1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
|
(************** Content-type: application/mathematica **************
Mathematica-Compatible Notebook
This notebook can be used with any Mathematica-compatible
application, such as Mathematica, MathReader or Publicon. The data
for the notebook starts with the line containing stars above.
To get the notebook into a Mathematica-compatible application, do
one of the following:
* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the
application;
* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.
Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode. Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing
the word CacheID, otherwise Mathematica-compatible applications may
try to use invalid cache data.
For more information on notebooks and Mathematica-compatible
applications, contact Wolfram Research:
web: http://www.wolfram.com
email: info@wolfram.com
phone: +1-217-398-0700 (U.S.)
Notebook reader applications are available free of charge from
Wolfram Research.
*******************************************************************)
(*CacheID: 232*)
(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[ 14720, 468]*)
(*NotebookOutlinePosition[ 16078, 512]*)
(* CellTagsIndexPosition[ 15906, 504]*)
(*WindowFrame->Normal*)
Notebook[{
Cell[TextData[{
StyleBox["cddmathlink",
FontColor->RGBColor[0.0557107, 0.137819, 0.517113]],
"\nConvex Hull and Vertex Enumeration by ",
StyleBox["MathLink",
FontSlant->"Italic",
FontColor->RGBColor[0.0146487, 0.461387, 0.0967727]],
" to ",
StyleBox["cddlib",
FontColor->RGBColor[0.517113, 0.0273594, 0.0273594]],
"\nby Komei Fukuda\nApril 17, 2001"
}], "Title",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[CellGroupData[{
Cell["Connecting cddmathlink", "Subsection",
InitializationCell->True,
ImageRegion->{{0, 1}, {0, 1}}],
Cell[CellGroupData[{
Cell[TextData[{
"You just put the compiled cddmathlink for your computer in some directory. \
In this example, the name of the directory is ",
StyleBox["\"~/Math\".",
FontFamily->"Courier",
FontWeight->"Bold"]
}], "Text",
InitializationCell->True,
ImageRegion->{{0, 1}, {0, 1}}],
Cell["Off[General::spell1]; Off[General::spell];", "Input",
InitializationCell->True,
ImageRegion->{{0, 1}, {0, 1}}],
Cell[CellGroupData[{
Cell["\<\
cddml=
Install[\"~/Math/cddmathlink\"]\
\>", "Input",
InitializationCell->True,
ImageRegion->{{0, 1}, {0, 1}}],
Cell[BoxData[
\(LinkObject["/Users/fukuda/Math/cddmathlink", 9, 8]\)], "Output"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Generating All Vertices ", "Subsection",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[CellGroupData[{
Cell["?AllVertices", "Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[BoxData[
\("AllVertices[m,d+1,A] generates all extreme points (vertices) and \
extreme rays of the convex polyhedron in R^(d+1) given as the solution set to \
an inequality system A x >= 0 where A is an m*(d+1) matrix and \
x=(1,x1,...,xd). The output is {{extlist, linearity}, ecdlist} where extlist \
is the extreme point list and ecdlist is the incidence list. Each vertex \
(ray) has the first component 1 (0). If the convex polyhedron is nonempty \
and has no vertices, extlist is a (nonunique) set of generators of the \
polyhedron where those generators in the linearity list are considered as \
linearity space (of points satisfying A (0, x1, x2, ...., xd) = 0) \
generators."\)], "Print",
CellTags->"Info3249106863-2654627"],
Cell["\<\
Let's try this function with a 3-dimenstional cube defined by 6 \
inequalities (facets);
x1 >= 0, x2 >=0, x3 >= 0, 1 - x1 >= 0, 1 - x2 >= 0 and 1 - x3 >= 0. We \
write these six inequalities as A x >= 0 and x=(1, x1, x2, x3).\
\>", \
"Text",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[CellGroupData[{
Cell["\<\
MatrixForm[a={{0,1,0,0},{0,0,1,0},{0,0,0,1},
\t{1,-1,0,0},{1,0,-1,0},{1,0,0,-1}}]\
\>", "Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"0", "1", "0", "0"},
{"0", "0", "1", "0"},
{"0", "0", "0", "1"},
{"1", \(-1\), "0", "0"},
{"1", "0", \(-1\), "0"},
{"1", "0", "0", \(-1\)}
}], "\[NoBreak]", ")"}],
Function[ BoxForm`e$,
MatrixForm[ BoxForm`e$]]]], "Output"],
Cell[CellGroupData[{
Cell["{m,d1}=Dimensions[a]", "Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[BoxData[
\({6, 4}\)], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell["\<\
{{vertices, linearity}, \
incidences}=AllVertices[m,d1,Flatten[a]]\
\>", "Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[BoxData[
\({{{{1.`, 1.`, 1.`, 0.`}, {1.`, 0.`, 1.`, 0.`}, {1.`, 0.`, 0.`,
0.`}, {1.`, 1.`, 0.`, 0.`}, {1.`, 0.`, 0.`, 1.`}, {1.`, 1.`, 0.`,
1.`}, {1.`, 0.`, 1.`, 1.`}, {1.`, 1.`, 1.`, 1.`}}, {}}, {{3, 4,
5}, {1, 3, 5}, {1, 2, 3}, {2, 3, 4}, {1, 2, 6}, {2, 4, 6}, {1, 5,
6}, {4, 5, 6}}}\)], "Output"]
}, Open ]]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Generating the Graph Structure", "Subsection",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[CellGroupData[{
Cell["?AllVerticesWithAdjacency", "Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[BoxData[
\("AllVerticesWithAdjacency[m,d+1,A] generates all extreme points \
(vertices) and extreme rays of the convex polyhedron in R^(d+1) given as the \
solution set to an inequality system A x >= 0 where A is an m*(d+1) matrix \
and x=(1,x1,...,xd). The output is {{extlist, linearity}, ecdlist, eadlist, \
icdlist, iadlist} where extlist, ecdlist, eadlist are the extreme point list, \
the incidence list, the adjacency list (of extreme points and rays), and \
icdlist, iadlist are the incidence list, the adjacency list (of \
inequalities). Each vertex (ray) has the first component 1 (0). If the \
convex polyhedron is nonempty and has no vertices, extlist is a (nonunique) \
set of generators of the polyhedron where those generators in the linearity \
list are considered as linearity space (of points satisfying A (0, x1, x2, \
...., xd) = 0) generators."\)], "Print",
CellTags->"Info3249106869-2272285"],
Cell[CellGroupData[{
Cell["\<\
{{vertices,linearity},ecd,ead,icd,iad}=
\tAllVerticesWithAdjacency[m,d1,Flatten[a]]\
\>", "Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[BoxData[
\({{{{1.`, 1.`, 1.`, 0.`}, {1.`, 0.`, 1.`, 0.`}, {1.`, 0.`, 0.`,
0.`}, {1.`, 1.`, 0.`, 0.`}, {1.`, 0.`, 0.`, 1.`}, {1.`, 1.`, 0.`,
1.`}, {1.`, 0.`, 1.`, 1.`}, {1.`, 1.`, 1.`, 1.`}}, {}}, {{3, 4,
5}, {1, 3, 5}, {1, 2, 3}, {2, 3, 4}, {1, 2, 6}, {2, 4, 6}, {1, 5,
6}, {4, 5, 6}}, {{2, 4, 8}, {1, 3, 7}, {2, 4, 5}, {1, 3, 6}, {3, 6,
7}, {4, 5, 8}, {2, 5, 8}, {1, 6, 7}}, {{2, 3, 5, 7}, {3, 4, 5,
6}, {1, 2, 3, 4}, {1, 4, 6, 8}, {1, 2, 7, 8}, {5, 6, 7,
8}, {}}, {{2, 3, 5, 6}, {1, 3, 4, 6}, {1, 2, 4, 5}, {2, 3, 5,
6}, {1, 3, 4, 6}, {1, 2, 4, 5}, {}}}\)], "Output"]
}, Open ]]
}, Open ]],
Cell[TextData[{
"The graph structure is output as the adjacency list ",
StyleBox["ead. ",
FontFamily->"Courier",
FontWeight->"Bold"],
"For example, the first list {2, 4 ,8} represents the neighbour vertices of \
the first vertex 1. The adjacency of input is given by\nthe list ",
StyleBox["iad.",
FontFamily->"Courier",
FontWeight->"Bold"]
}], "Text",
ImageRegion->{{0, 1}, {0, 1}}]
}, Closed]],
Cell[CellGroupData[{
Cell["Convex Hull (Facet Generation)", "Subsection",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[CellGroupData[{
Cell["?AllFacets", "Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[BoxData[
\("AllFacets[n,d+1,G] generates all facet inequalities of the convex \
polyhedron in R^(d+1) generated by points and rays given in the rows of an \
n*(d+1) matrix G. Each point (ray) must have 1 (0) in the first coordinate. \
The output is {{faclist, equalities}, icdlist} where faclist is the facet \
list and icdlist is the incidence list. If the convex polyhedron is not \
full-dimensional, extlist is a (nonunique) set of inequalities of the \
polyhedron where those inequalities in the equalities list are considered as \
equalities."\)], "Print",
CellTags->"Info3249106877-5554290"],
Cell["\<\
We have computed all the vertices of a 3-cube. Let's try the \
reverse operation. First check the size of the list of vertics. It should \
reconstruct the facets we have started with.\
\>", "Text",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[CellGroupData[{
Cell["{n, d1}=Dimensions[vertices]", "Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[BoxData[
\({8, 4}\)], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell["\<\
{{facets,equalities}, fincidences}= AllFacets[n,d1,Flatten[vertices]]\
\>", \
"Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[BoxData[
\({{{{0.`, 0.`, 0.`, 1.`}, {0.`, 1.`, 0.`, 0.`}, {0.`, 0.`, 1.`,
0.`}, {1.`, 0.`, 0.`, \(-1.`\)}, {1.`, 0.`, \(-1.`\),
0.`}, {1.`, \(-1.`\), 0.`, 0.`}}, {}}, {{1, 2, 3, 4}, {2, 3, 5,
7}, {3, 4, 5, 6}, {5, 6, 7, 8}, {1, 2, 7, 8}, {1, 4, 6,
8}}}\)], "Output"]
}, Open ]],
Cell[TextData[{
"We can compute how the facets are connected by using ",
StyleBox["AllFacetsWithAdjacency",
FontWeight->"Bold"],
" function."
}], "Text",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[CellGroupData[{
Cell["\<\
{{facets,equalities}, icd,iad, ecd,ead}=
\tAllFacetsWithAdjacency[n,d1,Flatten[vertices]]\
\>", "Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[BoxData[
\({{{{0.`, 0.`, 0.`, 1.`}, {0.`, 1.`, 0.`, 0.`}, {0.`, 0.`, 1.`,
0.`}, {1.`, 0.`, 0.`, \(-1.`\)}, {1.`, 0.`, \(-1.`\),
0.`}, {1.`, \(-1.`\), 0.`, 0.`}}, {}}, {{1, 2, 3, 4}, {2, 3, 5,
7}, {3, 4, 5, 6}, {5, 6, 7, 8}, {1, 2, 7, 8}, {1, 4, 6, 8}}, {{2,
3, 5, 6}, {1, 3, 4, 5}, {1, 2, 4, 6}, {2, 3, 5, 6}, {1, 2, 4,
6}, {1, 3, 4, 5}}, {{1, 5, 6}, {1, 2, 5}, {1, 2, 3}, {1, 3, 6}, {2,
3, 4}, {3, 4, 6}, {2, 4, 5}, {4, 5, 6}}, {{2, 4, 8}, {1, 3, 7}, {2,
4, 5}, {1, 3, 6}, {3, 6, 7}, {4, 5, 8}, {2, 5, 8}, {1, 6,
7}}}\)], "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["\<\
If you want to compute an inequality description of the \
one-dimensional cone in R^3 with a vertex at origin and containing the \
direction (1,1,1), you must set up the input (generator) data as:\
\>", "Text",\
ImageRegion->{{0, 1}, {0, 1}}],
Cell[CellGroupData[{
Cell["coneGenerators={{1,0,0,0},{0,1,1,1}}", "Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[BoxData[
\({{1, 0, 0, 0}, {0, 1, 1, 1}}\)], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell["\<\
{{cfacets,cequalities}, cfincidences}=
\tAllFacets[2,4,Flatten[coneGenerators]]\
\>", "Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[BoxData[
\({{{{1.`, 0.`, 0.`, 0.`}, {0.`, 1.`, 0.`, 0.`}, {0.`, \(-1.`\), 1.`,
0.`}, {0.`, \(-1.`\), 0.`, 1.`}}, {3, 4}}, {{2}, {1}, {1, 2}, {1,
2}}}\)], "Output"]
}, Open ]],
Cell["\<\
Since the equalities list contains 3 and 4, of the four output \
inequalities , the third and the forth must be considered as equalities. It \
is important to note that this cone can have infinitely many different \
minimal inequality descriptions, since it is not full-dimensional.\
\>", \
"Text",
ImageRegion->{{0, 1}, {0, 1}}]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["A Larger Example (Random 0/1 Polytopes)", "Subsection",
ImageRegion->{{0, 1}, {0, 1}}],
Cell["\<\
Let's compute the convex hull of 0/1 points in R^d. First generate \
0/1 points. Below each point with the first component 0 is considered as a \
direction that must be included in the convex hull.\
\>", "Text",
ImageRegion->{{0, 1}, {0, 1}},
FontSize->13],
Cell["n=30; d1=8;", "Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[CellGroupData[{
Cell["\<\
points=Table[Prepend[Table[Random[Integer,{0,1}],{d1-1}],0],{n}]\
\>\
", "Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[BoxData[
\({{0, 0, 1, 1, 0, 1, 1, 1}, {0, 1, 0, 0, 1, 1, 0, 0}, {0, 1, 0, 1, 0, 0,
0, 0}, {0, 0, 0, 0, 1, 1, 1, 1}, {0, 0, 1, 1, 0, 1, 1, 1}, {0, 1, 0,
1, 0, 1, 1, 1}, {0, 0, 1, 1, 0, 0, 0, 0}, {0, 1, 0, 0, 1, 1, 0,
1}, {0, 0, 0, 0, 1, 0, 1, 1}, {0, 0, 1, 0, 0, 0, 1, 1}, {0, 0, 1, 0,
0, 0, 1, 0}, {0, 0, 0, 0, 1, 0, 1, 0}, {0, 0, 0, 0, 0, 1, 0, 0}, {0,
0, 0, 0, 1, 0, 0, 0}, {0, 1, 0, 0, 1, 1, 0, 1}, {0, 0, 0, 1, 1, 1, 0,
0}, {0, 0, 1, 1, 1, 0, 0, 1}, {0, 1, 1, 0, 0, 1, 1, 0}, {0, 0, 1, 1,
0, 0, 0, 1}, {0, 1, 0, 1, 1, 0, 1, 0}, {0, 1, 1, 1, 0, 1, 0, 1}, {0,
1, 1, 1, 1, 0, 1, 1}, {0, 0, 0, 0, 1, 0, 0, 1}, {0, 1, 1, 0, 0, 0, 1,
1}, {0, 0, 1, 0, 1, 1, 0, 1}, {0, 1, 0, 0, 0, 1, 1, 1}, {0, 1, 0, 0,
0, 1, 1, 1}, {0, 0, 0, 1, 0, 0, 0, 1}, {0, 0, 1, 0, 1, 1, 0, 0}, {0,
0, 0, 0, 1, 0, 1, 1}}\)], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell["Dimensions[points]", "Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[BoxData[
\({30, 8}\)], "Output"]
}, Open ]],
Cell["\<\
{CPUtime, {{facets,equalities}, inc}}=
\tTiming[AllFacets[n,d1,Flatten[points]]];\
\>", "Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[CellGroupData[{
Cell["{CPUtime,Length[facets]}", "Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[BoxData[
\({0.`\ Second, 33}\)], "Output"]
}, Open ]],
Cell["\<\
Usually facets of 0/1 polytopes are very pretty and their \
coefficients are small integers.\
\>", "Text",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[CellGroupData[{
Cell["Take[facets,5]", "Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[BoxData[
\({{0.`, 0.`, 0.`, 1.`, 0.`, 0.`, 0.`, 0.`}, {0.`, \(-1.`\), 0.`, 1.`,
0.`, 1.`, 0.`, 1.`}, {0.`, \(-1.`\), \(-1.`\), 1.`, 0.`, 1.`, 1.`,
1.`}, {0.`, 0.`, 0.`, 0.`, 0.`, 0.`, 0.`, 1.`}, {0.`, 0.`, 1.`, 0.`,
1.`, 0.`, \(-1.`\), 1.`}}\)], "Output"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Disconnecting cddmathlink", "Subsection",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[CellGroupData[{
Cell["Uninstall[cddml]", "Input",
ImageRegion->{{0, 1}, {0, 1}}],
Cell[BoxData[
\("/Users/fukuda/Math/cddmathlink"\)], "Output"]
}, Open ]]
}, Closed]]
},
FrontEndVersion->"4.1 for Macintosh",
ScreenRectangle->{{0, 1152}, {0, 746}},
AutoGeneratedPackage->None,
WindowToolbars->{},
CellGrouping->Manual,
WindowSize->{583, 634},
WindowMargins->{{17, Automatic}, {Automatic, 41}},
PrivateNotebookOptions->{"ColorPalette"->{RGBColor, -1}},
ShowCellLabel->True,
ShowCellTags->False,
RenderingOptions->{"ObjectDithering"->True,
"RasterDithering"->False}
]
(*******************************************************************
Cached data follows. If you edit this Notebook file directly, not
using Mathematica, you must remove the line containing CacheID at
the top of the file. The cache data will then be recreated when
you save this file from within Mathematica.
*******************************************************************)
(*CellTagsOutline
CellTagsIndex->{
"Info3249106863-2654627"->{
Cell[3168, 111, 753, 11, 183, "Print",
CellTags->"Info3249106863-2654627"]},
"Info3249106869-2272285"->{
Cell[5701, 192, 930, 13, 231, "Print",
CellTags->"Info3249106869-2272285"]},
"Info3249106877-5554290"->{
Cell[8119, 252, 613, 9, 151, "Print",
CellTags->"Info3249106877-5554290"]}
}
*)
(*CellTagsIndex
CellTagsIndex->{
{"Info3249106863-2654627", 15561, 491},
{"Info3249106869-2272285", 15678, 494},
{"Info3249106877-5554290", 15795, 497}
}
*)
(*NotebookFileOutline
Notebook[{
Cell[1705, 50, 423, 12, 348, "Title"],
Cell[CellGroupData[{
Cell[2153, 66, 106, 2, 46, "Subsection",
InitializationCell->True],
Cell[CellGroupData[{
Cell[2284, 72, 295, 8, 50, "Text",
InitializationCell->True],
Cell[2582, 82, 120, 2, 27, "Input",
InitializationCell->True],
Cell[CellGroupData[{
Cell[2727, 88, 124, 5, 42, "Input",
InitializationCell->True],
Cell[2854, 95, 84, 1, 27, "Output"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[2999, 103, 79, 1, 30, "Subsection"],
Cell[CellGroupData[{
Cell[3103, 108, 62, 1, 27, "Input"],
Cell[3168, 111, 753, 11, 183, "Print",
CellTags->"Info3249106863-2654627"],
Cell[3924, 124, 299, 7, 68, "Text"],
Cell[CellGroupData[{
Cell[4248, 135, 139, 4, 42, "Input"],
Cell[4390, 141, 392, 11, 117, "Output"],
Cell[CellGroupData[{
Cell[4807, 156, 70, 1, 27, "Input"],
Cell[4880, 159, 40, 1, 27, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[4957, 165, 124, 4, 42, "Input"],
Cell[5084, 171, 356, 5, 91, "Output"]
}, Open ]]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[5513, 184, 85, 1, 30, "Subsection"],
Cell[CellGroupData[{
Cell[5623, 189, 75, 1, 27, "Input"],
Cell[5701, 192, 930, 13, 231, "Print",
CellTags->"Info3249106869-2272285"],
Cell[CellGroupData[{
Cell[6656, 209, 141, 4, 42, "Input"],
Cell[6800, 215, 670, 9, 155, "Output"]
}, Open ]]
}, Open ]],
Cell[7497, 228, 412, 11, 68, "Text"]
}, Closed]],
Cell[CellGroupData[{
Cell[7946, 244, 85, 1, 30, "Subsection"],
Cell[CellGroupData[{
Cell[8056, 249, 60, 1, 27, "Input"],
Cell[8119, 252, 613, 9, 151, "Print",
CellTags->"Info3249106877-5554290"],
Cell[8735, 263, 244, 5, 50, "Text"],
Cell[CellGroupData[{
Cell[9004, 272, 78, 1, 27, "Input"],
Cell[9085, 275, 40, 1, 27, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[9162, 281, 130, 5, 57, "Input"],
Cell[9295, 288, 323, 5, 75, "Output"]
}, Open ]],
Cell[9633, 296, 196, 6, 32, "Text"],
Cell[CellGroupData[{
Cell[9854, 306, 149, 5, 57, "Input"],
Cell[10006, 313, 633, 9, 139, "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[10688, 328, 255, 6, 50, "Text"],
Cell[CellGroupData[{
Cell[10968, 338, 86, 1, 27, "Input"],
Cell[11057, 341, 62, 1, 27, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[11156, 347, 138, 4, 42, "Input"],
Cell[11297, 353, 196, 3, 43, "Output"]
}, Open ]],
Cell[11508, 359, 342, 7, 68, "Text"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[11899, 372, 94, 1, 30, "Subsection"],
Cell[11996, 375, 272, 6, 48, "Text"],
Cell[12271, 383, 61, 1, 27, "Input"],
Cell[CellGroupData[{
Cell[12357, 388, 124, 4, 42, "Input"],
Cell[12484, 394, 913, 12, 171, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[13434, 411, 68, 1, 27, "Input"],
Cell[13505, 414, 41, 1, 27, "Output"]
}, Open ]],
Cell[13561, 418, 141, 5, 57, "Input"],
Cell[CellGroupData[{
Cell[13727, 427, 74, 1, 27, "Input"],
Cell[13804, 430, 51, 1, 27, "Output"]
}, Open ]],
Cell[13870, 434, 149, 4, 32, "Text"],
Cell[CellGroupData[{
Cell[14044, 442, 64, 1, 27, "Input"],
Cell[14111, 445, 291, 4, 59, "Output"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[14451, 455, 81, 1, 30, "Subsection"],
Cell[CellGroupData[{
Cell[14557, 460, 66, 1, 27, "Input"],
Cell[14626, 463, 66, 1, 27, "Output"]
}, Open ]]
}, Closed]]
}
]
*)
(*******************************************************************
End of Mathematica Notebook file.
*******************************************************************)
|