbytes)
                rout[indxout] = 0;
        }
    }
    //
    // Put the output bytes into the specified order.
    //
    _PD_reorder((char*)out, nitems, outbytes, outord);
}

//
// These routines are specialized to do important floating point
// conversions on the alpha.  They make use of architectural knowledege to
// run faster.  Please add more of these as needed.
//

#if defined(__alpha) && !defined(BL_USE_FLOAT)
static
void
cray64toalpha64_fconvert (void*       out,
                          const void* in,
                          long        nitems)
{
    const long DeltaBias = 0x3FFL - 0x4000L - 1L;
    const long expn_max  = (1L << 11L) - 1L;

    memset(out, 0, nitems*8);

    long *lin  = (long *)in;
    long *lout = (long *)out;

    for (long i = 0; i < nitems; i++)
    {
        //
        // Step 1: change ordering to match alpha.
        //
      long ordinp = 0, input = *lin;
      for (size_t j = 0; j < sizeof(long); j++)
      {
          ordinp <<= 8;
          ordinp |= (input & 0xff);
          input >>= 8;
      }
      //
      // Step 2: extract sign, exponent as longs.
      //
      long sign   = (ordinp>>63) & 1;
      long expn   = (ordinp>>48) & 0x7FFF;
      long ordout = 0;
      //
      // Step 3: add biases.
      //
      if (expn != 0)
          expn += DeltaBias;
      if (0 <= expn && expn < expn_max)
      {
          ordout |= (sign<<63);
          ordout |= (expn<<52);
          //
          // Step 4 get the mantissa, keeping in mind cray HSB convention.
          //
          long mant = (ordinp) & 0x7FFFFFFFFFFF;
          mant <<= 5;
          ordout |= mant;
      }
      else if (expn_max <= expn)
      {
          //
          // Overflow.  Make something big.
          //
          ordout = 0x7ff0000000000000L;
          ordout |= (sign<<63);
      }
      else
          //
          // Denorm?
          //
          ordout = 0;
      //
      // Step last: store results and update pointers.
      //
      lin++;
      *lout++ = ordout;
    }
}
#endif /*defined(__alpha) && !defined(BL_USE_FLOAT)*/

#if defined(__alpha) && defined(BL_USE_FLOAT)
static
void
ieee32toalpha32_fconvert (void*       out,
                          const void* in,
                          long        nitems)
{
    const long expn_max = (1L << 8L) - 1L;

    memset(out, 0, nitems*4);

    int* iin  = (int*)in;
    int* iout = (int*)out;

    for (long i = 0; i < nitems; i++)
    {
        //
        // Step 1: change ordering to match alpha.
        //
        int ordinp = 0;
        for (int j = 0, input = *iin; j < sizeof(int); j++)
        {
            ordinp <<= 8;
            ordinp |= (input & 0xff);
            input >>= 8;
        }
        //
        // Step 2: extract exponent.
        //
        long expn = (ordinp>>23) & 0xFF;
        if (expn_max <= expn)
        {
            //
            // Overflow.  Make something big.
            //
            int sign = ordinp & 0x80000000;
            ordinp = 0x7f800000;
            ordinp |= sign;
        }
        else if (expn <= 0)
            //
            // Denorm?
            //
            ordinp = 0;
        //
        // Step last: store results and update pointers.
        //
        iin++;
        *iout++ = ordinp;
    }
}
#endif /*defined(__alpha) && defined(BL_USE_FLOAT)*/

static
void
PD_fixdenormals (void*       out,
                 long        nitems,
                 const long* outfor,
                 const int*  outord)
{
    const int nbo = int(outfor[0]);

    int nbo_exp  = int(outfor[1]);
    int bo_exp   = int(outfor[4]);
    int outbytes = (nbo + 7) >> 3;

    char* lout = (char*) out;

    for (long i = 0L; i < nitems; i++)
    {
        if (_PD_extract_field(lout, bo_exp, nbo_exp, outbytes, outord) == 0)
        {
            //
            // Set the word to zero.
            //
            char* loutoffset = lout+(i*outbytes);
            memset(loutoffset, '\0', outbytes);
        }
        bo_exp  += nbo;
    }
}

//
// It's really sad that I need to do this ...
//

#undef  GETARRAY
#define GETARRAY(TYPE)                                             \
static                                                             \
void                                                               \
getarray (std::istream&  is,                                       \
          Array< TYPE >& ar)                                       \
{                                                                  \
    char c;                                                        \
    is >> c;                                                       \
    if (c != '(')                                                  \
        BoxLib::Error("getarray(istream&): expected a \'(\'");     \
    int size;                                                      \
    is >> size;                                                    \
    is >> c;                                                       \
    if ( c != ',')                                                 \
        BoxLib::Error("getarray(istream&): expected a \',\'");     \
    is >> c;                                                       \
    if (c != '(')                                                  \
        BoxLib::Error("getarray(istream&): expected a \'(\'");     \
    ar.resize(size);                                               \
    for(int i = 0; i < size; ++i)                                  \
        is >> ar[i];                                               \
    is >> c;                                                       \
    if (c != ')')                                                  \
        BoxLib::Error("getarray(istream&): expected a \')\'");     \
    is >> c;                                                       \
    if (c != ')')                                                  \
        BoxLib::Error("getarray(istream&): expected a \')\'");     \
}
GETARRAY(int)
GETARRAY(long)
#undef GETARRAY

#undef  PUTARRAY
#define PUTARRAY(TYPE)                 \
static                                 \
void                                   \
putarray (std::ostream&        os,     \
          const Array< TYPE >& ar)     \
{                                      \
    int i;                             \
    os << '(';                         \
    os << ar.size() << ", (";          \
    for (i = 0; i < ar.size(); ++i)    \
    {                                  \
        os << ar[i];                   \
        if (i != ar.size() - 1)        \
            os << ' ';                 \
    }                                  \
    os << "))";                        \
}
PUTARRAY(int)
PUTARRAY(long)
#undef PUTARRAY

std::ostream&
operator<< (std::ostream&         os,
            const RealDescriptor& id)
{
    os << "(";
    putarray(os, id.formatarray());
    os << ',';
    putarray(os, id.orderarray());
    os << ")";
    if (os.fail())
        BoxLib::Error("operator<<(ostream&,RealDescriptor&) failed");
    return os;
}

std::istream&
operator>> (std::istream&   is,
            RealDescriptor& rd)
{
    char c;
    is >> c;
    if (c != '(')
        BoxLib::Error("operator>>(istream&,RealDescriptor&): expected a \'(\'");
    Array<long> fmt;
    getarray(is, fmt);
    is >> c;
    if (c != ',')
        BoxLib::Error("operator>>(istream&,RealDescriptor&): expected a \',\'");
    Array<int> ord;
    getarray(is, ord);
    is >> c;
    if (c != ')')
        BoxLib::Error("operator>>(istream&,RealDescriptor&): expected a \')\'");
    rd = RealDescriptor(fmt.dataPtr(),ord.dataPtr(),ord.size());
    return is;
}

static
void
PD_convert (void*                 out,
            const void*           in,
            long                  nitems,
            int                   boffs,
            const RealDescriptor& od,
            const RealDescriptor& id,
            const IntDescriptor&  ld,
            int                   onescmp = 0)
{
#if defined(__alpha) && !defined(BL_USE_FLOAT)
    if (id == FPC::CrayRealDescriptor() && od == FPC::NativeRealDescriptor())
        cray64toalpha64_fconvert(out, in, nitems);
    else
#endif /*defined(__alpha) && !defined(BL_USE_FLOAT)*/

#if defined(__alpha) & defined( BL_USE_FLOAT)
  if (id==FPC::Ieee32NormalRealDescriptor() && od==FPC::NativeRealDescriptor())
      ieee32toalpha32_fconvert(out, in, nitems);
  else
#endif

#if defined(BL_ARCH_CRAY)
    if (id==FPC::NativeRealDescriptor() && od==FPC::Ieee32NormalRealDescriptor())
    {
        char craych;
        int wdsize = 4, conv_typ = 2, stride = 1, offset = 0, len = nitems;
        BL_ASSERT(len == nitems);
        FORT_CRAY2IEG(conv_typ,len,(char*)out,offset,(char*)in,stride,craych);
    }
    else
    if (id==FPC::NativeRealDescriptor() && od==FPC::Ieee64NormalRealDescriptor())
    {
        //
        // Note that there is currently no way to specify that we want to
        // write out IEEE64 on a Cray.  In fact, I don't believe there is
        // any need for this.  Hence this block can never be reached.  I'm
        // leaving it in solely for symmetry.  Of course, there may be some
        // use for it in the future.
        //
        char craych;
        int wdsize = 8, conv_typ = 8, stride = 1, offset = 0, len = nitems;
        BL_ASSERT(len == nitems);
        FORT_CRAY2IEG(conv_typ,len,(char*)out,offset,(char*)in,stride,craych);
    }
    else
    if (id==FPC::Ieee32NormalRealDescriptor() && od==FPC::NativeRealDescriptor())
    {
        char craych;
        int wdsize = 4, conv_typ = 2, stride = 1, offset = 0, len = nitems;
        BL_ASSERT(len == nitems);
        FORT_IEG2CRAY(conv_typ,len,(char*)in,offset,(char*)out,stride,craych);
    }
    else
    if (id==FPC::Ieee64NormalRealDescriptor() && od==FPC::NativeRealDescriptor())
    {
        char craych;
        int wdsize = 8, conv_typ = 8, stride = 1, offset = 0, len = nitems;
        BL_ASSERT(len == nitems);
        FORT_IEG2CRAY(conv_typ,len,(char*)in,offset,(char*)out,stride,craych);
    }
    else
#endif /*defined(BL_ARCH_CRAY)*/

    if (od == id && boffs == 0)
    {
        size_t n = size_t(nitems);
        BL_ASSERT(int(n) == nitems);
        memcpy(out, in, n*od.numBytes());
    }
    else if (od.formatarray() == id.formatarray() && boffs == 0 && !onescmp)
        permute_real_word_order(out, in, nitems, od.order(), id.order());
    else
    {
        PD_fconvert(out, in, nitems, boffs, od.format(), od.order(),
                    id.format(), id.order(), ld.order(), ld.numBytes(),
                    onescmp);
        PD_fixdenormals(out, nitems, od.format(), od.order());
    }
}

//
// These routines aren't currently used.  Eventually, we may define
// convert() functions for integral types at which time these'll be used.
//

#if 0
//
// Convert ones complement integers to twos complement.
// Modern machines use twos complement arithmetic and therefore
// this is a one way conversion.
//

static
void
_PD_ones_complement (char* out,
                     long  nitems,
                     int   nbo)
{
    //
    // The next two lines are to get around a KCC warning message.
    // We've got to use signed chars here, but KCC won't let us
    // simply cast out to lout directly.
    //
    void*        vout = out;
    signed char* lout = (signed char *) vout;

    for (int i = 0L; i < nitems; i++)
    {
        if (*lout < 0)
        {
            unsigned int carry = 1;
            for (int j = nbo-1; (j >= 0) && (carry > 0); j--)
            {
                carry  += lout[j];
                lout[j] = carry & 0xFF;
                carry   = (carry > 0xFF);
            }
        }
        lout += nbo;
    }
}

//
// Convert integers of nbi bytes to integers of nbo bytes.
// The number of bytes for each integer are given.
//

static
void
PD_iconvert (void* out,
             void* in,
             long  nitems,
             long  nbo,
             int   ordo,
             long  nbi,
             int   ordi,
             int   onescmp = 0)
{
    long i;
    int j;
    char *lout, *lin, *po, *pi;

    lin  = (char*) in;
    lout = (char*) out;
    //
    // Convert nitems integers test sign bit to properly convert
    // negative integers.
    //
    if (nbi < nbo)
    {
        if (ordi == REVERSE_ORDER)
        {
            for (j = nbi; j < nbo; j++)
            {
                po = lout + j - nbi;
                pi = lin + nbi - 1;
                for (i = 0L; i < nitems; i++)
                {
                    *po = (*pi & 0x80) ? 0xff : 0;
                    po += nbo;
                    pi += nbi;
                }
            }
            for (j = nbi; j > 0; j--)
            {
                po = lout + nbo - j;
                pi = lin + j - 1;
                for (i = 0L; i < nitems; i++)
                {
                    *po = *pi;
                    po += nbo;
                    pi += nbi;
                }
            }
        }
        else
        {
            for (j = nbi; j < nbo; j++)
            {
                po = lout + j - nbi;
                pi = lin;
                for (i = 0L; i < nitems; i++)
                {
                    *po = (*pi & 0x80) ? 0xff : 0;
                    po += nbo;
                    pi += nbi;
                }
            }
            for (j = 0; j < nbi; j++)
            {
                po = lout + j + nbo - nbi;
                pi = lin + j;
                for (i = 0L; i < nitems; i++)
                {
                    *po = *pi;
                    po += nbo;
                    pi += nbi;
                }
            }
        }
    }
    else if (nbi >= nbo)
    {
        if (ordi == REVERSE_ORDER)
        {
            for (j = nbo; j > 0; j--)
            {
                po = lout + nbo - j;
                pi = lin + j - 1;
                for (i = 0L; i < nitems; i++)
                {
                    *po = *pi;
                    po += nbo;
                    pi += nbi;
                }
            }
        }
        else
        {
            for (j = nbi - nbo; j < nbi; j++)
            {
                po = lout + j - nbi + nbo;
                pi = lin + j;
                for (i = 0L; i < nitems; i++)
                {
                    *po = *pi;
                    po += nbo;
                    pi += nbi;
                }
            }
        }
    }
    //
    // If input used ones complement arithmetic convert to twos complement.
    //
    if (onescmp)
        _PD_ones_complement((char*)out, nitems, nbo);

    if (ordo == REVERSE_ORDER)
        _PD_btrvout((char*)out, nbo, nitems);
}

static
void
PD_convert (void*                out,
            void*                in,
            long                 nitems,
            const IntDescriptor& od,
            const IntDescriptor& id,
            int                  onescmp = 0)
{
    if (od == id)
        memcpy(out, in, nitems*od.numBytes());
    else
    {
        PD_iconvert(out,
                    in,
                    nitems,
                    od.numBytes(),
                    od.order(),
                    id.numBytes(),
                    id.order(),
                    onescmp);
    }
}
#endif /*#if 0*/

//
// Convert nitems in RealDescriptor format to native Real format.
//

void
RealDescriptor::convertToNativeFormat (Real*                 out,
                                       long                  nitems,
                                       void*                 in,
                                       const RealDescriptor& id)
{

    PD_convert(out,
               in,
               nitems,
               0,
               FPC::NativeRealDescriptor(),
               id,
               FPC::NativeLongDescriptor());

    if(bAlwaysFixDenormals) {
      PD_fixdenormals(out, nitems, FPC::NativeRealDescriptor().format(),
		      FPC::NativeRealDescriptor().order());
    }
}

//
// Read nitems from istream in ReadDescriptor format to native Real format.
//

void
RealDescriptor::convertToNativeFormat (Real*                 out,
                                       long                  nitems,
                                       std::istream&         is,
                                       const RealDescriptor& id)
{
    const int SHOULDREAD = 8192;

    char* bufr = new char[SHOULDREAD * id.numBytes()];

    while (nitems > 0)
    {
        int get = int(nitems) > SHOULDREAD ? SHOULDREAD : int(nitems);
        is.read(bufr, id.numBytes()*get);
        PD_convert(out,
                   bufr,
                   get,
                   0,
                   FPC::NativeRealDescriptor(),
                   id,
                   FPC::NativeLongDescriptor());

        if(bAlwaysFixDenormals) {
          PD_fixdenormals(out, get, FPC::NativeRealDescriptor().format(),
			  FPC::NativeRealDescriptor().order());
        }
        nitems -= get;
        out    += get;
    }

    if (is.fail())
        BoxLib::Error("convert(Real*,long,istream&,RealDescriptor&) failed");

    delete [] bufr;
}

//
// Convert nitems Reals in native format to RealDescriptor format.
//

void
RealDescriptor::convertFromNativeFormat (void*                 out,
                                         long                  nitems,
                                         Real*                 in,
                                         const RealDescriptor& od)
{
    PD_convert(out,
               in,
               nitems,
               0,
               od,
               FPC::NativeRealDescriptor(),
               FPC::NativeLongDescriptor());
}

//
// Convert nitems Reals in native format to RealDescriptor format
// and write them to the ostream.
//

void
RealDescriptor::convertFromNativeFormat (std::ostream&         os,
                                         long                  nitems,
                                         const Real*           in,
                                         const RealDescriptor& od)
{
    const int SHOULDWRITE = 8192;

    char* bufr = new char[SHOULDWRITE * od.numBytes()];

    while (nitems > 0)
    {
        int put = int(nitems) > SHOULDWRITE ? SHOULDWRITE : int(nitems);
        PD_convert(bufr,
                   in,
                   put,
                   0,
                   od,
                   FPC::NativeRealDescriptor(),
                   FPC::NativeLongDescriptor());
        os.write(bufr, od.numBytes()*put);
        nitems -= put;
        in     += put;
    }

    if (os.fail())
        BoxLib::Error("convert(ostream&,long,Real*,RealDescriptor&): failed");

    delete [] bufr;
}